

IBM VisualAge C++ for OS/2

IBM VisualAge�C++ for OS/2 User's Guide

Version 3.0

S25H-6961-00

ÉÂÔ IBM VisualAge C++ for OS/2

IBM VisualAge�C++ for OS/2 User's Guide

Version 3.0

S25H-6961-00

 Note!

Before using this information and the product it supports, be sure to read the general information under
“Notices” on page xxx.

Fifth Edition (May 1995)

This edition applies to Version 3.0 of IBM VisualAge C++ for OS/2 (Programs 30H1664, 30H1665, 30H1666) and to all
subsequent releases and modifications until otherwise indicated in new editions. Make sure you are using the correct edition for
the level of the product.

Order publications through your IBM representative or the IBM branch office serving your locality. Publications are not stocked
at the address given below.

A form for readers’ comments is provided at the back of this publication. If the form has been removed, address your comments
to:

IBM Canada Ltd. Laboratory
Information Development
2G/345/1150/TOR
1150 Eglinton Avenue East
North York, Ontario, Canada. M3C 1H7

You can also send your comments by facsimile (attention: RCF Coordinator), or you can send your comments electronically to
IBM. Please see “Communicating Your Comments to IBM” for a description of the methods. This page immediately precedes
the Readers’ Comment Form at the back of this publication.

When you send information to IBM, you grant IBM a nonexclusive right to use or distribute the information in any way it
believes appropriate without incurring any obligation to you.

 Copyright International Business Machines Corporation 1992, 1995. All rights reserved.
Note to U.S. Government Users — Documentation related to restricted rights — Use, duplication or disclosure is subject to
restrictions set forth in GSA ADP Schedule Contract with IBM Corp.

 Contents

Programming Interface Information . xxx
Trademarks and Service Marks. xxxi
Who Should Read This Guide . xxxii
How to Read Syntax Diagrams. xxxii

Syntax for Commands, Preprocessor Directives, and Statements. xxxii
Syntax for Compiler Options . xxxv

What's New with WorkFrame . xxxvi
Compiler Changes .xxxviii
Linker Changes .xxxix
Performance Analyzer Changes . xlii
Debugger Changes .xliii
Browser Changes .xlv

Changes to the Product . xlv
Changes to this Publication . xlvi

How to Get Help . xlvii
Getting Help Inside VisualAge C++ . xlvii
Getting Help from the Command Line. xlviii
Getting Help for a Keyword or Construct xlviii
BookManager Books .xlix
Online Documents Available in VisualAge C++ xlix

Part 1. Developing with WorkFrame 1

Chapter 1. Introducing WorkFrame . 3
Overview .3
Working with Projects . 4
Understanding WorkFrame .11
Getting Help .12

Using Contextual Help . 12
Using How Do I? Information . 12

Chapter 2. Managing Projects .13
Introducing Projects .13

Project Parts .13
Tools Setup .14

Project Views .14
Icon View .15
Details View .20
Tree View .21

Creating a Project . 22

 Copyright IBM Corp. 1992, 1995 iii

Project Settings .23
Project Settings - Target Page. 23
Project Settings - Location Page . 25
Project Settings - Monitor Page. 27
Project Settings - Inheritance Page. 29
Project Settings - View Pages. 31
Project Settings - Sort Page. 31

Inheriting a Tools Setup . 33
Inheritance Precedence Rules. 33

Projects Are Files . 36
The Default Project . 36
Organizing Projects .38

Project Geometry .42
Sharing Project Parts on a LAN . 43
Creating Project Templates. 44

Chapter 3. The Project Tools Setup . 45
The Tools Setup Window. 46
Actions .48

Action Classes .49
Action Settings .49
Action Options .65
Default Actions .71
Actions on Menus . 73

Types .75
Type Classes .77
Adding Types .81

Environment Variables .82
Adding Environment Variables . 83

Chapter 4. The Project Monitor . 85
Monitor Controls .86
Action History .87
Editor Interaction with the Monitor . 88
Monitor Notes .89

Chapter 5. Building Your Target . 91
Build and Make . 91
The Build Utility . 92

Build Prerequisites .92
Setting Build Options . 93
Running Build from the Command Line. 101

The MakeMake Utility . 104

iv IBM VisualAge�C++ for OS/2 User's Guide

Generating Make Files . 104
Limitations .107
Compatibility with Make Utilities . 108
Using MakeMake from the Command Line. 108

Chapter 6. Project Smarts .111
Creating Projects from Project Smarts. 112
Adding Your Own Project Smarts Application. 114
Writing An Installation Script . 118

Project Smarts Installation Script Utilities 119
Project Smarts Sample Installation Script. 139

Chapter 7. Migrating Old Projects . 143
Migrating Version 2.x Projects . 144

What Information is Migrated? . 146
Migrating Version 1.x Projects . 147

What Information is Migrated? . 147

Chapter 8. Project Access Methods (PAMs) 149
The Role of a PAM . 149
Support for Multiple PAMs . 150
Compatibility .151

Part 2. Editing Files .153

Chapter 9. Introduction to the Editor . 155
Creating a New File . 155
Entering and Editing Text . 156
Undoing Changes .159
Saving a File . 160
Closing an Editor Window . 161
Opening an Existing File . 161
Finding Text .162
Finding and Replacing Text . 163
Finding Lines in the File . 164
Creating and Finding Marks . 164

Naming Marks .165
Finding Marks .165
Using a Quick Mark . 166

Inserting Text From Other Files . 167
Issuing Commands .168

Issuing Multiple Commands. 169
Blocking and Manipulating Text . 170

 Contents v

Editor Block Manipulation Facilities . 170
Unmarking a Block of Text . 171
Marking Blocks of Text . 171
Manipulating Marked Blocks . 173

Opening, Closing, and Moving between Views. 174
Using a Parser . 174

Using Elements, Fonts, and Classes. 176
Displaying Different Classes . 176
Entering Some Code . 178

Chapter 10. Customizing the Editor . 179
Using the Editor Tool Bar . 179

Customizing the Tool Bar . 180
Customizing the Menus on the Menu Bar. 180
Customizing the Keyboard . 182

Remapping the Keyboard Using the Set Key Command. 182
Remapping the Keyboard Using the Set Action Command. 182

Customizing the Autosave Facility for the Editor. 183
Customizing Editor Fonts and Colors. 184
Modifying Editor Behavior Permanently. 185

Standard Editor Profiles . 185
User-Defined Load Profiles . 186
Storing Personalized Profiles . 186
Sample Personalized Profile. 187

Part 3. Using the Data Access Builder 189

Chapter 11. Overview .191
Using the Actions Profile . 191
Starting Data Access Builder. 192
Saving a Data Access Builder Session. 192
Saving a Data Access Builder Session under Another Name. 193
Opening a Previously Saved Data Access Builder Session. 193
Displaying Pop-Up Menus in Data Access Builder. 193
Opening the Settings for a Class or Table. 193
Creating Classes from Existing Tables or Views. 193

Creating Classes .194
Changing the Class Name. 194
Changing the Mapping between a Table and a Class. 195

Generating Code Using Data Access Builder. 197
Generating Visual Builder Parts Using Data Access Builder. 197
Generating IDL Using Data Access Builder. 197

Viewing Files Generated by Data Access Builder. 198

vi IBM VisualAge�C++ for OS/2 User's Guide

Part 4. Compiling Your Program . 199

Chapter 12. Starting the Compiler . 201
Compiling within WorkFrame . 201
Compiling from the Command Line . 202

Using Response Files . 203
Compiling from a Make File . 204

Chapter 13. Controlling Compiler Input . 205
Compiling Programs with Multiple Source Files. 205
File Types .206
Using Wildcards in File Names. 207

OS/2 Environment Variables for Compiling. 207
Setting Environment Variables . 209
File Names in ICC . 210

Controlling #include Search Paths . 211
#include Syntax .211
#include File Name Syntax . 211
Ways to Control the #include Search Paths 212
#include Search Order . 213
Accumulation of Options . 213

Setting the Source Code Language Level. 214
ANSI .215
SAA Level 2 . 215
Extended .216
Compatible .216

Chapter 14. Controlling Compiler Output 219
Object Files .220
Executable Files .222
Compiler Listings .222
Temporary Files .223
Messages .223
Return Codes .224
Precompiled Header Files . 224

Using the Intermediate Code Linker. 225
Intermediate code files . 226
Restrictions .227
Using the /Gu Option . 227
Error Checking .228

Inlining User Code . 229
Using Keywords .229
Using the /Oi Option . 230

 Contents vii

Benefits of Inlining . 232
Drawbacks of Inlining . 233
Restrictions on Inlining . 233

Setting the Calling Convention. 235
Choosing Your Runtime Libraries . 236

Static and Dynamic Linking . 237
Using the Multithread Library . 238
Enabling Subsystem Development. 239

Using Precompiled Headers. 239
Determining the Initial Sequence. 240
Matching the Initial Sequence. 241
Using Multiple Initial Sequences . 243
Organizing Your Source Files. 245

Controlling the Logo Display on Compiler Invocation. 247
Controlling Stack Allocation and Stack Probes. 247

Using Stack Probes . 249
Setting the Stack Size . 250

Chapter 15. Setting Compiler Options . 253
Specifying Compiler Options . 253

Setting Options on the Command Line. 253
Setting Options in ICC . 253
Setting Options in the WorkFrame Environment. 254

Using Parameters with Compiler Options. 255
Strings .255
File Names .256
Switches .256
Numbers .256

Scope of Compiler Options. 257
Specifying Options with Multiple Source Files 257
ICC Combined with Options Entered on the Command Line. 258
Related Options .258
Conflicting Options .259
Language-Dependent Options .260
Compiler Options for Presentation Manager Programming. 261
Examples of Compiler Options for Choosing Libraries. 261

Compiler Option Classification . 263
Compiler Options Summary . 264
Output File Management Options . 268

/Fa .269
/Fb .269
/Fc .270
/Fe .270

viii IBM VisualAge�C++ for OS/2 User's Guide

/Fi .271
/Fl .271
/Fm .272
/Fo .272
/Ft .273
/Fw .273

#include File Search Options. 274
/I .275
/Xc .275
/Xi .275

Listing File Options . 276
/L .277
/La .277
/Lb .278
/Le .278
/Lf .278
/Li .279
/Lj .279
/Lp .279
/Ls .280
/Lt .280
/Lu .280
/Lx .281
/Ly .281

Debugging and Diagnostic Information Options. 281
/N .282
/Ti .282
/Tm .283
/Tn .283
/Tx .284
/W .284
/Wgrp .284

Source Code Options . 289
/S .289
/Sd .289
/Sg .290
/Sh .291
/Si .291
/Sm .292
/Sn .292
/Sp .292
/Sq .293
/Sr .293

 Contents ix

/Ss .293
/Su .294
/Sv .294
/Tc .294
/Td .295
/Tp .295

Preprocessor Options .296
/D .296
/P .297
/Pc .297
/Pd .297
/Pe .298
/U .298

Code Generation Options. 299
/G .299
/Gd .300
/Ge .300
/Gf .301
/Gh .301
/Gi .302
/Gk .302
/Gl .303
/Gm .303
/Gn .304
/Gp .304
/Gr .304
/Gs .305
/Gt .305
/Gu .305
/Gv .306
/Gw .306
/Gx .307
/M .307
/Nd .308
/Nt .308
/Nx .309
/O .309
/Oc .310
/Oi .310
/Ol .311
/Om .311
/Op .311
/Os .312

x IBM VisualAge�C++ for OS/2 User's Guide

/R .312
System Object Model (SOM) Options. 313

/Ga .313
/Gb .314
/Gz .314
/Xs .314
/Fr .315
/Fs .315

Other Options .316
/? .316
/B .316
/C .317
/H .317
/J .317
/Q .318
/Tl .318
/V .318

Part 5. Linking Your Program . 319

Chapter 16. Starting the Linker . 321
Linking within WorkFrame . 322
Linking from the Command Line . 323

Using LINK386 Syntax . 325
Responding to Linker Prompts . 327
Using Response Files . 328

Linking through the Compiler . 329
Passing Additional Options to the Linker 330

Linking from a Make File . 331

Chapter 17. Optimized Linking .333

Chapter 18. Input and Output . 335
Search Rules .335
Specifying Directories .336
File Name Defaults . 337

Specifying Object Files . 337
Entering Library Files As Object Files. 338

Specifying Executable Output Type. 338
Producing an .EXE File . 339
Producing a Dynamic Link Library . 339
Producing a Device Driver . 341

Generating a Map File . 341

 Contents xi

Linker Return Codes . 342

Chapter 19. Linking with Library Files . 343
Linking with .LIB Files . 344
Linking to Dynamic Link Libraries . 345

Linking to a DLL Using a .DEF File . 346
Linking to a DLL Using an Import Library 346

Chapter 20. Setting Linker Options . 347
Setting Options on the Command Line. 347
Setting Options in the ILINK Environment Variable 348
Setting Options in the WorkFrame Environment. 348

Specifying Numeric Arguments . 349
Summary of Linker Options . 350
Linker Options .351

/? .351
/ALIGNMENT .351
/BASE, /NOBASE .352
/BROWSE, NOBROWSE .352
/CODEVIEW, NOCODEVIEW .353
/DBGPACK, /NODBGPACK .353
/DEBUG, /NODEBUG .354
/DEFAULTLIBRARYSEARCH, /NODEFAULTLIBRARYSEARCH 354
/DLL .355
/EXEC .355
/EXEPACK, /NOEXEPACK .356
/EXTDICTIONARY, /NOEXTDICTIONARY 357
/FORCE .357
/FREEFORMAT, /NOFREEFORMAT . 357
/HELP .358
/IGNORECASE, /NOIGNORECASE . 358
/INFORMATION, /NOINFORMATION . 358
/LINENUMBERS, /NOLINENUMBERS 359
/LOGO, /NOLOGO .359
/MAP, /NOMAP .360
/OLDCPP, /NOOLDCPP .360
/OPTFUNC, /NOOPTFUNC .361
/OUT .361
/PACKCODE, /NOPACKCODE .362
/PACKDATA, /NOPACKDATA .363
/PDD .363
/PMTYPE .363
/SECTION .364

xii IBM VisualAge�C++ for OS/2 User's Guide

/SEGMENTS .365
/STACK .366
/VDD .367

Chapter 21. Creating Module Definition Files 369
Reserved Words .370
Summary of Module Statements. 372
Linker Module Statements . 373

BASE .373
CODE .374
DATA .376
DESCRIPTION .378
EXETYPE .378
EXPORTS .379
HEAPSIZE .381
IMPORTS .381
LIBRARY .383
NAME .384
OLD .386
PHYSICAL DEVICE .386
SEGMENTS .387
STACKSIZE .390
STUB .391
VIRTUAL DEVICE .391

Part 6. IBM VisualAge C ++ Debugger 393

Chapter 22. Introduction .395
Understanding the New and Enhanced Features. 395

Chapter 23. Before You Begin . 399
Writing Code that the Debugger Supports. 399
Compiling and Linking Your Program. 399
Setting Environment Variables . 400

Chapter 24. Getting Started .401
Starting the Debugger from OS/2 . 401
Starting the Debugger from WorkFrame.. 402
Understanding Integration .403
Debugging REXX and WorkPlace Shell Objects. 403
Ending the Debugging Session. 404

Chapter 25. Frequently Used Features . 405

 Contents xiii

Using the Title Bar Buttons. 405
Executing a Program . 406
Setting Breakpoints .407

Chapter 26. Introducing the Main Debugger Windows 409
Using the Control Window . 409

File Menu Choices . 410
Breakpoints Menu Choices . 413
Monitors Menu Choices . 420
Run Menu Choices . 421
Options Menu Choices. 422
Windows Menu Choices . 431
Help Menu Choices . 432

Using the Source Windows. 432
File Menu Choices . 434
View Menu Choices . 434
Breakpoints Menu Choices . 437
Monitors Menu Choices . 437
Run Menu Choices . 439
Options Menu Choices. 441
Windows Menu Choices . 442
Help Menu Choices . 442

Chapter 27. Introducing the Basic Debugging Windows 443
Using the Call Stack Window . 443

File Menu Choice . 443
Options Menu Choices. 444
Windows Menu Choices . 445
Help Menu Choices . 445

Using the Registers Window . 445
File Menu Choice . 446
Options Menu Choice . 446
Windows Menu Choices . 446
Help Menu Choices . 447

Using the Storage Window . 447
File Menu Choice . 447
Options Menu Choices. 448
Windows Menu Choices . 450
Help Menu Choices . 450

Using the Local Variables Window . 450
File Menu Choice . 451
Edit Menu Choices . 451
Options Menu Choices. 451

xiv IBM VisualAge�C++ for OS/2 User's Guide

Windows Menu Choices . 452
Help Menu Choices . 453

Using the Monitor Windows . 453
Using the Breakpoint List Window . 453

File Menu Choice . 454
Edit Menu Choices . 454
Set Menu Choices . 455
Options Menu Choices. 455
Windows Menu Choices . 457
Help Menu Choices . 458

Chapter 28. Introducing the PM Debugging Windows 459
Using the Window Analysis Window . 459

File Menu Choice . 460
Monitors Menu Choices . 460
Options Menu Choices. 461
Windows Menu Choices . 461
Help Menu Choices . 462

Using the Message Queue Window. 462
File Menu Choice . 462
Options Menu Choices. 462
Windows Menu Choices . 470
Help Menu Choices . 470

Chapter 29. Expressions Supported .471
Supported Expression Operands. 471
Supported Expression Operators. 472
Supported Data Types. 473

Part 7. Performance Execution Trace Analyzer 475

Chapter 30. Introducing the Performance Analyzer 477
New and Enhanced Features. 477

Chapter 31. Preparing Your Program . 479
Compiling and Linking Your Program. 479

Compiling .479
Linking .479

Tracing Dynamic Link Libraries (DLLs) . 480
Tracing System Calls . 480
Creating User Events in Your Program. 481
Starting and Stopping the Performance Analyzer from Your Program. 482
Understanding Overhead Time. 483

 Contents xv

Chapter 32. Starting the Performance Analyzer 485
Starting from OS/2 . 485

Tracing an Executable . 485
Analyzing an Existing Trace File . 486
Displaying the Performance Analyzer’s Main Control Window. 486
Analyzing WorkPlace Shell Objects . 486

Starting from WorkFrame . 487
Exiting the Performance Analyzer . 487

Chapter 33. Creating Trace Files . 489
Creating a Customized Trace File. 490

Enabling and Disabling Components. 491
Selecting the Call Depth for Each Thread. 492
Using Time Stamps . 492
Tracing File Accesses . 493
Setting and Removing Triggers. 494
Changing the Buffer Size . 494
Naming the Trace File . 495

Saving Trace File Settings . 495

Chapter 34. Using the Performance Analyzer Diagrams 497
Opening a Trace File in a Diagram . 498

Chapter 35. Introducing the Performance Analyzer Windows 499
Performance Analyzer - Specify Profile Location Window. 499
Performance Analyzer - Window Manager Window. 500

Areas of the Performance Analyzer - Window Manager Window. 500
Create Trace Window . 504

Areas of the Create Trace Window. 504
Trace Generation Window . 505

Areas of the Trace Generation Window. 506
Application Monitor Window . 511

Areas of the Application Monitor Window. 511
Analyze Trace Window . 512

Areas of the Analyze Trace Window. 513

Chapter 36. Managing Trace Files . 515
Using Filtering .515
Using Scaling .516
Using Scrolling .516
Using Multiple Views . 516
Recognizing Patterns .517
Understanding Correlation .517

xvi IBM VisualAge�C++ for OS/2 User's Guide

Chapter 37. Call Nesting Diagram . 519
Areas of the Call Nesting Diagram. 520

Call Nesting Menu Bar Summary. 520
Call Nesting Status Area. 523
Call Nesting Pop-up Menus. 523

Chapter 38. Dynamic Call Graph . 525
Dynamic Call Graph Arcs and Nodes. 526

Functions .526
Arcs .526

Areas of the Dynamic Call Graph . 527
Dynamic Call Graph Menu Bar Summary. 527
Dynamic Call Graph Status Area. 529

Dynamic Call Graph Zoom Bar . 529
Dynamic Call Graph Function Information Window. 530
Dynamic Call Graph Who Calls Whom Window. 531

Chapter 39. Execution Density Diagram . 533
Areas of the Execution Density Diagram. 534

Execution Density Menu Bar Summary . 534
Execution Density Status Area . 537
Execution Density Pop-up Menus. 537

Execution Density Current Column Indicator. 538
Execution Density Vertical Ruler . 538

Chapter 40. Statistics Diagram .539
Areas of the Statistics Diagram. 539

Statistics Menu Bar Summary. 539
Statistics Summary Pane. 542
Statistics Details Pane . 542

Chapter 41. Time Line Diagram . 545
Areas of the Time Line Diagram. 546

Time Line Menu Bar Summary. 546
Time Line Status Area . 548
Time Line Pop-up Menus . 548

Time Line Vertical Ruler . 550

Part 8. Browsing Programs and Libraries 551

Chapter 42. Overview .553
Understanding the Browser. 553
Concepts Used by the Browser. 554

 Contents xvii

Using the Mouse . 555
Getting Help While You Are Using the Browser. 555

Using Contextual Help . 555
Using the How Do I... Information . 556

Chapter 43. Getting Started .557
Starting the Browser . 557

From the OS/2 command prompt. 557
From the OS/2 Workplace Shell . 558
From the IBM WorkFrame environment. 558
From the VisualAge C++ Debugger or Editor 559

Creating Files to Use with the Browser. 559
Closing the Browser . 561

Chapter 44. Understanding and Using the Browser User Interface 563
The List Window . 564

Types of List Windows . 565
Browsing List Objects . 567
Understanding Browser Generated Flags. 568
Changing the Default List Window Settings. 569
Printing and Saving your Lists . 575

The Graph Window . 576
Getting a Graph Overview. 578
Organizing the Graph . 579
Selecting a Graph Zone . 580
Browsing Graph Objects. 580
Changing the Default Graph Window Settings. 580
Printing and Saving your Graphs. 585

Changing Browser Settings. 587
Changing Paths Used by the Browser. 588
Changing Help Levels . 590

Changing Fonts .592
Loading Files into the Browser. 593
Merging Files .595
Finding Objects in the Current Window. 597
Searching for Objects in the Entire Browser Database. 598
The History Window . 599

Chapter 45. Using the Browser . 601
Using the Browser to Assist in Development. 601

Editing and Viewing Source Files . 601
Browsing without Recompiling . 602
Browsing the IBM VisualAge C++ Open Class Library 602

xviii IBM VisualAge�C++ for OS/2 User's Guide

Browsing More Than One Program or Library at a Time. 603
Showing VisualAge C++ Open Class Library Documentation. 603

Using the Browser to Aid Program Understanding. 604
List All Classes Defined in the Currently Loaded Program. 604
List All Files Used to Create the Currently Loaded Program. 604
Listing All Objects Defined in a File . 605
Listing Implementing Files . 606
Listing All Friends of a Class . 606
Listing All Friendships of a Class or Function. 607
Listing Immediate Callers and Callees for a Function. 608
Listing All Class Members . 609
Listing Overriding Derived Classes. 610
Listing Instantiations of Classes or Functions. 611
Listing All the Exceptions That A Function May Encounter. 611
Viewing Class Relationships . 612
Viewing Call Chains . 613
Viewing Include File Relationships. 614

Using QuickBrowse .615
What Do You See When QuickBrowse Starts. 616
Scenarios for Using QuickBrowse . 617

Updating the Browser Database. 618
Adding Menu Items to the Load 5 and Merge 5 Cascade menus. 619

Chapter 46. A Tour of the Browser . 621
Starting the Browser and Loading User Interface Classes. 622
Finding A Class . 623
Showing the Inheritance Relationship of a Class. 624
Finding Another Class . 625
Changing the View of a Graph. 626
Investigating the Members of a Class. 627
Customizing Program Elements . 628
Editing Files from the Browser. 628
Organizing the Information in a List Window. 629
Finding A Function . 630
Showing the VisualAge C++ Documentation for a Particular Function. 631
More About the PopUp Menu Actions. 631
Invoking Actions Again . 631
Graphing Include File Relationships. 632
Returning to Previous Queries/Displays. 632
Keeping Your Windows From Being Replaced. 633
Changing the Default Settings for List and Graph Windows. 634
Manipulating Graphs .634
The Browser and WorkFrame . 635

 Contents xix

Chapter 47. Trouble Shooting .637
The Browser Won't Start . 637
Error Loading a .EXE, .DLL, or .LIB file . 637
Error Loading a .BRS File . 637
Error Loading a .PDB File . 637
Adding Files to the Load 5 and Merge 5 Menus Doesn't Work 638
The Graph Zone Will Not Maximum Zoom. 638

Chapter 48. Browser Fast-Path Keys and Menu Descriptions 639
Fast-Path Keys .639
PullDown Menus .640

File PullDown Menu . 641
Edit PullDown Menu . 642
View PullDown Menu . 643
Actions PullDown Menu . 644
Options PullDown Menu . 645
Order PullDown Menu . 646
Windows PullDown Menu . 646
Project PullDown Menu . 647
Help PullDown Menu . 647

PopUp Menus .648
PopUp Menu Items for List and Graph Windows. 648
Object PopUp Menu Items . 649

Part 9. Managing Libraries .653

Chapter 49. Using ILIB .655
Running ILIB .656

Using the Command Line . 656
Using ILIB Prompts . 657
Using an ILIB Response File . 657
Specifying ILIB Parameters - Examples. 658

Creating a New Library . 659
Modifying a Library . 660
Copying Object Modules to Object Files . 660
Listing the Contents of a Library. 661

Listing Example .662
ILIB Commands .665

Add Command (+) . 665
Delete Command (−) . 666
Replace Command (−+) . 667
Copy Command (*) . 667
Move Command (−*) . 668

xx IBM VisualAge�C++ for OS/2 User's Guide

ILIB Options .669
/CONVFORMAT (Convert to New Format) 669
/HELP (Display Help) . 670
/IGNORECASE (Turn Case Sensitivity Off). 670
/LISTLEVEL (Set Detail Level of Listing) 670
/NOBACKUP (Do Not Create Backup) . 671
/NOBROWSE (Do Not Include Browse Information). 671
/NOEXTDICTIONARY (Do Not Generate Extended Dictionary). 672
/NOIGNORECASE (Turn Case Sensitivity On). 672
/NOLOGO|/QUIET (Supress Banner). 672

Chapter 50. Packaging the VisualAge C++ Runtime DLLs 675
Using the DLLRNAME Utility . 676
How DLLRNAME Works . 677

What DLLRNAME Will Not Do . 677
Other Uses for DLLRNAME . 677

DLLRNAME Options .678
/H (Help) .678
/N (Do Not Rename DLL) . 678
/Q (Do Not Display Logo) . 678
/R (Do Not Generate Report) . 679

An Example .679

Chapter 51. Forwarded Entry Point (FWDSTAMP) 681
Using Forwarders .681

Starting FWDSTAMP .682
Example .682

Part 10. Defining National Characteristics 683

Chapter 52. Code Set Conversion Utilities 685
ICONV Utility .685
GENXLT Utility .687

Format of the Translation Source File. 687

Chapter 53. LOCALDEF Utility .689
Using LOCALDEF .689

LOCALDEF Options .690
/C (Continue If Errors) . 690
/F (Character Map) . 690
/I (Locale Source File) . 690
/W (Control Warnings) . 691

LOCALDEF Return Codes . 691

 Contents xxi

Locale Build Process . 691

Part 11. Adding Application Resources 693

Chapter 54. Resource Compiler .695
Command-Line Options .695

Explanation of Command-Line Options . 696
Help .697

Resource Script Files . 698
Directives .699

Using the Resource Compiler. 699
Code Page Table . 701

Defining Constants .701
About Resource Statements. 702
Binary Resource Files . 705

Statements and Directives. 707
ACCELTABLE Statement .708
ASSOCTABLE Statement .711
AUTOCHECKBOX Statement .713
AUTORADIOBUTTON Statement .714
BITMAP Statement .716
CHECKBOX Statement .717
CODEPAGE Statement .718
COMBOBOX Statement .719
CONTAINER Statement .720
CONTROL Statement .721
CTEXT Statement .723
CTLDATA Statement .724
DEFAULTICON Statement .726
define Directive .726
DEFPUSHBUTTON Statement .726
DIALOG Statement .728
DLGINCLUDE Statement .730
DLGTEMPLATE Statement .731
EDITTEXT Statement .732
elif Directive .733
else Directive .734
endif Directive .735
ENTRYFIELD Statement .735
FONT Statement .736
FRAME Statement .737
GROUPBOX Statement .739
HELPITEM Statement .740

xxii IBM VisualAge�C++ for OS/2 User's Guide

HELPSUBITEM Statement .741
HELPSUBTABLE Statement .742
HELPTABLE Statement .743
ICON Statement (Resource). 744
ICON Statement (Control) . 745
if Directive .746
ifdef Directive .747
ifndef Directive .747
include Directive .748
LISTBOX Statement .749
LTEXT Statement .750
MENU Statement .751
MENUITEM Statement .753
MESSAGETABLE Statement .756
MLE Statement .758
NOTEBOOK Statement .759
POINTER Statement .761
PRESPARAMS Statement .762
PUSHBUTTON Statement .763
RADIOBUTTON Statement .764
RCDATA Statement .765
RCINCLUDE Statement .766
RESOURCE Statement .767
RTEXT Statement .768
SLIDER Statement .769
SPINBUTTON Statement .770
STRINGTABLE Statement .771
SUBITEMSIZE Statement .773
SUBMENU Statement .774
undef Directive .775
VALUESET Statement .776
WINDOW Statement .777
WINDOWTEMPLATE Statement .779

Chapter 55. Dialog Editor .781
Designing Dialog Boxes . 782
Creating a Dialog Box . 782

Using a Grid . 784
Ordering Control Groups . 785
Adding Controls .786
Adding Controls Example . 787
Selecting Color and Font . 789
Arranging Controls .790

 Contents xxiii

Changing the Dialog Box . 790
Using the Options Menu. 791
Testing the Dialog Box . 791
Ending an Edit Session . 791

Dialog Templates .791
Sample Dialog Template File . 795

Chapter 56. Font Editor .797
Using the Font Editor . 797

Defining Fonts .798
Editing Character Width . 798
Font Resource Files . 799

Chapter 57. Icon Editor .801
Using the Icon Editor . 801

Creating a Figure . 802
Editing Art .803
Using Options .804

Editing Palette Colors . 807
Filling Areas With Color . 808
Creating Icons for Specific Displays . 808

Using a Command Line. 810

Part 12. Additional Utilities You May Find Useful 811

Chapter 58. Program Maintenance Utility (NMAKE) 815
Why Use NMAKE? . 815
Running NMAKE .815

Using the Command Line . 816
Using NMAKE Command Files . 817

Options .818
Produce Error File (/X) . 818
Build All Targets (/A) . 819
Suppress Messages (/C). 819
Display Modification Dates (/D) . 819
Override Environment Variables (/E). 819
Specify Description File (/F) . 819
Display Help (/HELP or /?) . 820
Ignore Exit Codes (/I) . 820
Display Commands (/N) . 820
Suppress Sign-On Banner (/NOLOGO). 820
Print Macro and Target Definitions (/P) . 820
Return Exit Code (/Q) . 820

xxiv IBM VisualAge�C++ for OS/2 User's Guide

Ignore TOOLS.INI File (/R) . 821
Suppress Command Display (/S). 821
Change Target Modification Dates (/T). 821

Description Files .821
Description Blocks .821
Special Features .822
Targets in Several Description Blocks. 823

Macros .824
Macros Example .825
Special Features .825
Macros in a Description File . 825
Macros on the Command Line . 825
Inherited Macros .826
Defined Macros .826
Macro Substitutions .826

Special Macros .827
Special Macros Examples . 828
File-Specification Parts .829
Characters That Modify Special Macros. 829
Modified Special Macros Example . 830
Macro Precedence Rules. 830

Inference Rules .831
Special Features .832

Inference Rules Example . 832
Inference-Rule Path Specifications. 833
Predefined Inference Rules . 833

Directives .833
Directives Example . 836
Pseudotargets .836
Predefined Pseudotargets .837

Inline Files .838
In-Line Files Example . 839
Escape Characters .839

Characters That Modify Commands. 840
Turn Error Checking Off (-) . 840
Dash Command Modifier Examples . 840
Suppress Command Display (@). 841
At Sign (@) Command Modifier Example. 841
Execute Command for Dependents (!). 841
Exclamation Point (!) Command Modifier Examples. 841
EXTMAKE Syntax .842

Macros and Inference Rules in TOOLS.INI. 843
TOOLS.INI Example .843

 Contents xxv

Chapter 59. Creating Message Files with MKMSGF 845
MKMSGF Syntax .845

Help .846
Input Message File . 848
Output File .849

Options .850
/D Option .851
/L Option .851
/P Option .851
/Verbose Option Output Example. 851

Control Files .852
Input Message File Example . 852

Chapter 60. Binding Messages with MSGBIND 853
MSGBIND Syntax .853

Input File .853
VisualAge C++ Message Files . 854
Multiple Code-Page Message Files. 854
Displaying Help .855

How Message Retrieval Works. 855
Sample Input File . 856

Chapter 61. Getting Quick Information with KwikINF 857
Automatic Text Retrieval . 857
BOOKSHELF Online Documents . 857

Index Files for Rapid Search . 858
Index File Format . 858
Enabling Online Documents. 860

Using KwikINF .861
KwikINF From the Command Line. 862
Configuring KwikINF .862
Activation Key Sequence . 863
Full Screen Sessions. 863
Default Volume to Search . 863
Activation Behavior .863

Searching Using the KwikINF Window . 864
Search String Entry Field . 865
VOLUME TO SEARCH List Box . 865
KwikINF Keys Help . 866

Chapter 62. Creating Online Documentation 867

Chapter 63. Compressing Files with PACK and PACK2 869

xxvi IBM VisualAge�C++ for OS/2 User's Guide

Starting PACK .869
PACK Options .870
Creating a List File . 871
Restoring Compressed Files with UNPACK 872

UNPACK Options .872

Chapter 64. Demangling Compiled C++ Names with CPPFILT 875
Using the CPPFILT Utility . 875
Text Mode .876

Text Files .876
Output in Text Mode . 876

Text Mode Options . 876
/C (Class Names). 877
/H (Help) .877
/M (Symbol Map) . 877
/Q (Do Not Display Logo) . 878
/S (Special Symbol Names). 878
/T (Mangled and Demangled Names Together). 878
/Wnnn (Width) .879

Binary Mode .879
.OBJ and .LIB Files . 879
Output in Binary Mode . 880

Binary Mode Options . 881
/B (Operate in Binary Mode) . 881
/H (Help) .881
/N (NONAME Keyword) . 882
/O (Ordinals) .882
/P (Public Symbols) . 883
/Q (Do Not Display Logo) . 883
/R (Referenced Symbols) . 883
/S (Special Symbol Names). 884
/X (Exported Symbols) . 884

Chapter 65. Using EXEHDR .885
EXEHDR Syntax .885

Displaying Help .885
EXEHDR Options .886

Formats Affected by Options . 886
Output .890

Header Listing .890
Object or Segment Listing. 891
Output Example .892
Verbose Output .892

 Contents xxvii

Chapter 66. Setting Program Type with MARKEXE 893
Command-Line Syntax .893

Syntax Definitions .894
Viewing Program Type . 895
Setting Program Type . 895

Chapter 67. Creating Symbolic Debugger Files with MAPSYM 897
Displaying Help .897
MAPSYM Options .897

Chapter 68. Creating Workplace Object Classes 899
Starting Workplace Class List . 899

Creating an Object Class Instance. 899
Replacing a Workplace Object Class. 900
Unreplaceing a Workplace Object Class. 901
Adding a Workplace Object Class . 901
Deleting an Object Class . 901

Chapter 69. Registering Workplace Objects with Object Utility/2 903
Class Name .904
DLL Name .904
Object ID .904
Title Field .904
Location Field .904
Options .905

Chapter 70. Using the T Terminal Emulator 907
Command-Line Syntax .907

Command-Line Options .908
Terminal Setup .908

Setup Terminal Emulation . 908
Setup Bells & Whistles . 909
Setting Communications Parameters. 909

Sending ASCII Files . 910
Pausing and Scrolling . 910
Receiving ASCII Files . 911

Glossary .913

Bibliography .935
The IBM VisualAge C++ Library . 935
The IBM VisualAge C++ BookManager Library 935
C and C++ Related Publications . 935

xxviii IBM VisualAge�C++ for OS/2 User's Guide

IBM OS/2 2.1 Publications . 935
IBM OS/2 3.0 Publications . 935
Other Books You Might Need . 936

BookManager READ/2 Publications . 936
Non-IBM Publications .936

Index .937

 Contents xxix

 Notices

Any reference to an IBM licensed program in this publication is not intended to state
or imply that only IBM’s licensed program may be used. Any functionally equivalent
product, program, or service that does not infringe any of IBM's intellectual property
rights may be used instead of the IBM product, program, or service. Evaluation and
verification of operation in conjunction with other products, except those expressly
designated by IBM, is the user's responsibility.

IBM may have patents or pending patent applications covering subject matter in this
document. The furnishing of this document does not give you any license to these
patents. You can send license inquiries, in writing, to the IBM Director of Licensing,
IBM Corporation, 500 Columbus Avenue, Thornwood, NY 10594, USA.

This publication contains examples of data and reports used in daily business
operations. To illustrate them as completely as possible, the examples include the
names of individuals, companies, brands, and products. All of these names are
fictitious and any similarity to the names and addresses used by an actual business
enterprise is entirely coincidental.

Licensees of this program who wish to have information about it for the purpose of
enabling: (i) the exchange of information between independent created programs and
other programs (including this one) and (ii) the mutual use of the information which
has been exchanged, should contact IBM Canada Ltd., Department 071, 1150
Eglinton Ave E., North York, ONT Canada M3C 1H7. Such information may be
available, subject to appropriate terms and conditions, including in some cases,
payment of a fee.

Programming Interface Information
This book is intended to help you create programs using VisualAge C++ product. It
primarily documents General-Use Programming Interface and Associated Guidance
Information provided by VisualAge C++ product.

General-Use programming interfaces allow the customer to write programs that obtain
the services of VisualAge C++ compiler, debugger, browser, execution trace analyzer,
and class libraries.

However, this book also documents Diagnosis, Modification, and Tuning Information.
Diagnosis, Modification, and Tuning Information is provided to help you debug your
programs.

xxx IBM VisualAge�C++ for OS/2 User's Guide

Warning: Do not use this Diagnosis, Modification, and Tuning Information as a
programming interface because it is subject to change.

Diagnosis, Modification, and Tuning Information is identified where it occurs by an
introductory statement to a chapter or section.

Trademarks and Service Marks
The following terms are trademarks of the International Business Machines
Corporation in the United States or other countries or both:

Windows is a trademark of Microsoft Corporation.

Other company, product, and service names, which may be denoted by a double
asterisk (**), may be trademarks of others.

BookManager
C/2
C Set/2
C Set ++
Common User Access
CUA
IBM
LibraryReader
Open Class
Operating System/2
OS/2
OS/2 Warp

Personal System/2
PS/2
Presentation Manager
Systems Application Architecture
SAA
VisualAge
WorkFrame
WorkPlace Shell
System Object Model
SOM

 Contents xxxi

About This Guide

This guide tells you how to use the IBM VisualAge C++ Version 3.0 for OS/2
product (referred to throughout the book as VisualAge C++) to:

¹ develop and organize
 ¹ edit
 ¹ compile
 ¹ link
 ¹ debug
 ¹ analyze
 ¹ browse
¹ manage libraries for

 ¹ internationalize
¹ add application resources to

your C and C++ programs on the 32-bit Operating System/2* (OS/2 *) system. For
information on miscellaneous tasks not in the above list, see Part 12, “Additional
Utilities You May Find Useful” on page 811.

For information on using the Visual Builder component of VisualAge C++, see the
Visual Builder User's Guide.

Who Should Read This Guide
This guide is written for application and systems programmers who want to use
VisualAge C++ product to develop and run C or C++ applications. It assumes you
have a working knowledge of the C or C++ programming language, the OS/2
operating system, and related products.

How to Read Syntax Diagrams
This book uses two methods to show syntax. One is for commands, preprocessor
directives, and statements; the other is for options.

Syntax for Commands, Preprocessor Directives, and Statements
¹ Read the syntax diagrams from left to right, from top to bottom, following the

path of the line.

The 55─── symbol indicates the beginning of a command, directive, or statement.

The ───5 symbol indicates that the command, directive, or statement syntax is
continued on the next line.

xxxii IBM VisualAge�C++ for OS/2 User's Guide

The 5─── symbol indicates that a command, directive, or statement is continued
from the previous line.

The ───5% symbol indicates the end of a command, directive, or statement.

Diagrams of syntactical units other than complete commands, directives, or
statements start with the 5─── symbol and end with the ───5 symbol.

Note: In the following diagrams, STATEMENT represents a C or C++ command,
directive, or statement.

¹ Required items appear on the horizontal line (the main path).

55──STATEMENT──required_item─────────────────────────────────────5%

¹ Optional items appear below the main path.

55──STATEMENT─ ──┬ ┬─────────────── ────────────────────────────────5%
 └ ┘─optional_item─

¹ If you can choose from two or more items, they appear vertically, in a stack.

If you must choose one of the items, one item of the stack appears on the main
path.

55──STATEMENT─ ──┬ ┬─required_choice1─ ─────────────────────────────5%
 └ ┘─required_choice2─

If the items are optional, the entire stack appears below the main path.

55──STATEMENT─ ──┬ ┬────────────────── ─────────────────────────────5%
 ├ ┤─optional_choice1─
 └ ┘─optional_choice2─

The item that is the default appears above the main path.

 ┌ ┐─default_item───
55──STATEMENT─ ──┴ ┴─alternate_item─ ───────────────────────────────5%

¹ An arrow returning to the left above the main line indicates an item that can be
repeated.

 ┌ ┐───────────────────
55──STATEMENT─ ───6 ┴─repeatable_item─ ──────────────────────────────5%

A repeat arrow above a stack indicates that you can make more than one choice
from the stacked items, or repeat a single choice.

 Contents xxxiii

¹ Keywords appear in nonitalic letters and should be entered exactly as shown (for
example, pragma).

Variables appear in italicized lowercase letters (for example, identifier). They
represent user-supplied names or values.

¹ If punctuation marks, parentheses, arithmetic operators, or other such symbols are
shown, you must enter them as part of the syntax.

Note: The white space is not always required between tokens, but it is recommended
that you include at least one blank between tokens unless specified otherwise.

The following syntax diagram example shows the syntax for the #pragma comment
directive. (See the Language Reference for information on the #pragma directive.)

.1/ .2/ .3/ .4/ .5/ .6/ .9/ .10/
 55─#──pragma──comment──(─┬─────compiler────────────────────────┬──)─5%
 │ │
 ├─────date────────────────────────────┤
 │ │
 ├─────timestamp───────────────────────┤
 │ │
 └──┬──copyright──┬──┬─────────────────┤
 │ │ │ │
 └──user───────┘ └──,─"characters"─┘

 .7/ .8/

The syntax diagram is interpreted in the following manner:

.1/ This is the start of the syntax diagram.

.2/ The symbol # must appear first.

.3/ The keyword pragma must appear following the # symbol.

.4/ The keyword comment must appear following the keyword pragma.

.5/ An opening parenthesis must be present.

.6/ The comment type must be entered only as one of the types indicated:
compiler, date, timestamp, copyright, or user.

.7/ If the comment type iscopyright or user, and an optional character string
is following, a comma must be present after the comment type.

.8/ A character string must follow the comma.

.9/ A closing parenthesis is required.

.10/ This is the end of the syntax diagram.

xxxiv IBM VisualAge�C++ for OS/2 User's Guide

The following examples of the #pragma comment directive are syntactically correct
according to the diagram shown above:

 #pragma comment(date)
 #pragma comment(user)

#pragma comment(copyright,"This text will appear in the module")

Syntax for Compiler Options
¹ Optional elements are enclosed in square brackets [].

¹ When you have a list of items from which you can choose one, the logical OR
symbol (|) separates the items.

¹ When you have a list of items from which you must choose one, the list of items
is enclosed in angle brackets (< >).

¹ Variables appear in italicized lowercase letters (for example,num).

Examples Syntax Possible Choices

/L[+|-] /L
/L+
/L-

/Lt"string" /Lt"Listing File for Program Test"

Note that, for options that use a plus (+) or minus (-) sign, if you do not specify a
sign, the plus is assumed. For example, the/L and /L+ options are equivalent.

 Contents xxxv

 What's New

What's New with WorkFrame
WorkFrame Version 3.0 has many enhancements from its predecessor, Version 2.1,
mostly having to do with usability. Immediately you'll notice that project containers
have changed to please those who prefer the Version 1.1 Presentation Manager*
menu-bar interface, but retains object-oriented characteristics for those partial to the
Workplace Shell. There is also no separate WorkFrame folder; all WorkFrame
objects are now located in the VisualAge C++ folder (although you can create
WorkFrame projects anywhere on your system).

Here is a summary of what's new with WorkFrame this release:

¹ Project icon view containers now have a menu bar. The project container is
split into two parts: the upper half holds project files and objects, and the lower
half holds the project's Monitor where output from tools is displayed. By
default, the monitor is hidden until a monitored action is started, or until you
push the Show button on the project's tool bar. You push the same button to
hide the monitor. See “Icon View” on page 15 for a more detailed
description of the new project container.

¹ The project container has two toolbars, a configurable one for frequently used
actions and another for monitor controls.

¹ Project-scoped actions are now available from the Project pull-down menu as
well as pop-up menus, and the toolbar. File-scoped actions are available from
the Selected pull-down menu, and pop-up menus on project files. See
“Action Settings - Menus Page” on page 63 for more information on how to add
your actions to these controls.

¹ A project's Tools setup consists of a tree view of actions, a list of environment
variables, and a list of types that apply to the project. The Tools setup replaces
the actions profile of Version 2.1. Actions, environment variables, and types are
now part of the project and no longer exist in a separate actions profile object.

 See Chapter 3, “The Project Tools Setup” on page 45 for more information
on the Tools setup window.

¹ Projects can share a Tools setup by inheriting another project's Tools setup.
Any changes made to the base project's Tools setup are reflected in the projects
that inherit from it. Inheritance can optionally be extended to include action
options, so that any options changed in the base Tools setup are also changed in

xxxvi IBM VisualAge�C++ for OS/2 User's Guide

the projects that inherit from it. See “Inheriting a Tools Setup” on page 33
for more information on project inheritance.

¹ Projects can now be nested, doing away with the separate concepts of base and
composite projects in Version 2.1. In this version,base project refers to the
parent project in a parent-child inheritance relationship.

¹ Consequently, projects can now contain any Workplace Shell objects, like a
printer or OS/2 Window, along with project files and other WorkFrame projects.
However, WorkFrame actions cannot be invoked on Workplace Shell objects in a
project unless they are files, shadows of files, or other WorkFrame projects.
See “Project Parts” on page 13 for a discussion about the objects a project can
contain.

¹ Version 3.0 now has an powerful Build facility that removes the nuisance of
creating and maintaining a make file by dynamically generating the information
needed to build the project target each time a build is initiated. You can invoke
the Build utility from the command line, and from the project toolbar and menus.
The traditional Make facility which runs on a pre-generated makefile is still
available. See Chapter 5, “Building Your Target” on page 91 to learn how
to use the WorkFrame Build utility.

¹ MakeMake, WorkFrame's make file generation utility, can now be invoked from
the command line with new command-line options.

¹ A project catalog called Project Smarts provides highly-customizable project
templates that contain ready-to-use code skeletons for various kinds of
applications, such as Presentation Manager and User Interface Class Library
programming. You can extend this catalog or provide one of your own. Since
REXX scripts control the instantiation of these projects, you have full power and
flexibility to customize on the fly. See Chapter 6, “Project Smarts” on
page 111 for more information on how to create projects from Project Smarts,
and how to add Project Smarts templates of your own.

¹ WorkFrame now supports regular expressions, and other programmable types,
along with file masks. Types are now classed into an extendible set of type
classes that includes file masks, regular expressions, and logical and exclusion
types. See “Types” on page 75 for a complete list of the type classes provided
with WorkFrame, and an explanation of how to use them.

¹ Projects can now have multiple Project Access Methods (PAMs). This feature
enables a project to contain objects from different file systems, remote locations,
or library systems, and run remote or special-purpose actions supported by a
registered PAM. This important feature enables programmers to develop code in
the WorkFrame environment regardless of source, target platform, or language.
Most users do not need to become familiar with the way PAMs work to use
WorkFrame effectively. If you need to use PAMs from another

 Contents xxxvii

solution-provider, work with objects other than OS/2 files, or if you are interested
in writing a PAM of your own, you will want to read Chapter 8, “Project
Access Methods (PAMs)” on page 149 for more information about PAMs and
using projects with multiple PAMs.

¹ A new project migration utility helps you migrate your WorkFrame Version 2.x
or Version 1.x projects to Version 3.0 projects. See Chapter 7, “Migrating
Old Projects” on page 143 for more information on how the project migration
utility works.

 Compiler Changes
The following changes have been made to the compiler:

¹ You can now use multiple and nested response files with the compiler.
Previously you could only specify one response file. See “Using Response Files”
on page 203 for more information on using response files.

¹ Most options now have local scope; an option applies only to files that appear
after it on the command line. See “Scope of Compiler Options” on page 257 for
a complete description of compiler scope.

¹ You can no longer use any /K option. Use the equivalent/Wgrp option instead.

¹ You can no longer keep temporary files in shared memory with the /Fd option.
Temporary files are now always saved to disk.

¹ You can now give directory names when you specify files with the following
options:

 – /Fa
 – /Fl
 – /Fo
 – /Fw

¹ Direct to SOM support has been added to the compiler. The following options
are now available:

 – /Fr
 – /Fs
 – /Ga
 – /Gb
 – /Gz
 – /Xs

¹ You can add line-number-only debugging information with the /Tn option.

xxxviii IBM VisualAge�C++ for OS/2 User's Guide

¹ You can include additional levels of browse information with the /Fb option.

¹ You can optimize for size as well as speed with the /Oc option.

¹ Specify the /Gp option to support__parmdwords on system linkage. Previously,
__parmdwords was supported by default.

¹ You can remove unreferenced functions by compiling and linking with the /Gl
option.

¹ You can link in old object files (created by versions of the compiler before
VisualAge C++ version 3.0) with the /Gk option.

Additional changes to the compiler that do not affect its options are documented in
the Programming Guide cp 10

 Linker Changes
LINK386 has been replaced by VisualAge C++ linker. VisualAge C++ linker has the
following differences from LINK386:

¹ VisualAge C++ linker accepts object files compiled or assembled:

– In 16- or 32-bit OMF format
– In TIS OMF or IBM OMF format
– For OS/2 version 1.0 or higher
– For the 80286 (16-bit only), 80386, 80486, and Pentium microprocessors

¹ VisualAge C++ linker has a new, more flexible, command line syntax. See
“Linking from the Command Line” on page 323 for more information. You can
use a LINK386-compatible syntax instead by specifying/NOFREE. See “Using
LINK386 Syntax” on page 325 for more information.

¹ You can use multiple response files with ILINK, but you cannot nest response
files (you cannot use multiple response files with /NOFREE).

¹ Blank lines in a response file are treated as input (the linker will proceed to the
next prompt). This includes blank lines at the beginning and end of the response
file.

¹ You can specify options with either a slash (/) or a dash (-) as in /DEBUG or
-DEBUG.

¹ You must separate each option from preceding text with a space or tab.

¹ ILINK generates a fatal error if you have unmatched quotes on the command line
or in a response file.

¹ ILINK stops linking when it cannot find a file you specify.

 Contents xxxix

¹ ILINK has a return code that is the sum of:

4 For any warning messages
8 For any error messages
16 For any fatal errors

You can force NMAKE to ignore return codes less than 8 by putting -7 before
the linker command in your makefile. See “Linker Return Codes” on page 342
for more information on return codes.

¹ VisualAge C++ linker can read the library format produced by VisualAge C++
Version 3.0, as well as the library format used by previous versions.

¹ VisualAge C++ linker does not allow other processes to open the .DEF file for
update during a link.

¹ Constant segments are now in CONST32_RO, which is set to READONLY and
SHARED. You can redefine these attributes in a .DEF file or with the/SECTION
option.

¹ /ALIGNMENT cannot be set higher than 4096.

¹ VisualAge C++ linker supports browse information for VisualAge C++ with the
/BROWSE option.

¹ /MAP has changed:

– It has a name parameter, that allows you to name and direct the map file (this
parameter is ignored if you specified/NOFREE).

– It gives a complete map file; you no longer need to specify/MAP:full.

¹ /NOIGNORECASE is now the default, which you can override with/IGNORECASE.

¹ /NOLOGO now suppresses the echoing of text from a response file, as well as
suppressing the product information at the start of the linking.

¹ VisualAge C++ linker has added options which reduce the need for a .DEF file:

/DLL
Produce a .DLL file

/EXEC
Produce an .EXE file

/PDD
Produce a physical device driver

/SECTION
Set section or segment attributes

/VDD
Produce a virtual device driver

xl IBM VisualAge�C++ for OS/2 User's Guide

¹ VisualAge C++ linker has added new optimization options:

/OPTFUNC
Removes unreachable functions (for object file compiled with /Gl)

/EXEPACK:2
Pack file for OS/2 version 3.0 or later

/DBGPACK
Pack debugging information (use with /DEBUG)

¹ VisualAge C++ linker has also added the following new options:

/FORCE
Create executable output file even if errors

/FREEFORMAT
Use new command-line syntax (the default)

/NOBASE
Emit internal fixups

/NOFORCE
Do not create executable output file if errors (the default)

/NOFREEFORMAT
Use LINK386-compatible command line syntax

/NOOLDCPP
Resolve templates with linker (default)

/NOOPTFUNC
Do not perform new optimization (the default)

/OLDCPP
Resolve templates in old object code (created before VisualAge C++
version 3.0)

/OUT
Name and direct output file (incompatible with /NOFREE)

¹ Most options now have a positive and negative setting. To accomplish this,
ILINK has added the following options, which were previously LINK386 defaults
you could not specify directly:

 – /NOCODEVIEW
 – /NODEBUG
 – /DEFAULTLIBRARYSEARCH
 – /NOEXEPACK
 – /EXTDICTIONARY
 – /IGNORECASE
 – /NOINFORMATION

 Contents xli

 – /NOLINENUMBERS
 – /LOGO
 – /NOMAP
 – /PACKDATA

¹ Some LINK386 options are no longer supported. The following options are no
longer available:

/BATCH
There are no pauses to suppress.

/DOSSEG
Segment ordering is on when you build .EXE or .DLL files, and off when
you build device drivers. You no longer need to specify the option.

/FARCALLTRANSLATION
No longer required.

/NONULLSDOSSEG
No longer required.

/PAUSE
No longer required.

/RUNFROMVDM
No longer required.

/WARNFIXUP
No longer required.

Performance Analyzer Changes
The following features are new with this release of VisualAge C++:

Performance Analyzer - Window Manager window
The Performance Analyzer - Window Manager window is the control
window for the Performance Analyzer. From this window, you can start most
Performance Analyzer functions. For instance, you can:
¹ Start creating a new trace file
¹ Start analyzing an existing trace file
¹ Open and close a diagram.

Trace On and Trace Off push buttons
These buttons, which appear on the Application Monitor window, let you
start and stop the trace of your program.

WorkFrame integration
If you have started the Performance Analyzer from WorkFrame, you can:
¹ Display Help information for library functions, such as IBM Open Class

functions, OS/2 system functions, and C runtime functions.

xlii IBM VisualAge�C++ for OS/2 User's Guide

¹ Start the WorkFrame editor from a Performance Analyzer diagram and
edit your source code.

¹ Start other programs from the Performance Analyzer.
Tracing capability in dynamic link libraries

In addition to tracing functions in the executable file, the Performance
Analyzer can trace your program’s activity in:
¹ Statically or dynamically linked Dynamic link libraries (DLLs).
¹ The following system libraries:

 – DOSCALL.DLL
 – PMGPI.DLL
 – PMWIN.DLL

¹ Dynamically linked load-on-call DLLs. If you only want to trace a
load-on-call DLL, the Trace Generation window will not have any
executables or DLLs listed in the window, and you will receive an
informational message.

Tracing capability for up to 64 threads
The Performance Analyzer can trace up to 64 threads. The diagrams show
activity on all or selected threads.

Pop-up menus
Clicking mouse button two in most diagrams displays pop-up menus that let
you quickly access frequently used functions.

Time find capability in Call Nesting
The Call Nesting diagram has a search capability that lets you go to specific
times in the trace file.

Time Line diagram
The Performance Analyzer can display user events in the Time Line diagram.

Status Area
Each diagram has a Status Area, which shows you detailed information about
the trace file data.

Vertical Ruler
Many diagrams have a Vertical Ruler that shows your location in the trace
file.

 Debugger Changes
The following describes the new features that have been added to the debugger since
the previous release.

Deferred breakpoints
Allows you to set a breakpoint in a DLL that is not currently loaded. If
your application consists of DLLs that are dynamically loaded, use this
feature to set breakpoints in the dynamically loaded DLLs that have not
been loaded yet. These deferred breakpoints become active once the
DLL is loaded.

 Contents xliii

Child process debugging
Supports debugging of processes started by a parent program.

Exception filtering
Allows you to select the exceptions that you want the debugger to
recognize. An exception occurs when your application is unable to
interpret specific requests.

Check heap when stopping
Helps to isolate memory management problems by checking for memory
overwriting each time your program stops executing.

Hide debugger on Run
Hides the debugger windows while your application is running.

Color support
Allows you to change the color of the various window elements such as
executable lines, non-executable lines, and the breakpoint prefix area.

SOM support
Allows you to debug SOM objects created with the compiler using
Direct-to-SOM support or created with the SOM compiler. Support
includes monitoring SOM classes in the monitor windows.

Scroll to line number
Allows you to scroll to a particular line number in the source code. This
feature also provides the ability to set breakpoints.

Autosave window positions and sizes
Saves the window positions and sizes when the windows are moved or
re-sized. Alternatively, you may save the window positions and sizes by
position to the debugger windows on the desktop and selecting the Save
window positions and sizes choice.

Integration
Provides quick and easy access to other tools such as an editor or the
browser. This feature is available when the debugger is started from
within the WorkFrame/2 environment.

Select include files
Allows you to select the include files you want to view. Include files are
files that are included in your source file by a compiler directive and are
considered program source files.

Windows menu
Displays a list of all the active debugger windows.

xliv IBM VisualAge�C++ for OS/2 User's Guide

Hover help for title bar buttons
Displays the name of the title bar button when you place your mouse
pointer on the button. If you drag the mouse pointer across the buttons,
the name in the title bar area changes to reflect the button you are on.

The following describes the enhanced features that have been added to the debugger
since the previous release.

Call stack window
Provides the option of displaying the remaining stack size, the stack
frame size, the return address, the ESP value and the EBP value.

Breakpoint list window
Displays as a window allowing you to continuously monitor the
breakpoint list. You can also display the source code where the
breakpoint is set.

Storage window
Allows you to monitor expressions in a storage window. For example, if
you are monitoring a pointer, as the pointer changes, the storage window
changes to show the new location referenced by the pointer.

Change address breakpoint
Allows you to set a change address breakpoint by typing in an
expression.

Enable program profiling
Allows you to enable or disable the use of program profiles which
restores a program's breakpoints, source windows and monitors to the
same state as when last debugged.

 Browser Changes
This section summarizes the differences between the IBM VisualAge C++ Browser
Version 3.0 and its predecessor, the IBM C Set++ Browser Version 2.1. It also
describes changes made to this document, from the previous version S61G-1367.

Changes to the Product
¹ The Browser Control window and the Text window have been removed. See

Chapter 44, “Understanding and Using the Browser User Interface” on page 563
on how VisualAge C++ Browser functions are now handled.

¹ You can now identify System Object Model (SOM) classes and metaclasses with
different shapes and colors.

 Contents xlv

¹ All Browser windows have an Information Area at the bottom of the window
used to define menu items as you highlight them. As well, some processing
messages are displayed here.

¹ You can now print the List and Graph window contents or save them to ASCII
and OS/2 bitmap formats, respectively.

¹ When loading a large program, a window appears telling you the percentage of
the program loaded.

¹ As part of the redesign of the Browser to increase the ease of use, all command
line options from Version 2.1 have been removed. You can start the Browser
with one easy to remember command - icsbrs.

¹ You no longer have to create complex queries in order to browse your programs.
The Browser provides all possible queries via Object PopUp menus. For more
information on these menus, see “PopUp Menus” on page 648.

¹ You can quickly browse the targets of your IBM WorkFrame projects, without
having to recompile, by using the QuickBrowse facility. See “Browsing without
Recompiling” on page 602 for more information.

¹ Quick access to the classes that make up the IBM VisualAge C++ Open Class
Library through the Load 5 and Merge 5 Cascade menus.

¹ Quick access to all the IBM VisualAge C++ documentation for the classes and
functions that make up the IBM VisualAge C++ Open Class Library.

Changes to this Publication
The changes made in this publication are:

¹ The format of the book has been changed.

¹ A fuller description of the user interface components has been added. See
Chapter 44, “Understanding and Using the Browser User Interface” on page 563.

¹ Many section have been added to show you how to do some common Browser
tasks. See Chapter 45, “Using the Browser” on page 601.

¹ A quick tour of the Browser has been added to show you some of the key
features of the Browser. See Chapter 46, “A Tour of the Browser” on page 621.

¹ A fast-path keys and menu descriptions section has been added for quick
reference. See Chapter 48, “Browser Fast-Path Keys and Menu Descriptions” on
page 639.

¹ A trouble-shooting chapter to help you solve some problems you may encounter.
See Chapter 47, “Trouble Shooting” on page 637.

xlvi IBM VisualAge�C++ for OS/2 User's Guide

How to Get Help
There are three kinds of online information available to you while you are using
VisualAge C++:

Online documents
These are complete documents, like the one you are reading now,
presented online. These documents contain detailed information on the
different aspects of VisualAge C++. For your convenience, the online
documents are presented in two formats:

¹ Standard format (.INF files). See “Getting Help Inside
VisualAge C++” for instructions on opening standard format
documents from inside VisualAge C++. See “Getting Help from the
Command Line” on page xlviii for instructions on opening standard
format documents from the command line. For a list of the
VisualAge C++ documents that are available in standard format, see
“Online Documents Available in VisualAge C++” on page xlix.

¹ BookManager format (on CD-ROM only). See “BookManager
Books” on page xlix for details on how to access online documents
in this format. For a list of the VisualAge C++ documents that are
available in BookManager format, see “The IBM VisualAge C++
BookManager Library” on page 935.

Contextual help
Contextual help is available throughout VisualAge C++. This help tells
you all about the elements that you see in the interface, including menus,
entry fields, and pushbuttons.

How Do I help
Many of the common tasks that you want to perform with
VisualAge C++ are described in How Do I help. The How Do I help for
a task gives you step-by-step instructions for completing the task. There
is overall How Do I help for VisualAge C++, as well as individual task
lists for each of its components.

Getting Help Inside VisualAge C ++
All three kinds of help are available directly within the VisualAge C++ interface:

¹ To get general contextual help for the component of VisualAge C++ that you are
using, press F1 anywhere in the window.

¹ To get contextual help on a particular menu, menu item, or button, highlight the
element and press F1.

 Contents xlvii

¹ To get access to all of the help information that is available to you in a particular
window, click on Help in the menu bar at the top of the window. This menu
includes the following selections:
– Help Index, an alphabetical list of all of the help topics that are available

from this window
– General Help, overall help for the window
– Using Help, general information about the help facility

 – How Do I..., the How Do I help for the component
– Product Information, a dialog that shows the level of VisualAge C++

being used
In addition, there are selections that let you open all of online documents that are
available in VisualAge C++.

¹ To get detailed information, open the Information folder in the VisualAge C++
folder. In this folder you will find icons for a variety of online documents that
describe, in detail, the different aspects of VisualAge C++. To open a particular
online document, double click on its icon.

Getting Help from the Command Line
If you want, you can look at the online documents by issuing the view command.
The installation routine stores the online document files in the \IBMCPP\HELP
directory. To view the Language Reference, for example, make C:\IBMCPP\HELP
your current directory (substituting the drive where you installed VisualAge C++ for
C:) and enter the following command:

 VIEW CPPLNG.INF

If you want to get information on a specific topic, you can specify a word or a series
of words after the file name. If the words appear in an entry in the table of contents
or the index, the online document is opened to the associated section. For example, if
you want to read the section on operator precedence in the Language Reference, you
can enter the following command:

VIEW CPPLNG.INF OPERATOR PRECEDENCE

Getting Help for a Keyword or Construct
If you are editing a file using Editor, you can get help for a keyword or construct by
highlighting the word and pressing F1. In the other tools, you can get help for a
keyword or construct by highlighting the word and pressingCtrl-H.

xlviii IBM VisualAge�C++ for OS/2 User's Guide

 BookManager Books
In addition to standard format, the online documents are also available in
BookManager format in the CD-ROM version of VisualAge C++. You can read this
information using either the IBM Library Reader/2 or IBM Library Reader/DOS. For
details on installing and using the IBM Library Reader and BookManager books, see
the README.ENG file in the root directory of the CD-ROM.

Online Documents Available in VisualAge C ++
The following documents are available in standard format:

Building VisualAge�C++ Parts
for Fun and Profit

Multimedia Subsystem
Programming Guide

SOM Programming
Reference

C Library Reference Open Class Library
Reference

User's Guide

Control Program Guide and
Reference

Open Class Library User's
Guide

Visual Builder User's Guide

Graphics Programming
Guide and Reference

OS/2 Bidirectional
Language Support
Development Guide

Visual Builder Parts
Reference

IPF Guide and Reference OS/2 Tools Reference Editor Command Reference

Kernel Debug Reference Presentation Manager
Guide and Reference

Welcome to VisualAge�C++

Language Reference Programming Guide Workplace Shell
Programming Guide

Multimedia Application
Programming Guide

REXX Reference Workplace Shell
Programming Reference

Multimedia Programming
Reference

SOM Programming Guide

 Contents xlix

l IBM VisualAge�C++ for OS/2 User's Guide

Part 1. Developing with WorkFrame

This part of the User's Guide explains how you can use the WorkFrame application
development environment to manage your software projects.

Chapter 1. Introducing WorkFrame . 3
Overview .3
Working with Projects . 4
Understanding WorkFrame .11
Getting Help .12

Chapter 2. Managing Projects .13
Introducing Projects .13
Project Views .14
Creating a Project . 22
Project Settings .23
Inheriting a Tools Setup . 33
Projects Are Files . 36
The Default Project . 36
Organizing Projects .38
Sharing Project Parts on a LAN . 43
Creating Project Templates. 44

Chapter 3. The Project Tools Setup . 45
The Tools Setup Window. 46
Actions .48
Types .75
Environment Variables .82

Chapter 4. The Project Monitor . 85
Monitor Controls .86
Action History .87
Editor Interaction with the Monitor . 88
Monitor Notes .89

Chapter 5. Building Your Target . 91
Build and Make . 91
The Build Utility . 92
The MakeMake Utility . 104

Chapter 6. Project Smarts .111
Creating Projects from Project Smarts. 112

 Copyright IBM Corp. 1992, 1995 1

Adding Your Own Project Smarts Application. 114
Writing An Installation Script . 118

Chapter 7. Migrating Old Projects . 143
Migrating Version 2.x Projects . 144
Migrating Version 1.x Projects . 147

Chapter 8. Project Access Methods (PAMs) 149
The Role of a PAM . 149
Support for Multiple PAMs . 150
Compatibility .151

2 IBM VisualAge�C++ for OS/2 User's Guide

WorkFrame Introduction

1 Introducing WorkFrame

IBM WorkFrame is a unique and fully-customizable application development
environment that puts all your tools at your fingertips. Fully-integrated with the OS/2
Workplace Shell, it offers an unobtrusive interface that simplifies the process of
building and organizing software projects.

This chapter introduces you to Version 3.0 of WorkFrame. A brief overview is
followed by a quick tutorial to give you a taste of working with WorkFrame. It also
tells you how to get help as you work.

If you have used Version 2.1, you might want to read “What's New with
WorkFrame” on page xxxvi for an overview of the new features in this release.

 Overview
A natural extension to the OS/2 Workplace Shell Desktop, WorkFrame is an
extendable collection of objects and actions that organize your code into projects.

The project is the core of the WorkFrame environment. It encapsulates all the objects
you need to build a single target. It also has an associated set of actions (like Edit,
Compile, and Debug) that you can easily access and customize.

You can organize complex applications into project hierarchies to give you a visual
perspective of how your code is organized. You can perform a build from any point
in a project hierarchy, giving you more control over the way you build your
applications.

As you program, you will likely use other special tools, such as icon editors, visual
builders and performance analyzers. WorkFrame makes these tools available to you
as context-sensitive actions in pop-up and pulldown menus in projects, and from the
Project pulldown of VisualAge C++ tools.

You can also customize projects with your own set of OS/2 (32- or 16-bit) tools, as
well as any of your favorite DOS and Windows** tools. Any tools that you add to a
project's set of action become just as accessible and seamlessly integrated as any
VisualAge C++ action.

 Copyright IBM Corp. 1992, 1995 3

WorkFrame Introduction

You set options for actions quickly and easily using graphical user interfaces. When
you invoke a Compile action from a pop-up or pulldown menu, WorkFrame invokes
the compiler with your preset options. A window called Build Smarts lets you
quickly modify options to add debug and browse information to your preset options
so that you can easily build your project for debugging and production scenarios.

The next section, “Working with Projects,” takes you through a short
Compile-Edit-Debug session with a sample WorkFrame project.

Working with Projects
Just to give you a flavor of what it's like working with WorkFrame projects, try this
typical Compile-Edit-Debug scenario using the VisualAge C++ Touch sample project.

1. Open the Sample Projects folder in the VisualAge C++ folder. Open the
Compiler samples folder.Touch appears among other sample projects.

2. Open the Touch project by double-clicking on it. The Touch project view shows
you all the Touch source files. All the tools you need to work on your software
project are accessible from pop-up menus in this view:

Figure 1. Touch Project - Icon View

4 IBM VisualAge�C++ for OS/2 User's Guide

WorkFrame Introduction

3. Select the TOUCH.C file, and then press mouse button 2 to bring up its pop-up
menu.

You see a list of relevant actions for the TOUCH.C file, among them Compile
and Edit . The actions that you can invoke are context-sensitive to the type of
file you are invoking the action on. These actions are called file-scoped.

Figure 2. TOUCH.C pop-up menu

 Chapter 1. Introducing WorkFrame5

WorkFrame Introduction

In the pop-up menu for the Touch README file, Edit and Package are the only
applicable actions.

Figure 3. Touch README file pop-up menu

Actions that apply to the entire project are available from the Project pulldown
or popup menu. They are calledproject-scoped actions.

4. Now, edit TOUCH.C by selecting Edit from the pop-up menu to use the default
editor, or select a specific editor from the Edit cascaded menu.

6 IBM VisualAge�C++ for OS/2 User's Guide

WorkFrame Introduction

Figure 4. Edit cascading menu

The action classes on pop-up menus, like Compile and Edit , are further divided
into more specific actions. From these menus, you could invoke one among the
many compilers or editors that are available to your project. If you display the
cascading choices for Edit , for example, you have a choice of editors. You can
select one, or simply select the Edit menu item to invoke the default editor, the
VisualAge Editor, in this project's initial configuration.

5. Scan through the file and insert a simple syntax error in the code (for instance,
delete a semicolon or slightly change the name of a variable).

 Chapter 1. Introducing WorkFrame7

WorkFrame Introduction

6. Save the file.

7. Now, return to the project and then compile TOUCH.C by selecting Compile
from its pop-up menu. The output from the Compile action is displayed in the
project Monitor , a list box that appears below the project container when an
action like Compile or Link is started.

Figure 5. WorkFrame project monitor

When the compilation is finished, you see an error message about the error you
inserted into the code.

8 IBM VisualAge�C++ for OS/2 User's Guide

WorkFrame Introduction

8. Double-click on the error in the WorkFrame Monitor listbox. The edit session is
updated to show the line in the TOUCH.C source file where the error occurred.

Figure 6. Error line highlighted in editor

9. Correct the error, save the file, and then compile it again. There are three ways
to do this:

a. If you are using the VisualAge Editor, select Compile from the Project
menu in the edit window.

b. Select the Repeat pushbutton on the Monitor .

c. Returning to the project container, invoke the Compile action as you did the
first time.

You will see the result of the second compilation in the same monitor window.
The compilation should proceed without errors this time.

 Chapter 1. Introducing WorkFrame9

WorkFrame Introduction

10. In the Touch project container, notice that TOUCH.OBJ has been added to the
project's contents. Invoke the Link action from the TOUCH.OBJ pop-up menu.

Figure 7. TOUCH.OBJ pop-up

Again, the result of the link is displayed in the Monitor window. After a
successful link, TOUCH.EXE is added to the project's contents. From the
TOUCH.EXE pop-up menu, you can select Debug to invoke the debugger on
TOUCH.EXE, or Analyze to tune its performance.

The Build action is a way to compile and link a number of files in a single step to
produce an executable. (See “The Build Utility” on page 92 for more details
about the WorkFrame Build utility.) This section took you through an
Edit-Compile-Debug cycle the long way to illustrate the object-action paradigm of the
WorkFrame interface. You will likely use the Build action more often to produce
your project target.

10 IBM VisualAge�C++ for OS/2 User's Guide

WorkFrame Introduction

Now that you have a little taste of working with WorkFrame projects, you might want
to know more. The rest of this guide will explain, in detail, everything you can
configure in a project, how you can integrate your own tools, set options, organize
project hierarchies, create make files, invoke builds, and more.

 Understanding WorkFrame
“Working with Projects” on page 4 gave you a feel for the Workplace Shell-like
interface of the WorkFrame project. Using WorkFrame's object-action approach to
direct manipulation, you selected an object and invoked an appropriate action directly
from its popup menu.

The basic object of interest in the WorkFrame development environment is the
project. Any given project can contain objects of many different types. WorkFrame
takes care of activating the appropriate action to process these types as desired. The
difference is that you no longer need to think in terms of running different
applications for each type. You can concentrate on the objects of the application
itself since the available functionality is integrated in the WorkFrame environment,
context-sensitive to each object type.

Settings for projects and other WorkFrame objects are accessible from a Settings
notebook, as with any other Workplace Shell object. In addition to project files,
pop-up menus also apply to actions, environment variables, and types.These are
discussed fully in the next chapter, Chapter 2, “Managing Projects” on page 13.

Since no single integrated development environment is likely to satisfy all software
developers, WorkFrame is not a tightly-integrated development environment. Rather,
WorkFrame's loosely-integrated, open environment allows the plug-and-play addition
of new or upgraded tools without changing the rest of the environment. Using
WorkFrame, you can organize everything from your software projects, to your LaTeX
documents.

The next few chapters will show you the many ways you can customize projects,
integrate your own tools, and create ready-to-use application templates from Project
Smarts, an extendible application wizard.

 Chapter 1. Introducing WorkFrame11

WorkFrame Introduction

 Getting Help
You can get two kinds of online help while using WorkFrame:

¹ Contextual online help, which gives you help from within WorkFrame

¹ How Do I? help, which gives you step-by-step instructions on how to perform
several project-related tasks.

Using Contextual Help
Help on how to use any menu choice, window, or control is available through online
context-sensitive help. You can access it in one of the following ways:

¹ Select an item from a Help pop-up or pulldown menu in any WorkFrame
window. The Help menu in a project container gives you access to
VisualAge C++ Manuals, How Do I? information, and context-sensitive help for
WorkFrame.

¹ Press F1 from any WorkFrame window to get help on the current field.
¹ Highlight a menu item and press F1 to get help on the menu item.
¹ Highlight the name of an action on a pop-up or pull-down menu and press F1 for

help on the action, where supported.
¹ Click on the Help pushbutton, where available.

Using How Do I? Information
Refer to How Do I? help when you need to accomplish a specific task, or when you
want to explore WorkFrame functions.

You can access the How Do I? information in a number of ways:

¹ From the Help pulldown menu, select How Do I? → WorkFrame .
¹ Open the How Do I? folder located in the main VisualAge C++ folder on your

desktop, and select the WorkFrame How Do I? icon.

12 IBM VisualAge�C++ for OS/2 User's Guide

Managing Projects

2 Managing Projects

This chapter explains how you can organize your own WorkFrame projects.
WorkFrame projects are highly customizable, and you can easily tailor your
development environment to suit your needs.

 Introducing Projects
The project represents the complete set of data and actions you need to build a single
target, such as a dynamic link library (DLL) or executable file (EXE). It consists of
a set of project parts and a Tools setup.

 Project Parts
Project parts are the data objects that make up the project. As well as a source file, a
project part may also be a transient object, such as a target or intermediate object file
created during the life of the project. A project part may also be another project.
Including a project as a part of another project enables you to model hierarchies of
projects.

A target is a specially designated project part. It is the result of a build action
invoked on the project. Builds are discussed in “The Build Utility” on page 92.

A project's parts are conceptually contained in the project; they are not physically
stored in the project. The project only stores the information necessary to access the
parts. The information is interpreted by a Project Access Method, (PAM). A PAM is
a mechanism that gives WorkFrame access to the parts. Files on a local OS/2 system
or OS/2-based local area network are accessed by the basic PAM, called IWFBPAM,
that is shipped with WorkFrame. This is the default PAM that is used by
VisualAge C++ projects.

Project parts can be accessed by more than one PAM, so a project can also contain
files or objects from a foreign file system or repository. Unless you need to use
another PAM in addition to the default PAM, you do not need to understand how
PAMs work to use WorkFrame effectively. Otherwise, you might want to refer to

Chapter 8, “Project Access Methods (PAMs)” on page 149 for more information
on PAMs.

 Copyright IBM Corp. 1992, 1995 13

Managing Projects

 Tools Setup
A project's Tools setup defines the actions, environment variables, and types that are
available to the project. Examples of actions are Compile, Link, and Make. Types
provide a way of grouping and filtering project parts so that you can refer to them
with a single name. Examples of types are C++ Source, C Source, and Executables.
Environment variables are system environment variables, such as PATH, and any
environment variables that are defined using the OS/2 SET command.Chapter 3,
“The Project Tools Setup” on page 45 discusses the Tools setup of projects in detail.

 Project Views
A project has five views:

 ¹ Icon view
 ¹ Details view
 ¹ Tree view
 ¹ Tools setup
 ¹ Settings

Icon view, Details view, Tree view, and project Settings are discussed in this
chapter. Project Tools setup is discussed in Chapter 3, “The Project Tools
Setup” on page 45.

You can open any one of the views from the project's system or pop-up menu. Select
a view from the Open → cascading menu.

Note: By default, a project opens to its Icon view, but you can set the project's
default view from the Menu page of the project's Settings notebook, as with
any OS/2 folder.

14 IBM VisualAge�C++ for OS/2 User's Guide

Managing Projects

 Icon View
Figure 8 shows a fully expanded Icon view of a project.

Figure 8. Project - Icon View

A project container has the following controls:

System menu

The contents of the system menu are the same as those of the pop-up menu
from the project icon. There are menu items for project-scoped actions, for
copying, deleting, shadowing, and moving the project, creating other projects,
opening the project's Settings notebook, and opening different project views.
You can also access this menu by pointing to the background of the project
container and then pressing mouse button 2.

 Chapter 2. Managing Projects15

Managing Projects

Project toolbar
The project toolbar has three fixed buttons on the left-hand side:

 Build Smarts
Displays the Build Smarts window where you can set build features for
your VisualAge C++ projects. See “Build Smarts” on page 67 for more
information on how to use Build Smarts to aid you in your project builds.

 Tools setup
Displays the Tools setup window that contains the actions, environment
variables, and types associated with the project. See Chapter 3, “The
Project Tools Setup” on page 45 for more information on the Tools
setup window.

 How Do I?
Displays the online How Do I? help for WorkFrame. It contains
instructions for how to accomplish common WorkFrame tasks.

The right-hand side of the project toolbar also contains buttons for launching
frequently-used, project-scoped actions like Build, Debug, and Run. Each
button represents a single project-scoped action. You can customize the actions
that appear on the toolbar by setting a control in an action's Settings notebook.

See “Action Settings - Menus Page” on page 63 for more information on
how to add an action to the project toolbar.

Performance Note: All WorkFrame toolbars have hover help. Hover help is
a balloon that appears whenever you position the mouse pointer over a
toolbar button. It contains help text about a button. You can turn off
hover help when you become familiar with the toolbar buttons by
deselecting the Toolbars → Hover help menu item from the View
menu. You will see some performance gain when you do this.

16 IBM VisualAge�C++ for OS/2 User's Guide

Managing Projects

Menu bar

The project menu bar contains menu items to launch project- and file-scoped
actions, manipulate actions, variables and types, set action options, bring up the
project's Settings notebook, and get help for WorkFrame projects.

The Project menu lists all the project-scoped actions available to the project.

The Selected menu contains the actions that apply to any selected project parts.
Note that project- and file-scoped actions are also accessible from pop-up
menus.

 Refer to “Actions on Menus” on page 73 for a list of rules that determine
the way actions are listed on project menus.

Menu Note: Some actions that are only relevant when performing a Build on
the project are excluded from project pull-down and pop-up menus by
default. You can make any action visible or invisible on the project
menus by configuring its menu settings. See “Action Settings -
Menus Page” on page 63 to learn how.

The Monitor menu has controls for manipulating the project Monitor , where
the output of monitored actions are displayed.

The View menu contains controls for opening different views on the project,
including the project's Settings notebook and Tools setup. It also contains view
options for the project toolbar and information area.

The Options menu is a list of actions whose options you change most
frequently. When you select an action from this menu, the options dialog for
the action appears. (Note that you can access the options for any action from
the project's Tools setup. See “Action Options” on page 65 for more
information on how to set options for all actions.) The Options menu also
contains a menu item for the Build Smarts window that lets you quickly
change options for actions used in a project build.See “Action Options” on
page 65 and “Build Smarts” on page 67 for more information about setting
action options.

The Help menu contains items for referencing WorkFrame online help,
including WorkFrame How Do I? help and other online VisualAge C++
manuals.

You can control which actions appear in the Project, Selected, and Options
menu bars by setting a control in each action's Settings notebook. See
“Action Settings - Menus Page” on page 63 for more information on how to
add an action to one of these menus.

 Chapter 2. Managing Projects17

Managing Projects

Parts filter

The parts filter is an entry field on the project toolbar where you can enter a
file mask or type name to filter the view of project parts. Only the parts that
match the specified mask or type are displayed in the parts container. You can
also use the drop-down list box to select from the types that are available to the
project.

The current setting of the parts filter is only saved if you press the Enter key
to activate it. It is saved for all the project views.

If you have a set of masks or types that you would like to use to filter the parts
container with, define them as a single type so you can access them from the
Parts filter drop-down list box. Refer to “Adding Types” on page 81 for
instructions on how to define a new type for a project.

Parts container

This is the place where the project parts are displayed. Project parts are almost
always files, although they can be Workplace Shell objects, and other kinds of
objects as well. The parts of a project are specified in the Location page of the
project's Settings notebook. See “Project Settings - Location Page” on
page 25 for more information on how to specify a project's parts.

Project parts are displayed as icons in the project's Icon view container. You
can control the layout and size of the icons from the View page of the project's
Settings notebook.

You can customize the color and font of the project parts container by dragging
a color and font from the OS/2 Color Palette and Font Palette as with any
folder on your Desktop.

You can sort project parts on any column shown in the project's Details view.
You specify the sort order from the Sort page of the project's Settings
notebook. (This also works for Icon view and Tree View.) The project Sort
page works the same way as the Sort page in any OS/2 folder.

18 IBM VisualAge�C++ for OS/2 User's Guide

Managing Projects

Monitor
Output from actions like Compile and Link can be displayed in the Monitor
window. By default, it is hidden when you open a project but appears when a
monitored action is started. See Chapter 4, “The Project Monitor” on
page 85 for information on how to use the Monitor .

You can change the color and font used in the Monitor list box by dragging a
color and font from the OS/2 Color Palette and Font Palette.

Monitor toolbar
The Monitor toolbar contains buttons for controlling the project Monitor . An
information line on the toolbar shows the name of the currently running action.

Split bar
The split bar divides the parts container from the project Monitor . The toggle
setting and the position of the split bar when the project is closed is saved for
each view of the project. The split bar can be saved at a different position for
a tree view than for an icon view, for instance.

 Chapter 2. Managing Projects19

Managing Projects

 Details View
All the controls for a project's Details view are identical to those in its Icon view,
except for the project parts container. Instead of just icons, project parts are
represented by rows in a table. The columns in each row provide information about
the part, such as its name, size, and creation date. Figure 9 shows an example of a
project open to its Details view.

Figure 9. VisualAge C++ Project - Details View

The columns in the table are determined by the PAM that the project uses. If a
project uses multiple PAMs, the columns displayed are the union of the columns from
each PAM. Parts accessed by one PAM do not have entries in the columns that
belong to another PAM.

You can set which columns to display in the parts container by selecting them from
the project's Settings notebook, page 3 of 3 of the View tab.

Because VisualAge C++ projects use the basic OS/2 PAM, IWFBPAM, the columns
in a VisualAge C++ project's Details view are, by default, identical to the Details
view columns of a folder on the Desktop, with two additional columns: PAM name
and source location.

20 IBM VisualAge�C++ for OS/2 User's Guide

Managing Projects

 Tree View
In a project Tree view, the project container is organized into a hierarchy of parts
from each PAM. In a VisualAge C++ project, the only root, OS/2 Files, is that of
the basic PAM, IWFBPAM. The basic PAM tree consists of the project's source
directories. Each can be expanded to display the files they contain.

Figure 10. VisualAge C++ Project - Tree View

Note: Because a PAM can represent project parts that are not located in directories,
a Tree view branch can potentially also represent any source location, such as
a component in a version control tool, or a database table, if the project uses a
PAM that supports it.

 Chapter 2. Managing Projects21

Managing Projects

Creating a Project
There are many ways you can create a WorkFrame project:

¹ Drag the VisualAge C++ Project template in your VisualAge C++ folder. This
will create a project with all the available VisualAge C++ actions and
environment settings. To create a project with no actions or settings, drag the
WorkFrame V3 Project from the Templates folder. You can set the project to
inherit from the VisualAge�C++ Project later, so that you have access to all the
VisualAge C++ actions. See “Project Settings - Inheritance Page” on
page 29 to learn how to set project inheritance.

¹ Select a template name from the Create another → cascaded menu on another
project's pop-up menu. This has the same effect as dragging from a project
template.

¹ Copy another project using the normal Workplace Shell copying techniques, like
dragging or selecting Copy from the project's pop-up menu.

¹ Install a project from Project Smarts. The Project Smarts catalog contains a
set of application templates that contain skeletal code for various kinds of
applications, such as User Interface Class Library and Workplace Shell
programming. For example, if you install the UI Class Library Application from
Project Smarts, a project is created on your Desktop that has a completely
configured project environment and template code for an UI Class Library
program. See Chapter 6, “Project Smarts” on page 111 for more
information on how to create projects from Project Smarts.

If you have no existing source files to create a project with, and you have a specific
kind of target in mind, then Project Smarts is the best way for you to create a project.
If you already have source files to work with, you can either copy a project that is
similar to your application, or create a new project from the VisualAge C++ Project
template.

A project is created with a number of default settings, such the default PAM, view,
and sort attributes. You may want to change some of these default project settings.
The next section will take you through all the settings in a project Settings notebook.

22 IBM VisualAge�C++ for OS/2 User's Guide

Managing Projects

 Project Settings
The Settings notebook contains settings for the project. Project settings are in the
project's Settings notebook. To open the Settings notebook, you can:

¹ Select Open → Settings (or Settings if you are using OS/2 Warp) from the
project icon's pop-up menu.

¹ Select Open → Settings (or Settings if you are using OS/2 Warp) from the
project's system menu.

¹ Select a Settings notebook page from the project's View menu Settings cascade.

A project Settings notebook contains standard Workplace Shell pages, along with
pages specific to a WorkFrame project. All the pages follow the Workplace Shell
standard; that is, any data changed is immediately effective. Every page has an Undo
button to return the page to the state it was in when the notebook was opened. The
Default push button returns the page to the default values, and the Help push button
provides help for the fields on the page.

Project Settings - Target Page

Figure 11. Project Settings - Target page

 Chapter 2. Managing Projects23

Managing Projects

You can set the following information having to do with a project's designated target
in the Target page of the project's Settings notebook:

Target of project build
Specify the target's name and parameters.

Name
The name of the project's target, for example,PROGRAM.EXE.

Target Notes:

1. A project can build more than one target, but WorkFrame
recognizes only one project part as the designated target of
the project. For example, a project can build both a .LIB and
a .DLL, but the .LIB is the designated project target because
it is produced from the .DLL file. See “The Build
Utility” on page 92 for more information on building a
project's target.

2. The object you specify as the project's designated target does
not have to exist. It is understood to be the target of a Build
action on the project.

Run options
The parameters entered here are passed to the target when it is executed.
If the target is not an executable file, the contents of this field are
ignored.

Make file
The name of the project's designated make file. This is the make file that is
used when a project-scoped Build action is invoked. (See “The Build
Utility” on page 92 for more information about builds.) A project can have
more than one make file, for example, one that builds the target with debug
information, and another that builds it optimized, but WorkFrame recognizes
only one as the designated make file of the project.

You can enable prompting for your target so that when you run it, a dialog box
appears where you can override the parameter string specified in the Run options
entry field. To enable prompting when you run your target program through
WorkFrame, open the options dialog of each Run action. Select the Prompt check
box. Refer to “Action Options” on page 65 for more information about setting
action options.

24 IBM VisualAge�C++ for OS/2 User's Guide

Managing Projects

If your target program outputs to standard out, you can select the Run::Monitored
action to run your target program in the Monitor window. You can also change the
settings of the Run::Run Target action so that it always runs the target monitored.

Chapter 4, “The Project Monitor” on page 85 tells you all about the WorkFrame
project Monitor .

Project Settings - Location Page
You specify the source directories for your project in the Location page. All the files
in the source directories are assumed to be the project's parts.

The information on this page is specific to the basic PAM, IWFBPAM, used by
VisualAge C++ projects.

PAM Note: If your project uses multiple PAMs, the Location page is divided into a
number of minor pages, one from each PAM. The basic PAM page described
in this section appears with a minor tab called OS/2 Files, along with pages
from the other registered PAMs. For an in-depth discussion of PAMs, see
Chapter 8, “Project Access Methods (PAMs)” on page 149.

Figure 12. Project Settings - Location page

 Chapter 2. Managing Projects25

Managing Projects

On the Location page, you specify the following settings:

Source directories for project files
List the source directories where project files are to be stored, one path name
per line. If the directories do not exist, you are prompted for permission to
create them. If files already exist in one or more of the specified directories,
they automatically become project parts. For example, you could enter the path
names:

 D:\MYAPP\DLL
 D:\MYAPP\HEADERS

if the files are to be located in these directories.

You can also use the Find... push button to locate directories that you want to
include, or drag a directory from the OS/2 Drives folder into the Source
directories field.

Working directory
Select the working directory for your project from the directories you specified
in the Source directories field. This directory is used:

¹ To store any make files created by the MakeMake and Build utilities
(described in “The MakeMake Utility” on page 104 and “The Build
Utility” on page 92).

¹ To store files copied or moved from other projects or folders.
¹ As the current directory from which actions are launched. Because many

tools, such as the VisualAge C++ icc compiler, place their output in the
current directory, tool output such as object files are often stored here.

By default, the first directory in the list of Source directories is the
project's working directory.

26 IBM VisualAge�C++ for OS/2 User's Guide

Managing Projects

Project Settings - Monitor Page
You use the Monitor page to set options that have to do with the project Monitor
(The project Monitor is described in Chapter 4, “The Project Monitor” on
page 85).

The settings on this page are global, that is, they apply to all the projects on your
system. These are the only global settings for WorkFrame projects.

Figure 13. Project Settings - Monitor page

You can specify the following monitor settings:

Monitor
Set these options to alter the Monitor behavior for the project.

Auto erase
Select this check box to clear the Monitor of its contents before a
monitored action is invoked. If you do not select this option, the output
of the invoked action is appended to the previous contents of the
Monitor list box.

 Chapter 2. Managing Projects27

Managing Projects

If you want to view the output of actions previously run in the Monitor ,
you can leave this option checked, and use the History window instead
(select the History button on the Monitor toolbar). It shows you the
output of any monitored action that ran in the current project session.
This is faster than scrolling through the monitor. See “Action
History” on page 87 for more information about the Monitor History
window.

Auto scroll
Select this check box to turn on automatic scrolling for the Monitor .

Refresh views on completion
Select this option to automatically refresh the parts container each time an
action has finished running in the monitor.

Show on action start
Select this check box to have the Monitor automatically show itself when
a monitored action is started. If you do not select this option, the
Monitor will stay hidden until you use the monitor Show toolbar button

 to make it appear.
Hide on successful completion

Select this check box if you want the Monitor to hide itself when an
action is successfully completed. If the action is not completed
successfully, the Monitor remains open. If you do not select this check
box, the Monitor stays open regardless of the result of the action until
you hide it by clicking on the monitor toggle button.

Beep on completion
Select this check box to have the Monitor emit a high-pitched beep when
an action has completed successfully, and a low-pitched beep if it
finished with errors (that is, with a non-zero return code). If you do not
select this option, the Monitor is silent.

28 IBM VisualAge�C++ for OS/2 User's Guide

Managing Projects

Project Settings - Inheritance Page
On the Inheritance page, you can specify one or more projects whose Tools setup to
inherit. See Chapter 3, “The Project Tools Setup” on page 45 for a complete
discussion of the project Tools setup, and “Inheriting a Tools Setup” on page 33 for
more detailed information about how project inheritance works.

The default for VisualAge C++ projects is to inherit from the VisualAge�C++ Project
which contains all the actions, environment variables, and types you need to develop
applications using VisualAge C++ for OS/2.

Figure 14. Project Settings - Inheritance page

 Chapter 2. Managing Projects29

Managing Projects

The Inheritance page has the following controls:

Inherit from
The Inherit from list box lists, in reverse order of precedence, the titles of the
projects whose actions, types, and environment variables to inherit.

Add
To add another project to the Inherit from list box, you can select the Add
push button. The Find Project dialog appears where you can select a project
to add to the inheritance list.

You select the physical file name of a project in the Find Project dialog. If
the drive where the project is stored has a FAT (file allocation table) file
system, the name may appear somewhat mangled because of the 8-character
name limitation on those systems. Also, certain characters that may be part of
the project's title are illegal in a FAT system, so OS/2 susbstitutes other
characters. For example, the physical file name of the VisualAge C++ Project
would be VISUALAG on a FAT file system. A project titled C++ Program
would have the file name C!!_PROG on a FAT file system. You can determine
the physical file name of any project by looking at the File page on the
project's Settings notebook. Once you've selected a project file, its title is
shown in the Inherit from list box.

Remove
To remove a project from the inheritance list, select its name, and then click on
the Remove push button.

Promote
To move a project one position upwards in the Inherit from list, select its
name, and then click on the Promote push button.

Demote
To move a project one position downwards in the list, select its name, and then
click on the Demote push button.

30 IBM VisualAge�C++ for OS/2 User's Guide

Managing Projects

Project Settings - View Pages
The View tab has three pages, one for each project view.

The first two pages, for Icon view and Tree view are very similar to those of a Folder
on the Desktop. For icon view, you can select whether the icon format in the parts
container should be Flowed, Non-flowed, or Non-grid. You can also select the icon
display, Normal size, Small size, or Invisible.

For Tree view, you can select the Lines or No lines format. The icon display
settings are the same as that for Icon view.

The page for Details view lists the columns that can be displayed. Deselect the
columns you do not want displayed when your project is opened to Details view.

You set the font for the names of the project parts for any view in the parts container
by selecting the Change font push button, which displays the standard font dialog.
The list of selectable fonts are the same as those in your OS/2 Font palette.

Project Settings - Sort Page

Figure 15. Project Settings - Sort page

 Chapter 2. Managing Projects31

Managing Projects

To sort the parts in a project, select Sort from the project's pop-up or system menu.
The Sort cascading menu contains a list of attributes by which to sort the parts.
Select an attribute to sort the project container by.

Use the Sort page to add or remove attributes from the Sort cascading menu. The
project settings Sort page is almost identical to that of a folder on the Desktop. It has
the following controls:

Sort by attribute
This list contains the attributes for the project parts returned by each PAM.
Select the attributes that you want to add to the Sort cascading menu on the
project's pop-up menu. You specify the attributes by which the project parts
are to be sorted by selecting them on the Sort menu.

Default sort attribute
Select the attribute that you want as the default sort attribute on the Sort
cascading menu on the project's pop-up menu.

Descending sort order
Select this check box to sort the project parts in descending order. The default
is to sort the parts in ascending order.

Always maintain sort order
Select this check box if you want the objects in the parts container sorted each
time you open the project. If you add an object to the project, it will also be
sorted as it is added. The project might take longer to open and refresh if you
select this option.

32 IBM VisualAge�C++ for OS/2 User's Guide

Managing Projects

Inheriting a Tools Setup
Projects can share actions, environment variables, and types by inheriting the Tools
setup of one or more projects. (See Chapter 3, “The Project Tools Setup” on
page 45 for more information about the Tools setup). A project inherits from a list
of base projects specified in the Inheritance page of the project's Settings notebook.

Any changes made to a project's Tools setup, such as adding, deleting and changing
actions and their options, are reflected in the projects that inherit from it. Thus, you
could organize your projects into a group of Presentation Manager projects that all
inherit from a base Presentation Manager project, a group of SOM projects, and so
on, so that any changes made to the base project are propagated down to related
projects.

A project that inherits its Tools setup from other projects may also have locally
defined actions, types, and environment variables that complement the inherited ones.

Another alternative to project inheritance is to copy one or more actions, types, and
variables from one project to another using drag-and-drop, or by selecting Copy...
from their pop-up menus. The copied objects would then be defined locally in the
target project, rather than inherited.

You cannot add an action that has the same name and class as another action in the
project, even if the other action is inherited.

Inheritance Precedence Rules
When projects inherit their actions, types, and variables from other projects, the
following precedence rules apply:

Merging Actions

The set of actions available to a project is simply the union of all the actions
from each base project in the inheritance list. If there are actions with the same
name and class, the action from the project that appears later in the inheritance
list is taken. If an action with the same name and class as another inherited
action was defined in the project before the inheritance was established, the
locally defined action is taken. (See “Actions” on page 48 and “Action
Classes” on page 49 for more information about actions.)

You cannot override an inherited action by adding another action with the same
name and type after the inheritance has been established because adding an
action with the same name and class as an existing action is not allowed.

 Chapter 2. Managing Projects33

Managing Projects

For example, if project Fred inherits from projectsWilma and Betty, in that
order, and the action Compile::C/C++ Compiler exists in both Betty and Wilma,
then the Compile::C/C++ Compiler action from Betty is used in projectFred,
because Betty follows Wilma in the inheritance list.

BETTY

FRED

WILMA

Figure 16. Project Fred inherits from Projects Wilma then Betty

Merging Types

The set of types available to a project is simply the union of all the types from
each base project in the inheritance list. If there are types with the same name,
the type from the project that appears later in the inheritance list is taken. A
type already defined locally in the project before the inheritance was established
overrides any other inherited type of the same name. You cannot override an
inherited type by adding another type with the same name after the inheritance
has already been established because adding another type with the same name
as an existing one is not allowed.

Merging Environment Variables

Environment variables from multiple projects are merged as follows:

¹ The inherited projects are processed in the order that they are listed in the
inheritance list.

For example, if project Fred inherits from projectWilma and Betty, in that
order (as illustrated in Figure 16), the variables from project Wilma are
processed before those of projectBetty. That means that if projects Betty
andWilma both define a HELP environment variable, the definition from
Betty is used.

34 IBM VisualAge�C++ for OS/2 User's Guide

Managing Projects

¹ Within each project, the variables are processed in the order that they are
listed.

¹ As the variables are processed, any new variables encountered are added.
If a processed variable is encountered again, the newer definition is kept.

¹ The variable values are interpreted before they are assigned to the variable.
So, any environment variables in the value string are replaced with the
current value of the environment variable. For instance, an environment
variable in the form %VARIABLE% in the value string is replaced with the
current value of the variableVARIABLE.

¹ You can combine and redefine environment variables dynamically in any
form. New values can be prefixed or appended to existing variables or
formed from some combination of text and existing variables, such as:

PATH = %PATH%;D:\MYTOOLS;%DPATH%
EPMPATH = %PATH%;%EPMPATH%

For example, recall that project Fred inherits from projects Wilma and
Betty, in that order. If project Betty defined the help variable as:

HELP = D:\BETTY;%HELP%

the HELP environment variable in project Fred would be defined as
D:\BETTY with the value ofHELP from project Wilma appended. This is
true unless project Fred defines its own HELP environment variable, in
which case, any environment variables in the value string would be
replaced with the latest processed values fromBetty.

¹ A variable can appear more than once in a Tools setup. The last one listed
has the final value.

PAM Note: Although environment variables are interpreted only by a PAM,
WorkFrame handles the merging of inherited environment variables without
intervention from any PAM.

 Chapter 2. Managing Projects35

Managing Projects

Projects Are Files
Projects are simply files to the operating system. Each project has a corresponding
physical file in the OS/2 files system. These files are typically found in in the
\DESKTOP subdirectory on your boot drive. Projects do not have to be stored on the
Desktop; they can also be stored on other drives, including LAN drives. In that case,
you would gain access to the projects using the OS/2 Drives folders.

You can determine the physical file name of a project by turning to the File page in
the project's Settings notebook.

Because projects are simply files with extended attributes, you can back them up
using normal OS/2 backup programs that also save and restore extended attributes.
You can also compress them using OS/2 compression programs like ZIP and UNZIP
that correctly save extended attributes on OS/2 files. Once compressed, projects can
then be stored on diskette.

Note: When you copy a project's physical file, none of the project's parts, including
any nested projects, are copied with it. To fully back up a project on a
diskette, you need to save the compressed project file, and the project's parts.

Nested projects are not stored on the Desktop. They are stored in any of the source
directories of their parent project. See “Project Settings - Location Page” on
page 25 for more information on a project's source directories.

The Default Project
WorkFrame recognizes a single default project in the system. In VisualAge C++, the
WorkFrame default project is called VisualAge�C++ Project. It contains all the
actions available in the VisualAge C++. Many VisualAge C++ sample projects
inherit from it.

The VisualAge�C++ Project is also used as the default associated project when
VisualAge C++ tools are started from the command line.

For example, the Edit::Editor action is defined as the default Edit action in the
VisualAge�C++ Project. This applies to any VisualAge C++ tools started from the
command line that need to call the default Edit action, such as the VisualAge C++
Browser. (See “Default Actions” on page 71 for information on how to set the
default action for a class of actions.)

36 IBM VisualAge�C++ for OS/2 User's Guide

Managing Projects

If you start the VisualAge C++ Browser from an OS/2 command prompt by typing
icsbrs, and request to view a source file in the Browser session, the Browser will
invoke the default editor as defined in the default project. If the Browser was started
from a specific project, the browser invokes the default editor as defined in the
project from which it was invoked. You can change the default actions in the default
project to customize the integrating behavior of tools started from the command line,
but remember that projects inheriting from it will also be changed.See “Default
Actions” on page 71 for information on how to set the default Edit action.

The identity of the WorkFrame default project is set in an environment variable called
IWF.DEFAULT_PRJ. During installation, this variable was set in your CONFIG.SYS to
the VisualAge C++ Project object identifier, CPPDFTPRJ. (True WPS object
identifiers are surrounded by the <> characters, as in<CPPDFTPRJ> but these
characters are not permitted in environment variable strings.) However, because
WorkFrame projects are physically stored as files with extended attributes in the
Desktop subdirectory of your boot drive, as well as in other drives and subdirectories,
the IWF.DEFAULT_PRJ environment variable also accepts fully qualified path names.

 See “Projects Are Files” on page 36 for more information on how projects are
physically stored on your system.

You can make any existing project the WorkFrame Default Project by specifying the
project's fully qualified path, for example,

IWF.DEFAULT_PRJ = C:\DESKTOP\MY_DEFAULT_PROJECT

Changing the WorkFrame default project does not affect the projects that inherit from
the original default project. It simply loses its special status and becomes like any
other project.

Note: If you specify the default project with a fully qualified path name, do not
move it to another location without updating theIWF.DEFAULT_PROJECT
variable. Otherwise, the VisualAge C++ tools will not be able to work in an
integrated fashion when they are started from the command line.

 Chapter 2. Managing Projects37

Managing Projects

 Organizing Projects
Organizing your projects well is key to using the WorkFrame environment effectively.
The organization of your projects determines the way in which they are built, and the
way in which make files are generated for your applications.

Most of your applications will most likely consist of a hierarchy of projects, rather
than a single project, unless they are very simple. It is important that your project
hierarchy reflects the project targets and dependencies between components for builds
to be performed correctly. Follow these guidelines for a well-defined project
hierarchy:

1. Create a separate project for each target or build path in your application. A
target is defined as a single part or file that the project will build, such as an
executable file, dynamic link library, or help file. A build path is a sequential
processing of actions, with no conditional or alternative routes, that produces a
single target file. Intermediate files may also be produced during the processing
of a build.

If your application consists of a two DLLs, a LIB, an EXE, and a HLP file, for
example, you should create a separate project for each DLL, the EXE, the LIB,
and the HELP file. If LIBs are also produced from the DLLs, the DLL and the
LIB can be part of the same project. The LIB would be the designated target of
the project, and the DLL is considered an intermediate file. In this example, you
would create five projects in all.

Figure 17. Five projects in a sample application

2. After you have created the projects, determine the dependencies that exist
between them.

For example, the DLLs may depend on the LIB, and the EXE depends on the
DLLs. Also determine the project that is at the root of the dependency hierarchy,
that is, the project that has no dependents. In this example, it is the EXE.

38 IBM VisualAge�C++ for OS/2 User's Guide

Managing Projects

3. Nest the projects to reflect the dependency tree. That is, if a project EXE
depends on another project DLL, place project DLL into project EXE. Project
DLL is then said to be nested within project EXE. A project is nested in another
project when its physical file is located in one of the source directories of the
nesting project.

You can move a project into another project by dragging it or by selecting
Move... from its pop-up menu.

Notes on Moving Projects:

a. When you move a project into another project, you are actually moving the
nested project's physical file into the nesting project's working directory. So
if you move a project into another project using the Move... pop-up menu
item, you will need to specify one of the parent project's source directories as
the target in the Move dialog.

b. When you move a project, you don't need to move its parts as well because
the project does not actually contain its parts, but only a reference to their
location.

In a situation where two or more projects (say First DLL/LIB and Second
DLL/LIB) depend on the same project LIB, nest one of the two depending
projects within the other (say, nest Second DLL/LIB within First DLL/LIB), and
then nest the mutual dependency projectLIB within project Second DLL/LIB.

Second DLL/LIB

LIB

First DLL/LIB

Figure 18. Projects First DLL/LIB and Second DLL/LIB depend on project LIB

The root project in the dependency tree will directly or indirectly contain all the
other projects in the application.

 Chapter 2. Managing Projects39

Managing Projects

Consider the example application that consists of an EXE, two DLLs, a LIB, and
a HLP file. The two DLLs depend on the LIB, the EXE depends on the DLLs
and the HLP file. The LIB and HLP files do not depend on any other targets.
The project hierarchy would look like the one represented in Figure 19.

Second DLL/LIB

LIB

HLP First DLL/LIB

EXE

Figure 19. Project hierarchy of a sample application

The EXE project is the root project that contains all the other projects.First
DLL/LIB and Second DLL/LIB both depend on theLIB, so one nests the other
before nesting the LIB project. The two DLLs also produce a LIB file each, so
the specified target of each DLL project is a LIB file, because it is the final file
produced by a build.

You should nest projects this way because the WorkFrame Build utility infers the
build sequence from the project hierarchy. When you use the Build utility to
build a project, you have the option of having it build descendant projects first.
Following this scheme ensures that a project's descendants contain the current
project's dependencies. See “The Build Utility” on page 92 for more details.

40 IBM VisualAge�C++ for OS/2 User's Guide

Managing Projects

4. All the files used by the projects in your application can be stored in one or more
directories. For example, all the source files to build the DLLs and LIBs could
be stored in one directory, all the source files for the EXE in another, and all the
HLP files in a third or fourth directory.

Nesting Note: If you store the files for each project in a different directory, the
target of a nested project is not automatically considered a part of the
nesting project. You must include the directory that contains the required
target in the source directories list of the nesting project. As a better
alternative, you could define an environment variable in the nesting
project so that the required target is available. For example, the EXE
project could define the LIB environment variable in its Tools setup to
contain the working directory path of the LIB project whose target it
depends on.

For example, if the First DLL/LIB project's files are stored in a different directory
from the EXE project, say in D:\MYAPP\LIB1, the EXE project must define the
LIB environment variable to contain that directory so that the Link action is able
to find the required library file:

 LIB=D:\MYAPP\DLL1;%LIB%

Your project's directory structure does not have to mimic your project
organization. A project can contain source files that are stored in multiple
directories. For example, two projects that build two different targets from the
same source files can share one or more source directories, but have separate
working directories.

If your project has any header files that are stored in directories other than the
project's working directory, you should define the INCLUDE environment
variable to reference the header files. Add the INCLUDE variable to the
project's Tools setup so that it is set in any WorkFrame-generated make files.

 Chapter 2. Managing Projects41

Managing Projects

 Project Geometry
To put things into perspective for you, this section discusses three different, but
simultaneous structures that a project can maintain: two conceptual, and one physical.

Inheritance
An inheritance graph of all the projects in your system would connect lines
between the projects that inherit their Tools setup from each other. If you can
think of a project's actions, types, and environment variables as its “behavior,”
you can say that the projects in an inheritance graph borrow their behavior from
one another.

Nesting
A nesting graph of all the projects in your system would be in the form of a
tree, and would connect lines between projects and their subprojects. The
organization of a project expresses the interdependency relationships that exist
between itself and its descendants. This kind of project structure is very
important for setting up project builds using the WorkFrame Build utility.

The Build utility allows its options to be passed to a project's descendants, or
borrowed from a parent project. Although this resembles an inheritance
relationship, it is distinct from it. Build settings can only be passed down to
nested projects, or assumed from a containing project. The projects
participating in an inheritance relationship with the current project are not
involved.

Directories
The source directories of a project determine a project's parts. The source
directories of a project can mimic its nesting structure, or serve a different
organizational purpose, such as grouping files by type. For example, private
and public header files could be stored in separate directories from the rest of
the source.

42 IBM VisualAge�C++ for OS/2 User's Guide

Managing Projects

Sharing Project Parts on a LAN
If you work with a team connected via a local area network, you can share
WorkFrame projects by:

1. Sharing source code over the LAN. Because the basic OS/2 PAM supports
directories physically located on a LAN, you can specify source directories using
the Universal Naming Convention (UNC) or by naming logical drives that map to
a remote location. Other PAMs may allow other notation depending on the
environment they support.

2. You can also share the projects themselves if they are stored on a LAN drive.
Projects are simply data files in the OS/2 file system, and can be accessed and
stored in a remote OS/2 Drives folder. Projects to be shared over a LAN cannot
reside directly on the Desktop because the Desktop is stored on a local drive.
However, you can create a shadow of a project that exists on a LAN drive on
your Desktop. This is an easy way of accessing shared projects.

Note: The IBM Network File System (NFS) does not currently support extended
attributes, so you cannot store projects on NFS drives.

3. Copying or moving projects over a LAN by dragging them into a remote OS/2
Drives folder. Then from the target system, drag the project from the remote
OS/2 Drives folder onto the Desktop or other location.

Notes on Moving Projects:

¹ When you move a project into another project, you are actually
moving the nested project's physical file into the nesting project's
working directory. So if you move a project into another project
using the Move... pop-up menu item, you will need to specify one of
the parent project's source directories as the target in the Move
dialog.

¹ Copying or moving a project does not copy or move its parts or any
other projects it might contain. “Projects Are Files” on page 36
tells you how you can fully back up a project and its parts.

4. Inheriting from a project that resides on the LAN. Because LAN drives are
usually not attached when the OS/2 Desktop is loaded (when projects are
initialized), you will need to refresh the inheriting project by selecting Refresh
now from the project's popup menu. This tells WorkFrame to update the
inheriting project with the information that is now available from the project on
the LAN. The actions, environment variables, and types from the inherited
project on the LAN are not available in the inheriting project until you refresh it
once the LAN drive is attached,

 Chapter 2. Managing Projects43

Managing Projects

Creating Project Templates
Once you have set up a project, you may want to create other projects like it. You
can either copy your project, or create a project template of your own to place in the
Templates folder on your Desktop, or any location you want. Then, whenever you
select the Create another → menu item from a project's pop-up menu, your very
own customized project template appears along with the default WorkFrame ones on
the cascaded menu.

Here's how to create your own project template:

1. Make a copy of your project by selecting Copy... from the project's pop-up
menu, or by pressing the Ctrl key while you drag your project's icon.

2. Open the new project's Settings notebook by selecting Open → Settings... (or
Settings if you are using OS/2 Warp) from the project's pop-up or system menu).

3. Turn to the General page of the notebook. It is the last page.

4. Select the Template check box to turn the project into a template. The project's
icon will change to a template icon. You can now move the template into the
Templates folder by selecting Move... from its pop-up menu.

You can change any attributes of a project template (like its inheritance list, actions,
options, colors and fonts) in the same way you can for any ordinary project.

As an alternative to creating a special project template, you can have all the projects
you create inherit from your model project, so that any changes you make to the
actions, options, environment variables, and types in your model project are also
reflected in the new projects.

44 IBM VisualAge�C++ for OS/2 User's Guide

Project Tools Setup

3 The Project Tools Setup

A project's Tools setup consists of the list of actions that can be used to manipulate
the project and its parts, and thetypes and environment variables that support these
actions.

You can see the list of actions, environment variables, and types that apply to a
project by opening its Tools setup (select Open → Tools setup from the project's
pop-up or system menu, or select Tools setup from the View menu).

The Tools setup window has three views, one each for actions, types, and variables.
You can switch between the views by selecting Actions, Variables, or Types from
the View menu in the Tools setup window, or using the buttons on the toolbar.

From the Tools setup window, you can:

¹ Set options for all the actions in your project. Action options are the parameters
that are passed to the tool when its action is invoked.

¹ Add, delete, and change actions, types, and environment variables.

¹ Copy and move actions, types, and environment variables from one project to
another.

¹ Find the project where an action, variable, or type is inherited from.

These functions are available from both pop-up menus and the menus on the menu
bar. The Actions, Types, and Variables menus on the Tools setup menu bar have
the same items as the pop-up menus on actions, types, and environment variable
objects in the Tools setup window. The View menu contains menu items to
configure the information area at the bottom of the Tools setup window, the toolbar,
and the view that appears when you open the window.

An easy way to move actions, types and variables is to drag them to the target
project. To copy, hold the Ctrl key down while you drag.

For more information on how to perform tasks related to actions, types, and
environment variables, refer to the WorkFrame How Do I? help.

 Copyright IBM Corp. 1992, 1995 45

Project Tools Setup

The Tools Setup Window
Figure 20 shows the Actions view of a Tools setup window. You can display the
Variables view or the Types view by selecting from the View menu or by pushing
the view buttons on the toolbar.

Figure 20. Tools Setup window - Actions View

The controls in the Actions view of the Tools setup window are identical in Actions,
Types, and Variables views:

System menu
Because the Tools setup is another view of a project, its system menu is
identical to the system menu of any other project view.

46 IBM VisualAge�C++ for OS/2 User's Guide

Project Tools Setup

Menu bar
The menu bar contains menu items to add, change, copy, move, and delete
Tools setup objects. It also contains menu items to switch between views and
control the way the window is displayed.

Tool bar
The tool bar contains the following buttons:

 Add
Displays the Add window for the current view. For example, for Actions
view, the Add action window is displayed.

 Change
Opens the settings for the selected object. This button is not available
when an inherited object is selected. You can only change Tools setup
objects in the project where they are defined.

 Delete
Deletes the selected Tools setup object. This button is not available
when an inherited object is selected. You can only delete Tools setup
objects from the project where they are defined.

 File-scoped options
Displays the file-scoped options dialog of the selected action. Use this
dialog to set options for the file-scoped action. Options are the
parameters that are passed to the tool when its action is invoked. This
button is disabled for Variables view and Types view.

 Project-scoped options
Displays the project-scoped options dialog of the selected action. Use
this dialog to set options for the project-scoped action. This button is
disabled for the Variables view and Types view.

 Actions view
Switches to Actions view.

 Variables view
Switches to Variables view.

 Types view
Switches to Types view.

 How Do I?
Shows WorkFrame How Do I? help.

 Chapter 3. The Project Tools Setup47

Project Tools Setup

Tools setup container
The Tools setup container displays the actions, variables, and types that are
available to the project. Actions are displayed in expanded tree view, grouped
by class and ordered by priority within each class. Variables and types are
displayed in details view.

 Actions
An action is a description of a tool or a function of a tool that can be used to
manipulate a project's parts, or participate in a build. The tool can be any executable
program or command file that the associated Project Access Method (PAM)
recognizes. The basic OS/2 PAM, IWFBPAM, used by VisualAge C++ projects
recognizes OS/2, DOS, and WIN-OS/2 executable programs, as well as .BAT and
.CMD command files.

Actions are described in terms of their executable, name, class, input, and output.
When tools are described in this manner, they can be integrated together without
having prior knowledge of each other, and included in a WorkFrame-generated make
file or build. They can also be substituted, added, or removed without affecting the
rest of the project environment.

A tool can be described in terms of one or more actions in the project's Tools setup.
For example, the VisualAge C++ Compiler, icc.exe can be described in terms of
three different actions: Compile::C/C++ Compiler, Link::Linker, and
Compile::Preprocessor. The actions vary only in the options used to execute the
icc.exe executable. Similarly, the VisualAge C++ Editor can be described in terms
of two different actions: Edit::Editor and Browse::Browser, again differing in the
options with which they are invoked, and perhaps the types of files to which they
apply.

A Compile::Preprocessor action doesn't actually come with the VisualAge�C++
Project, but if you use the compiler's preprocessing function often, you can define
one yourself that only invokes the preprocessor on theicc.exe executable. This is a
good example of where an action does not map to a tool, in a one to one relationship.
An action is more accurately a representation of a facet or behavior of a tool.

48 IBM VisualAge�C++ for OS/2 User's Guide

Project Tools Setup

 Action Classes
Actions are grouped into classes so that tools with similar function can be described
and grouped together in project pop-up menus. For instance, the VisualAge Editor is
invoked via the action named VisualAge Editor, that belongs to the Edit action class.

When tools are classified by their general function, integration between tools can
occur on the class level. For example, the VisualAge C++ Browser calls the default
Edit action to display source code for the objects being browsed. If the default Edit
action is VisualAge Editor, the source code is displayed in an VisualAge Editor
window. All this occurs without the Browser having to know the name of the editor,
or how to invoke it. “Default Actions” on page 71 explains how you can set your
default actions for Edit, Compile, and other action classes.

 Action Settings
This section explains the pages of an action's Settings notebook so that you can
understand how tools become actions in the WorkFrame environment.

To bring up the Settings notebook for an action, select Change... from its pop-up
menu.

To add an action to a project, select Add... from the pop-up menu of the Actions
container. A Settings notebook appears where you can specify the necessary action
settings.

If you highlight an action before selecting the Add... menu item, the fields in the
Settings notebook are filled in with the settings of the highlighted action. This is a
convenient way to copy the settings from a similar action.

 Chapter 3. The Project Tools Setup49

Project Tools Setup

Action Settings - General Page

Figure 21. Action Settings - General page

50 IBM VisualAge�C++ for OS/2 User's Guide

Project Tools Setup

You use the General page to specify the basic information about an action:

Class
The class of an action determines how the action is grouped in pop-up menus
of WorkFrame projects and parts. It also determines the general nature of the
action so that other tools can invoke it in a generic manner. WorkFrame
predefines a number of action classes for you, such as Edit, Build, Preprocess,
Compile, and Link. You can select one of the predefined names from the
drop-down list box, or type in a new class name if none of the predefined
classes is appropriate.

Note: The Run class is treated in a special manner by the basic OS/2 Project
Access Method (PAM) supplied with WorkFrame. If you are adding or
changing a Run class action, specify an asterisk (*) on the Program
field to have the PAM execute the file specified in the Run action's
options. For example, a project-scoped Run-action options string should
contain the %o substitution variable to run the project's target. A
file-scoped Run action should contain the%f substitution variable to run
the selected file.

 See “Substitution Variables” on page 69 for a list of WorkFrame
substitution variables and their meaning. “Action Options” on page 65
discusses action options and how to set them.

Name
An action's name identifies it and sets it apart from the rest of the actions in the
same class. The name is also used to list the action in project pop-up menus.

Program
This field contains the name of the program or command file to run when the
action is invoked, for example, icc.exe, for a VisualAge C++ Compile action.
The program name can be anything that the associated PAM can execute. The
associated PAM is the PAM that controls access to the selected part or parts on
which the action is being invoked. In the case of project-scoped actions, the
associated PAM is the PAM explicitly named in the General page of the
action's Settings.

 Chapter 3. The Project Tools Setup51

Project Tools Setup

The basic PAM used by VisualAge C++ projects can execute OS/2, DOS, and
WIN-OS2 programs, as well as .CMD or .BAT command files. You do not
need to configure any special WorkFrame settings to define actions for DOS
and WIN-OS/2 programs or .BAT files. The basic OS/2 PAM automatically
determines the kind of session the action should be run in so that it starts
seamlessly when it is invoked.

Note: The basic OS/2 PAM has no capability to set DOS settings before
invoking DOS programs.

If your project uses a PAM that can access project parts from a foreign file
system, you can specify the name of an executable that runs on the file system.
The PAM runs the action and communicates the results to WorkFrame.If
you have projects that use more than one PAM, you may want to read
Chapter 8, “Project Access Methods (PAMs)” on page 149 to understand more
about how PAMs work.

To define an action that runs an OS/2 command like copy and del, enter
CMD.EXE in the Program field. CMD.EXE is OS/2's command interpreter. The
action should use the default Actions Support DLL and entrypoint,IWFOPT and
DEFAULT (see “Action Settings - Support Page” on page 58 for more
information about actions support).

Then in the options dialog of your new action, type in the command string
prefixed by a /C. The /C indicates to the command interpreter that a command
follows.

For example, to define an action that copies the target program, which happens
to be a DLL, to another directory on the LIBPATH, say C:\OS2\DLL, you could
define these action options:

/C copy %o C:\OS2\DLL

%o is a WorkFrame substitution variable that represents the project's target.
“Substitution Variables” on page 69 has a table of all the valid substitution
variables you can use in command strings.

52 IBM VisualAge�C++ for OS/2 User's Guide

Project Tools Setup

Session
Select one of these radio buttons to specify where the output from the action
should be sent:

Default
Let the PAM decide what type of session the action should run in. If the
action uses the basic PAM, OS/2 chooses the session type.

Monitor
Send the output to the project's Monitor window where you can click on
error messages to bring up the editor on the source file. You can also
save the output or print it. This option is only valid for actions, such as
Compile and Link, that write their output to standard out.

Actions that run in the Monitor window are called monitored actions.

Note: Because the Monitor does not support user input, actions that
prompt for input should be run in a Window or Full screen
session instead.

Window
Output is sent to a text window.

Full screen
Output is sent to a full-screen window.

Scope
Actions may be file-scoped or project-scoped:

File-scoped
File-scoped actions apply to specific project parts, and can only be
invoked from those parts. To run a file-scoped action, you must select
one or more project parts and then invoke the action on the selected parts.

Note: Only file-scoped actions can be included in a
WorkFrame-generated make file.

The types listed in the action's Source types list determine the project
parts the action applies to. For example, the VisualAge C++ Compile
action applies to parts that are of type C/C++ Source. This means you
can invoke the VisualAge C++ Compile action by pointing to a .CPP file
and selecting COMPILE → VisualAge C++ from its pop-up menu.

See “Types” on page 75 and “Action Settings - Types Page” on
page 55 for more information on types and how they apply to actions.

 Chapter 3. The Project Tools Setup53

Project Tools Setup

Project-scoped
Project-scoped actions apply to a project as a whole, rather than to any
selected set of project parts. These actions can be passed project
information, such as the name of the project make file or target.
Examples of project-scoped actions are Make, Build, Run, and Debug.
The first two actions are invoked on the project's make file, and the last
two on the project's target. Although make files and target files are also
project parts, they have a special designation, that is, their names are
explicitly recognized by the project.

Project-scoped actions are invoked from the project's pop-up menu. To
bring up the project's pop-up menu, point to any background area in the
project container and press mouse button 2.

Project-scoped actions cannot be included in a make file.

Access method
This field is only relevant for a project-scoped action. It identifies the
PAM that executes the program that defines the action. The default is the
basic PAM, IWFBPAM. If your projects only contain OS/2 files, you do
not need to change this field.

If the action is file-scoped, the executing PAM is the PAM that can
access the part or parts on which the action is invoked.

54 IBM VisualAge�C++ for OS/2 User's Guide

Project Tools Setup

Action Settings - Types Page
The fields on this page are only relevant if the action is file-scoped.

Figure 22. Action Settings - Types page

Use the Types page to specify the source and target types that apply to a file-scoped
action. (See “Types” on page 75 for a description of types.)

 Chapter 3. The Project Tools Setup55

Project Tools Setup

Source types
A list of file masks and named types that can apply to an action. This field is
only required if the action is file-scoped. For example, the Edit::Editor action
might have the following source types:

 C/C++ Source
 *.mak
 *.rc
 SOM Emissions

Target types
A list of file masks and named types that are produced by an invocation of the
action. This field is only required if the action is file-scoped and could
potentially be included in a WorkFrame-generated make file. Only file-scoped
actions that have both source and target types can be included in a
WorkFrame-generated make file.

For example, Edit::Editor would not have any target types listed (and so cannot
be included in a WorkFrame-generated make file), but Compile::C/C++
Compiler might list the following:

 Object Files
 *.def

Build Notes:

¹ If the action can potentially be included in a project build (that is, it
has both source and target types specified), you can only specify
types of the classes "FileMask", "Logical OR", and "NOT in
Logical OR" in the Source types and Target types list boxes.
Types of other classes are ignored by the MakeMake utility.

See “Type Classes” on page 77 for information about type
classes, “The MakeMake Utility” on page 104 for information
about the WorkFrame make file generation utility.

¹ All the types included with VisualAge C++ are of the allowed
classes, "FileMask", "Logical OR", and "NOT in Logical OR".
You can use the other type classes to specify the source types of
actions that are not used in builds (such as Edit), and in the project
Parts filter .

56 IBM VisualAge�C++ for OS/2 User's Guide

Project Tools Setup

¹ WorkFrame uses the source and target types lists to infer the order
that actions should be invoked to build the project's target when a
Build action is invoked, or when you use the WorkFrame
MakeMake tool to explicitly create a make file. Consequently, you
should not list file types or masks that do not apply to the action in
the Source types list. A Build action may produce unpredictable
results otherwise.

Chapter 5, “Building Your Target” on page 91 explains how
you can set up the Build tool to generate and manage your project's
make file.

Available types
This is the comprehensive list of types that are available to the project. To add
a type to the Source types and Target types lists, select an available type and
then click on the <<Add push button beside the Source types or Target types
list box.

As you click on each available type in this list box, the information area at the
bottom of the page shows the filter value of the type. Filters that are too long
to fit in the information area are shown truncated.

 Chapter 3. The Project Tools Setup57

Project Tools Setup

Action Settings - Support Page

Figure 23. Action Settings - Support page

Use the Support page to specify the Actions Support DLL, any customized help for
your action, and the priority for the action:

Customized help for action
You can specify context-sensitive help for an action using these entry fields.
The help you specify here appears when you place focus on the menu item for
the action and press the F1 key. If you do not specify any customized help for
an action, generic help for actions is displayed instead.

Command
This field contains the command that displays the help. For example, if
the help is in an .INF file called HELP.INF, the command could be:

 VIEW HELP.INF

58 IBM VisualAge�C++ for OS/2 User's Guide

Project Tools Setup

Because, with the IPF View facility, you can specify the name of a panel
in the .INF file to open the document to, the command could also be
specified as:

VIEW HELP.INF Some Help Topic

Topic
You can specify the help topic separately from the command by entering
the name of the topic in this field. WorkFrame appends the contents of
this field to the text in the Command field, so you could also have
specified the command in the previous example as:

 VIEW HELP.INF

and specified the topic

Some Help Topic

in the Topic field.

If the topic needs to be specified in a position other than at the end of the
command text, use the %TOPIC% substitution variable to place the text in
the Topic field anywhere in the Command text.

For example, some viewing tool has the following command syntax:

SOMEVIEW TOPIC='Some Help Topic' FILE='HELP.FIL'

The Command text can then be specified as:

SOMEVIEW TOPIC=%TOPIC% FILE='HELP.FIL'

If the %TOPIC% substition variable occurs more than once in the
Command, only the first instance is replaced.

 Chapter 3. The Project Tools Setup59

Project Tools Setup

Action Support DLL
Each action has an associated Actions Support DLL that performs the following
very important functions:

¹ Sets the default option settings for an action. (See “Action Options” on
page 65 for more information about action options.)

¹ Displays a graphical user interface to gather the action options settings
when you request to change the options for an action.

¹ Generates the command line that correctly invokes the action with the
specified options.

¹ Processes the target and dependencies lists when the action is to be
included in a make file.

¹ If the action is monitored, parses selected error messages to correctly
invoke the default editor on the erroneous source file, and provides help for
any parsed error messages.

¹ If the action is an editor, enables the Dynamic Data Exchange (DDE)
communication with WorkFrame so that the editor displays source files and
processes the error lines correctly.

The Actions Support DLL is specified by two fields:

Name
The name of the Actions Support DLL, for example,IWFOPT, the default
Actions Support DLL.

Entrypoint
Because an Actions Support DLL can provide support for more than one
action, you must also specify an entrypoint. The Entrypoint field is a
drop-down list box that shows all the available entrypoints in the DLL.

Note: Actions Support DLLs are provided by tool developers who have
integrated their tools into the WorkFrame environment. For tools that
are not WorkFrame enabled, WorkFrame provides a default Actions
Support DLL called IWFOPT.DLL, with entrypoints that apply to many
action classes. TheDEFAULT entrypoint is for actions whose class does
not match any of the provided entrypoints.

For example, the Compile::Resource Compile action uses the COMPILE
entrypoint in IWFOPT.DLL.

Some VisualAge C++ actions use the default Actions Support DLL, while
others provide their own customized DLL. The following table shows the
VisualAge C++ actions and their corresponding Actions Support DLLs and
entrypoints:

60 IBM VisualAge�C++ for OS/2 User's Guide

Project Tools Setup

Action Actions
Support
DLL

Entrypoint

Analyze::Performance Analyzer IWFOPT DEFAULT

Bind::Parse and Bind Messages IWFOPT MSGBIND_PLUS

Bind::Resource Bind IWFOPT RESOURCE_BIND

BRSMON::Brsmon IWFOPT DEFAULT

Browse::Browser IWFOPT DEFAULT

Build::Build Normal IWFBLDOP BUILD

Build::Rebuild all IWFBLDOP BUILD

Compile::C/C++ Compiler CPPICC30 COMPILE

Compile::IPF Compiler IWFOPT IPF_COMPILE

Compile::Message Compiler IWFOPT MESSAGE_COMPILE

Compile::Resource Compiler IWFOPT RESOURCE_COMPILE

Compile::SOM Compiler IWFOPT COMPILE

Database::Data Access Builder IWFOPT DEFAULT

Debug::Debugger IWFOPT DEBUG

Edit::Editor IWFOPT EDIT

Edit::Dialog Editor IWFOPT DEFAULT

Edit::EPM IWFOPT EDIT

Edit::Icon Editor IWFOPT DEFAULT

Edit::System Editor IWFOPT EDIT

Edit::Markexe IWFOPT DEFAULT

Inspect::View EXE Header IWFOPT DEFAULT

Lib::Import Lib IWFOPT IMPLIB

Lib::Import Lib (from Def) IWFOPT IMPLIB

Lib::Lib Tool IWFOPT IMPLIB

Link::Linker CPPICL30 LINK

Make::Nmake IWFOPT MAKE

MakeMake::Makefile Generator IWFOPT DEFAULT

MapSym::Map Symbols IWFOPT DEFAULT

Package::Compress IWFOPT DEFAULT

 Chapter 3. The Project Tools Setup61

Project Tools Setup

For information on how to write your own Actions Support DLL, obtain the
WorkFrame Version 3.0 Integration Kit1.

Compatibility Note: Actions Support DLLs (or Options DLLs, as they were
called in previous versions) that were written for Version 2.1 of
WorkFrame will continue to be supported in this version. However, if
an Actions Support DLL relies on the presence of the C/C++ Tools
Version 2.01 runtime libraries, and you no longer have them on your
system, it will no longer run. Contact the Actions Support DLL
provider for an updated version. See Chapter 7, “Migrating Old
Projects” on page 143 for information on how to migrate projects from
previous versions of WorkFrame.

Priority
The priority of an action affects which action is launched when you
double-click on a project part of a specific type. It also determines the default
action of a class, and the ordering of actions on project menus. (Refer to
“Default Actions” on page 71 for more complete discussion about default
actions, and “Types” on page 75 for information on types.)

When you double-click on a project part, WorkFrame checks the Priority field
of all the applicable actions, regardless of their class, and then invokes the
action with the highest priority. If no actions apply to the part, the associated
Workplace Shell behavior is invoked.

Set the Priority field to a number between 0 and 99. A higher number means
a higher priority. Two actions can have the same priority value as long as they
do not apply to the same type. If there are two actions with the highest priority
for a selected type, the action that is actually invoked is undefined.

Action Actions
Support
DLL

Entrypoint

Run::Foreground IWFOPT RUN

Run::Monitored IWFOPT RUN

Run::Run Target IWFOPT RUN

View::View Info IWFOPT DEFAULT

Visual::Visual Builder IWFOPT DEFAULT

1

To find out when and where this kit will be available, send a note to workframe@vnet.ibm.com, or call the VisualAge C++ automated help line
1-800-992-4777. Availability will also be announced on various networks where VisualAge C++ Service and Support is present.

62 IBM VisualAge�C++ for OS/2 User's Guide

Project Tools Setup

The actions within each action class are listed in order of priority in the Tools
setup actions view.

Action Settings - Menus Page

Figure 24. Action Settings - Menus page

Use the Menus page to specify whether the action should appear in the project
pull-down and pop-up menus, the Options menu, and the project toolbar. You can
also use this page to define an accelerator key for your action.

 Chapter 3. The Project Tools Setup63

Project Tools Setup

Action display
Use these check boxes to specify the menus that the action should appear in.

Add to menus
Select this check box to have the action appear in the Selected menu on
the project menu bar if it is file-scoped, on the Project menu if it is
project-scoped, or on both, if it is both file- and project-scoped. This
setting also determines whether an action appears on pop-up menus.

Add to project Options menu
Select this check box to have the action appear in the Options menu on
the project menu bar. It allows easy access to the options of frequently
used actions. The Options menu lists all the project-scoped actions and
all the file-scoped actions for which this setting is enabled. When you
select an action name from this menu, WorkFrame displays its options
dialog.

Note that options for all actions are always accessible from the Actions
menu of the Tools setup window, or from the pop-up menu of an action
in the Tools setup window.

Add to project Toolbar
If the action is project-scoped, select this check box to have the action
appear on the project toolbar. The icon that is used for the action on the
toolbar is that of the action class. All the WorkFrame predefined classes
have unique icons bound to them.

Action accelerator key
Action accelerators always start with the Ctrl+Shift keys. Type the letter of
the key you want to associate with the action. The In use field shows you the
letters that are already in use by other actions in the project. For example, aC
in the Ctrl+Shift+ field associates the accelerator key Ctrl+Shift+C with the
Compile::C/C++ Compiler. This means you can use the Ctrl+Shift+C key
stroke to invoke the Compile::C/C++ Compiler action on a selected project part.

64 IBM VisualAge�C++ for OS/2 User's Guide

Project Tools Setup

 Action Options
Each action has a set of options associated with it. The options represent the
parameters passed to the tool to configure its behavior when its action is invoked.
For example, to have the compiler generate Browser information, you need to invoke
the compiler with the /Fb, or Browser information, option.

When you use WorkFrame projects to organize your tools and code, you can set these
options once, and then when you invoke the action, by itself or as part of a Build, the
options are always set for you. If the tool you are using provides customized
WorkFrame support, you won't need to remember command-line options like/Ge-
that tells the compiler that you're building a DLL, or/St:<number> to specify the
stack size to the linker. Instead, you set options in a graphical user interface, like a
dialog or notebook, with full access to online help. Figure 25 shows you an image
of the Compile::C/C++ Compiler options dialog.

Figure 25. The VisualAge C++ Compiler options dialog

 Chapter 3. The Project Tools Setup65

Project Tools Setup

To set options for an action in the Tools setup window, display the pop-up menu for
an action and then select File options → Change (if the action is file-scoped) or
Project options → Change (if the action is project-scoped). An options dialog
where you can set options for the action appears.

You can also set an action's options by:

¹ Double-clicking on its icon. If the action is both file- and project-scoped, the
file-scoped option dialog appears.

¹ Selecting its name and then selecting the appropriate (file-scoped or
project-scoped) Options button on the Tools setup toolbar.

¹ Selecting its action name from the Options menu on the project menu bar. Only
some actions are available on the Options menu. See “Action Settings - Menus
Page” on page 63 for instructions on how to make an action available on this
menu.

The dialog that appears is provided by the action's Support DLL. Actions that use
WorkFrame's default Actions Support DLL (IWFOPT) do not have customized option
dialogs. Instead, you enter options into an entry field in command line format.

Examples of VisualAge C++ actions that use the default Actions Support DLL are
Database::Data Access Builder, and Make::NMake. Refer to the online help in the
options dialog for instructions on how to use it.

Inheriting
Options

If an action is inherited from another project, you can choose whether to:

1. Use the options stored with the defining project.

This is the default. The action options from the inherited project are used in the
inheriting project until you explicitly change the options in the inheriting project.

As long as the options for an action in the inheriting project remain unchanged,
any changes you make to the options in the inherited project are reflected in the
inheriting project.

2. Set options locally.

When you select File options → Change or Project options → Change from an
inherited action's pop-up menu to change its options, the options are stored
locally and are no longer affected by changes to the options in the inherited
project. To revert to the inherited options, select File options → Delete or
Project options → Delete from the action's pop-up menu to delete the locally
stored options. You can also copy the options from the defining project by
selecting File options → Copy or Project options → Copy. Copied options are
stored locally.

66 IBM VisualAge�C++ for OS/2 User's Guide

Project Tools Setup

Notes About Copying Options:

a. Copying options is a convenient way to set the options of an action in one
project so that it is the same as the options in another. However, you can
only copy options if the same action (that is, an action with the same name
and class) exists in the destination project. If one doesn't exist, you should
copy the entire action instead (select Copy from the action's pop-up menu, or
drag the action while pressing the Ctrl key).

b. When you copy the options of an inherited action, the options of the action
as it exists in the project where it is defined are copied. Note that this is not
the same project from which you invoked the copy operation.

To determine the name of the project where an action is defined (or inherited from),
select Where defined on the action's pop-up menu.Where defined is disabled when
the action is locally defined.

Build Smarts Build Smarts is a fast path for setting options for VisualAge C++ actions that
affect the way your project target is built. The options that you set in the Build
Smarts window work in combination with the options that are set for the individual
actions themselves.

To display the Build Smarts window, select Build Smarts from the Options menu.
The Build Smarts window is illustrated in Figure 26 on page 68.

 Chapter 3. The Project Tools Setup67

Project Tools Setup

Figure 26. Build Smarts window

Each setting in the Build Smarts window can affect one or more VisualAge C++
actions. For instance, the Debugger check box affects the VisualAge C++ Compiler
and Linker options. Selecting the Debugger check box effectively adds the/Ti
option to the VisualAge C++ Compiler command line, and/DE to the
VisualAge C++ Linker command line, when you initiate a build involving those
actions.

The Build Smarts settings do not change the options already set for the individual
actions in their options dialogs. The Tools setup settings are simply added to what is
already set for the involved actions. When there are conflicts, the Build Smarts
settings override those already set for the individual actions.

Two important build options are also included here: Generate a make file and Build
any subprojects first. Select the first option to generate a new make file as part of
running the build. Select the second option to build any child projects before
building the current project so that all the dependencies are up to date.

At any time, you can disable the Build Smarts options by deselecting the Enable
Build Smarts features check box if you only want to use the options set for the
individual VisualAge C++ actions.

68 IBM VisualAge�C++ for OS/2 User's Guide

Project Tools Setup

Substitution
Variables

Substitution variables are place holders for items like file names and options in
command strings. WorkFrame substitutes the variable with the appropriate value
before passing the string on for processing. You can use them when you are
specifying options for actions that use the default Actions Support DLL.

For example, you could write the command string

icc /Ti /C c:\dog\terrier.cpp

as

icc /Ti /C %f

where %f is the selected file

 c:\dog\terrier.cpp.

The following table lists the substitution variables that you can use in WorkFrame/2
option strings:

Figure 27 (Page 1 of 2). WorkFrame substitution variables

%a %z Is replaced by the names of all the selected project parts, each
separated by a space. If the space between the a and the second
% is replaced by a string, the names are separated by that string.
For example, if the selected parts are

 d:\cat.obj
 d:\dog.obj
 d:\bird.obj

the substitution variable %a+%z produces the string

 d:\cat.obj+d:\dog.obj+d:\bird.obj

The only substitution variables allowed within the %a %z
substitution variables are %% and %d.

%d Is replaced with the project's working directory.

%e Is replaced by the extension (including the period) of the first
selected file.

%f Is replaced with the fully qualified name of the first selected file.
Specifying %f is the same as specifying %q%n%e.

%m Is replaced by the make file name specified for the project in its
Settings notebook.

%n Is replaced by the file name (without an extension and path) of the
first selected file.

%o Is replaced by the target file name specified for the project in its
Settings notebook.

 Chapter 3. The Project Tools Setup69

Project Tools Setup

If the first selected file is

 d:\dogs\hounds\beagle.h

then:

%e is .h,

%f is d:\dogs\hounds\beagle.h

%n is beagle

%q is d:\dogs\hounds\

Note: If the file name includes spaces, as in toy terrier.h, then the file-name part
of the substituted string will have quotation marks surrounding it. For
example, %f would be replaced with"toy terrier.h".

Figure 27 (Page 2 of 2). WorkFrame substitution variables

%t Is replaced by the file name (without an extension and path) of the
project's target.Settings notebook.

%p Is replaced by the fully qualified project file name.

%q Is replaced by the path of the first selected file.

%r Is replaced by the run options set for the project target file in the
project's Settings notebook.

%TOPIC% Is replaced by the contents of the Help Topic field in the action's
Settings notebook. This field specified the help topic to be
displayed when the user requests for help on the action.

%% Is replaced by the % symbol.

70 IBM VisualAge�C++ for OS/2 User's Guide

Project Tools Setup

The substitution variables in the table below are used to specify error message format
in error templates. WorkFrame uses error templates to parse error messages in a
monitor window when you double-click on an error message to invoke the editor.

If an action emits error messages of the form

<file.c : 238,12 > Error message text.

then the error message template can be specified as:

<%f : %i,%c> %t

Figure 28. WorkFrame error template substitution variables

%f Is replaced by the name of the file name where the error occurred.

Note: If the error message does not emit a fully-qualified file
name, the editor may not be able load the file if it is not
located in the project's working directory.

%i The line in the source file at which the error occurred.

%c The column in the source file at which the error occurred.

%t The text of the error message.

 Default Actions
Default actions make it possible for you to invoke an action class, such as Edit, on a
file without having to explicitly specify the appropriate Edit action.

For example, when you select Edit from the pop-up menu of a C++ source file
(without following the cascading arrow) the VisualAge Editor is launched. But you
could set up your Edit actions so that if you select the Edit menu item on the popup
menu of an .IPF file, the EPM editor is launched instead.

Menu Note: If only one action in a class applies to the selected part, the class menu
item appears without cascading choices.

This is possible because the project's Tools setup was configured so that the
VisualAge Editor is the default Edit action for a C++ source file, and EPM is the
default Edit action for a .IPF file.

Default actions can be defined for every action class that applies to a project file.
The default action for a class is defined as the action that has the highest priority in
the class. The default action for a class in the context of a specific file type is
defined as the action in the class with the highest priority that applies to the type.

 Chapter 3. The Project Tools Setup71

Project Tools Setup

The priority of an action is set by a numeric field in the Support page of an action's
Settings notebook. (See “Action Settings - Support Page” on page 58 for
information on how to set an action's priority.)

The type of files that an action applies to is determined by the Source types list
specified for the action. The default action appears as the first action on the list of
cascading choices off a class menu item on the pop-up menu of a file. In the
example above, EPM was given a higher priority than VisualAge Editor, and the
EPM action was set so that its list of source types does not include C++ source files.

“Types” on page 75 has more information on types.

In the Tools setup Actions view, the actions within each class are listed in the order
of their priority, so the default action for each class is always the first action in the
list.

Again, take the Edit action class as an example. You could have three different
editors, the VisualAge Editor, EPM, and the System Editor, that could apply to the
same type of file, say “C Source.” But if the VisualAge Editor had the highest
priority followed by EPM and the System Editor, then the VisualAge Editor would be
the default Edit action for “C Source” files. However, if the Dialog Editor which
applies to “Resource” files was also listed as an Edit action following the VisualAge
Editor, EPM, and the System Editor, it would be considered the default Edit action
for a “Resource” file if none of the three preceding editors also applies to “Resource”
files.

In the case of project-scoped actions, the default project-scoped action for a class is
defined as the first project-scoped action listed in the class grouping, that is, the
project-scoped action that has the highest priority setting in the class.

The default action configurations also apply when a WorkFrame-aware tool invokes
another action on its own behalf. For example, when the VisualAge C++ Browser
needs to display the definition of a class, it invokes the default Edit action that
applies to the source file that contains the definition. Because you can configure your
default Edit actions for the different types of files in your project, the Browser would
invoke the editor you choose as the default. Because the project Tools setup
describes tools as actions, tools do not have to know the name of another tool or how
to invoke it when they invoke the tool as a WorkFrame action class.

72 IBM VisualAge�C++ for OS/2 User's Guide

Project Tools Setup

A project's default Edit action is very important. It determines which editor is
launched when you double-click on error messages in the Monitor , and which editor
is used when other tools, such as the Browser, need to use an editor.

Arrange the priority of the actions within a class so that the most restrictive actions
(that is, the actions that apply to the fewest project parts) have the higher priority so
that the more specialized actions become the default actions for the more specialized
project parts.

Inheritance Note: When a project inherits another project's Tools setup, it also
inherits the priority of the actions. Therefore, it could also inherit the base
project's default actions. You cannot change the priority of an inherited
action. For more information on how inherited actions are resolved, see
“Inheritance Precedence Rules” on page 33.

Actions on Menus
Every action in your project's Tools setup is accessible from pop-up menus on
projects or project parts, except for any actions that were configured not to appear
there. (See “Action Settings - Menus Page” on page 63 for more information on
how to make actions visible or invisible on project menus.) The way an action is set
up and its priority within the list of actions in a class determines the pop-up menus in
which the action can appear, and its location in the pop-up menu with respect to other
actions of the same class.

Here is a short list of rules about action menus in WorkFrame projects:

1. Project-scoped actions appear on the project pop-up menu. You can bring up the
project pop-up menu by pointing to the background of the project parts container
and pressing mouse button 2. Project-scoped actions also appear on the project's
system menu, as well as the Project pull-down menu.

2. File-scoped actions appear on pop-up menus on project parts. However, an
action only appears on a project part's pop-up menu if the part matches one of
the action's list of source types. Thus, the actions that appear on a project part's
pop-up menu are only those that apply to the part.See “Types” on page 75
for more information about types. File-scoped actions also appear on the
Selected menu when applicable parts are selected.

 See “Action Settings - Menus Page” on page 63 for more information on an
action's settings, in particular, the Menus page where you can configure an action
so that it appears in the Project, Selected, and pop-up menus.

 Chapter 3. The Project Tools Setup73

Project Tools Setup

3. Actions are categorized by their class in the menus. If there is more than one
applicable action in a class, a cascading menu appears on the class name. If
there is only one applicable action for the class, only the class name appears on
the pop-up menu.

4. The actions on project menus appear in order of priority. You can change the
order in which actions appear on pop-up menus by changing the priority of the
actions in the Tools setup. “Action Settings - Support Page” on page 58 tells
you how to set the priority of an action.

5. The first action in the cascading choices of the first action class menu item on
the pop-up menu of a project part is the action that is invoked when you
double-click on the part.

6. The first action of the cascading choices of an action class is the default action
for the class that applies to the selected part or set of parts. It is the action that
is invoked if the class name is selected on the pop-up menu without following
the cascade.

74 IBM VisualAge�C++ for OS/2 User's Guide

Project Tools Setup

 Types
You may often need to refer to a group of project parts by name, to more easily
specify the source and targets of an action, and more easily use the project Parts
filter . (See “Icon View” on page 15 for more information about the Parts filter
filter on the project container.) You can name a group of project parts by specifying
a type.

Types are used to categorize project parts. An example of a type is “C++ Source,”
which can describe files whose names match the file masks *.CPP, *.HPP, *.H,
*.DEF.

Types are used in three different ways:

¹ To determine the actions that apply to one or more selected project parts. For
example, the Compile::C/C++ Compiler action applies to both “C++ Source” and
“C Source.”

¹ To determine the targets that can be produced by an action. For example, the
Compile::C/C++ Compiler action can produce “Object files.”

¹ To filter the parts shown in a project's container. The Parts filter entry field
near the top of the container lets you specify the type of parts you want
displayed. You can also enter a file mask in this field.

The VisualAge�C++ Project has several predefined types, such as “Header Files,”
“C Source,” “C++ Source,” “Object Files,” and “Executables.”

 Chapter 3. The Project Tools Setup75

Project Tools Setup

Figure 29. Types view of Tools Setup window

Types can be inherited from one or more projects, just like actions. The list of types
available to a project are those that are defined locally in the project, and those that
are inherited from other projects. “Inheritance Precedence Rules” on page 33
explains how inherited types are processed.

You can also add your own types to a project, such as “My C++ Source,” which
could refer to files whose names match the file masks MY*.CPP, MY*.HPP, and so
on. “Adding Types” on page 81 explains how you can add your own types.

PAM Note: The file name of the project part used to match the type filters is the
file name returned by the PAM that provides access to the part. The basic
OS/2 PAM returns regular OS/2 file names. See Chapter 8, “Project
Access Methods (PAMs)” on page 149 for a more detailed discussion about
PAMs.

76 IBM VisualAge�C++ for OS/2 User's Guide

Project Tools Setup

 Type Classes
Like actions, types are named and grouped into classes. A type's class provides the
method in which a project part is determined to be a member of the type. All the
type examples used so far belong to the “File Mask” type class. WorkFrame provides
several predefined type classes, including “File Mask”:

File Mask
This type class provides simple OS/2-style pattern matching on the file name of
a project part. You specify filter patterns using wild cards.

Regular Expression
This type class is similar to “File Mask,” but allows filter patterns to be
specified using the full power of regular expressions. Unlike file masks, a
regular expression cannot be used interchangeably with types when you use the
project's Parts filter , or when specifying the Source and Target types of an
action. You must define and use a Regular Expression type instead.

An example of a Regular Expression type is “VisualAge C++ DLLs,” whose
filter can be specified as:_ICS.*\.DLL|_IWF.*\.DLL. This identifies all the
DLLs that are shipped with the VisualAge C++ product. Using file masks, you
could specify them separately as ICS*.DLL and IWF*.DLL.

There are several different syntaxes for regular expressions. The one supported
here is the Extended Regular Expressions (ERE) format supported by the
VisualAge C Library. The syntax is described in the table below, where a, b,
and c are regular expressions, and n and m are integers.

Figure 30 (Page 1 of 3). Regular expression syntax

a Denotes an exact match.

. Matches any single character. This is
the same as the? wild card used in
OS/2 file masks. To denote a literal
dot character, precede the dot with a
backslash, as in \..

_a Matches if a occurs at the beginning of
the name.

a$ Matches if a occurs at the end of the
name. For example, _a$ matches only
a.

a|b Matches either a or b.

 Chapter 3. The Project Tools Setup77

Project Tools Setup

Figure 30 (Page 2 of 3). Regular expression syntax

[<list of characters>] Matches any of the characters in the
list. For example,[abc] would match
the namesa, b, and c. To match a
dash (-) character, it must be placed
first or last in the list (for example,
[-abc].c). To match a caret (_)
character, it must be placed somewhere
other than in the first position. To
match a close or open bracket character
([or]), it must be placed first in the
list, or second after a caret.

[<range of characters>] Matches any character in the range.
For example,[a-c] would match the
namesa, b, and c. You could also
write [ab-c] as an equivalent
expression.

[_<characters>] Matches any character other than those
specified in the list or range. For
example, [_a-c] will match any file
not named a, b, or c.

a{n} Matches a repeated exactly n times.
For example,a{3} will match only the
name aaa.

a{n,m} Matches a repeated between n and m
times, inclusively. For example,
a{2,3} will match only the file names
aa and aaa. If m is ommitted, then it
assumes the value of infinity.

a? Matches zero or one occurrences of a.
This is shorthand for a{0,1}.

a+ Matches one or more repetitions of a.
This is shorthand fora{1,}. For
example, a+b\.c will match the file
name ab.c, but not b.c.

78 IBM VisualAge�C++ for OS/2 User's Guide

Project Tools Setup

PAM
The filter for this type class is the name of a Project Access Method. Only
parts returned by the specified PAM are members of the type.

For example, a version control tool might provide a PAM type called “Checked
out” that identifies project parts that are already in use. A PAM that provides
access to parts on a database might support its own types like “Locked” and
“Unlocked.”

Typically, only a very specific list of types can be created from a PAM class
type. The basic OS/2 PAM does not support any types.

Logical AND
The filter for this type is a list of other types or file masks. Parts that are
members of all the listed types are also members of this type.

Logical OR
The filter for this type is a list of other types or file masks. Parts that are
members of any one of the listed types are also members of this type.

NOT IN File Mask
This is the inverse of the File Mask type class. The filter for this type is a list
of file masks. Parts that donot match any of the listed masks are members of
this type.

NOT IN Regular Expression
This is the inverse of the Regular Expression type class. The filter for this
type is a list of regular expressions. Parts that do not match any of the listed
regular expressions are members of this type.

NOT IN Logical AND
This type class is the inverse of the Logical-AND type class. The filter for this
type is a list of Logical-AND types. Parts that do not match any of the listed
types are members of this type.

Figure 30 (Page 3 of 3). Regular expression syntax

a* Matches zero or more repetitions of a.
For example ba* will match the names
b, ba, and baaaaaaaaa. The regular
expression.* is equivalent to the OS/2
* wildcard.

Notes: Because OS/2 files are case-insensitive, WorkFrame ignores case when
matching regular expressions. Regular expressions can be grouped using
parentheses. To match any literal regular expression character, precede it with a
backslash (\).

 Chapter 3. The Project Tools Setup79

Project Tools Setup

NOT IN Logical OR
This type class is the inverse of the Logical-OR type class. The filter for this
type is a list of Logical-OR types. Parts that do not match any of the listed
types are members of this type.

MakeMake Note: Only the "File Mask", "Logical OR", and "NOT IN Logical OR"
classes are recognized by MakeMake in the source and target types of actions
invoked during a project build. See “The MakeMake Utility” on page 104
for more information about WorkFrame's make file generation utility.

Type classes are added to the WorkFrame environment through a registration process.
Registering new type classes is a specialized task. Usually only tool providers need
to do. You register, change, and delete, type classes by selecting Register... from the
Types container pop-up menu. When you register a new type class, you must provide
the name of a DLL and an entrypoint that WorkFrame can call to query type
membership. WorkFrame calls the type DLL entrypoint passing it a list of parts and
the type filter. The entrypoint should then return a boolean value, true indicating that
all the parts are valid members of the type, and false indicating that at least one of
the parts is not. The predefined classes listed above are supported by the following
WorkFrame-provided DLLs:

Figure 31. WorkFrame Predefined Type Classes

Type Class Module
Name

Entrypoint

File Mask IWFTYPES IWFFileMask

Regular Expression IWFTYPES IWFRegExp

PAM Name IWFTYPES IWFPAMName

Logical AND IWFTYPES IWFLogAND

Logical OR IWFTYPES IWFLogOR

NOT IN File Mask IWFTYPES IWFNotInFileMask

NOT IN Regular Expression IWFTYPES IWFNotInRegExp

NOT IN Logical AND IWFTYPES IWFNotInLogAND

NOT IN Logical OR IWFTYPES IWFNotInLogOR

80 IBM VisualAge�C++ for OS/2 User's Guide

Project Tools Setup

For information on how to write a type class DLL, refer to the WorkFrame Version
3.0 Integration Kit1.

 Adding Types
To add a new type, select another similar type and bring up its pop-up menu. Select
Add... to display the Add Type window.

Figure 32. Adding a Type

The Add Type window has three fields that are filled in with the values of the type
you selected when you selected the Add... menu item:

Name
Enter the name of your new type, for example, My Files.

Note: Type names cannot contain the OS/2 wildcard characters* and ?.
They are are interpreted as file masks otherwise.

Class
Select the class that you would like to use to evaluate your new type. For
example, Regular Expression.

Filter
Enter the pattern or parameter that determines membership to your type. For
example, MYA*.DLL.

When you select the Add push button, your new type is added to the project.

1

To find out when and where this kit will be available, send a note to workframe@vnet.ibm.com, or call the VisualAge C++ automated help line
1-800-992-4777. Availability will also be announced on various networks where VisualAge C++ Service and Support is present.

 Chapter 3. The Project Tools Setup81

Project Tools Setup

 Environment Variables
In the project Tools setup, you can define environment variables that are active only
for your project, without affecting variables in other sessions or those defined in your
CONFIG.SYS.

Environment variables are the operating-system environment variables, like PATH
and DPATH, and any other environment variables that are defined using the OS/2
SET command, such as TMP.

Figure 33. Variables view of Tools Setup window

The environment variables listed in a project's environment are set for any tool
launched as an action from a WorkFrame project.

Like actions and types, environment variables can be inherited from other projects.
The list of variables available to a project include the variables that are defined
locally in the project, and those that are inherited from other projects.“Inheritance
Precedence Rules” on page 33 explains how environment variables are processed
when inheritance is used.

82 IBM VisualAge�C++ for OS/2 User's Guide

Project Tools Setup

Environment variables are stored as strings in the project environment; WorkFrame
does not interpret them. Although environment variables are meant primarily for
OS/2, PAMs that access non-OS/2 parts may also interpret their own environment
variables. In this case, the PAM interprets and sets up the environment variables in a
manner consistent with the environment it supports.

Adding Environment Variables
To define an environment variable for the project, select the Add... button from the
Environment variables view toolbar in the Tools setup window. The Add
Environment Variable window appears.

Figure 34. Adding an Environment Variable

It contains the following fields:

Name
Enter the name of an environment variable, like PATH or LIB, or select from a
list of currently defined variables. If you select a variable that has already been
defined, its value is shown in the String field. You can redefine its value by
editing the string.

String
Enter or edit the value string of the environment variable.

When you select the Add push button, your environment variable is added to the
project.

Environment variables are listed and processed in the order that they were added in
the Tools setup window.

 Chapter 3. The Project Tools Setup83

Project Tools Setup

84 IBM VisualAge�C++ for OS/2 User's Guide

The Project Monitor

 4 The Project Monitor

The project Monitor makes it easy for you to monitor the output of the actions that
you run from your project. In the Monitor , you can scroll through the output, save
the output to a file, or copy it to the OS/2 clipboard. You can also use the actions
history window to view the output of all the actions that have run in the current
project session. From the Monitor , you can double-click on error messages to bring
up the editor with the associated source file loaded. As you double-click on each
error, the editor window is updated to show the line in the source file where the error
occurred.

The project Monitor is an extension of the project view that appears below the
project container when a monitored action is started. A monitored action is an action
that has been set to run in the project's Monitor , and outputs to standard out.
Actions can also run in full-screen or windowed sessions. Examples of monitored
actions are Compile and Link.

Figure 35. The project Monitor window.

 Copyright IBM Corp. 1992, 1995 85

The Project Monitor

After an action has finished running, the monitor shows the action's return code, and
emits a high-pitched beep if the action completes successfully. If the action does not
complete successfully (that is, has a non-zero return code), you will hear a
low-pitched beep. You can turn off the beeps by deselecting the Beep on completion
setting in the Monitor page of a project's Settings notebook. Monitor settings apply
to all the projects on your system. Refer to “Project Settings - Monitor Page” on
page 27 for more information about Monitor settings.

You can hide or show the project Monitor by clicking on the Show button on
the monitor tool bar of the project window. Because the Monitor window and the
project container are laid out on a split window, you can resize the Monitor relative
to the project container.

 Monitor Controls
The Monitor tool bar is located at the bottom of the project container. It has these
buttons:

 Stop
The Stop button stops an action that is currently running in the Monitor .

Note: Some processes may take a while to recognize the request to stop, while
others may not accept any requests to stop.

The Stop button is only available when an action is running in the Monitor . It
is disabled otherwise. All the other buttons in the Monitor are not available
when an action is running.

 Repeat
The Repeat button repeats the last action that ran in the Monitor during the
current project session.

 History
The History button displays the Action History window. It shows a list of all
the actions that ran in the Monitor during the current project session. You can
re-execute one or more actions from this list and view the results of each
invocation.

 Errors
The Errors button invokes the project's default editor on an error selected in
the Monitor list box. If no error is selected, the editor is invoked for the first
error that appears for the current action.

86 IBM VisualAge�C++ for OS/2 User's Guide

The Project Monitor

 Save
The Save button saves the contents of the Monitor list box into a file that you
name.

 Erase
The Erase button deletes the contents of the Monitor .

 Show
The Show button toggles the project view to show or hide the Monitor .

These controls are also available from the Monitor menu on the project menu bar.

The toolbar also contains an information area where the name of the currently
running action is shown.

 Action History
The Action History window shows a chronological list of all the invocations of every
action that ran in the Monitor during the current project session. It shows the start
and stop times of each invocation, along with their results and output. It also shows
you the files that were processed during each invocation.

Figure 36. Action History window

 Chapter 4. The Project Monitor 87

The Project Monitor

Select an action and then select the Execute push button to rerun the action. To view
the output of the invocation, select the View push button. WorkFrame saves the
contents of the Monitor after the action has run so that you can review the results of
each invocation.

Note: You cannot edit a file from the History window by double-clicking on an
error line.

Editor Interaction with the Monitor
Once an action has finished running in the Monitor , you can double click on an error
message to invoke the default editor on the source file where the error occurred. The
editor appears with the source file loaded. If your default editor is the VisualAge
Editor, the error text is inserted below the relevant line in the source, and highlighted
in a different color. If your default editor is the Enhanced Editor (EPM), all the lines
that contain an error are highlighted, and the cursor is positioned at the first error
line. Other WorkFrame-enabled editors may behave differently.See “Default
Actions” on page 71 for more information about how to determine and set your
default editor.

You can also use the Errors button on the Monitor toolbar to open an edit
session on a selected error. If no error is selected, the editor is opened for the first
error in the current action invocation.

If your default editor is not WorkFrame-enabled, the editor will appear with the
source file loaded.

Note: Double-clicking on error messages from certain actions, like Link, will not
invoke the editor if the error occurs in an file that is not editable, such as an
object file.

As you double-click on other error messages in the Monitor , the editor updates itself
by scrolling to the position in the source file where the error occurred. Both the
VisualAge C++ Editor and EPM have controls that let you move to the next or
previous error in the source file, and get help on the error message. For more
information about the VisualAge C++ Editor, refer to the part about the VisualAge
Editor called “Editing Files” in the IBM VisualAge C++ User's Guide. Information on
EPM is available from its online help.

If you are using EPM Version 6.0, you can have EPM use an existing editor session
when you double-click on an error in the Monitor . Change the Edit::EPM action
options to include the/R option.

88 IBM VisualAge�C++ for OS/2 User's Guide

The Project Monitor

 Monitor Notes
Here are some important facts about the Monitor .

 Limitations
1. Double-clicking on an error line in the Monitor may not work for a Make action

that runs on a hand-written make file or on an edited WorkFrame-generated make
file. The Monitor parses the Make output to determine which action reported the
error. It relies on the make file to produce a specific output format so that the
errors can be parsed successfully.

2. Actions that run in a DOS session will always have a return code of zero, even if
the action did not complete successfully.

3. Actions that run in a DOS session cannot have more than 128 characters in the
argument string.

 Troubleshooting
If double-clicking on an error in the monitor fails to invoke your default editor, try
the following:

1. A previous DDE session between the Monitor and the editor may still be active,
and must be terminated.

In the VisualAge Editor, select Delete messages from the Action menu to delete
the messages and reinitialize the edit session.

In the version of EPM that ships with OS/2 (Version 5.52), you must end the
current edit session on the source file before restarting the action. In Version 6.0
of the EPM compiler, you can select End DDE session from the Compiler
pull-down.

2. Check whether the error message outputs an unqualified source-file name. If the
full path of the source file is not present, the editor may be unable to find it if it
is not in the project's working directory.

3. Ensure that the Send errors to the monitor check box is selected in the editor's
options.

To open the editor's options dialog, open the project's Tools setup window, and
select File options → Change from the editor's pop-up menu.

 Chapter 4. The Project Monitor 89

The Project Monitor

4. If the action that emitted the error uses the default Actions Support DLL, ensure
that the action's Error template correctly describes the error format. You
specify the Error template in the action's options dialog. See “Substitution
Variables” on page 69 for more information on how to use substitution variables
to specify an error template.

If the action uses its own customized Actions Support DLL, the error template is
already built in.

90 IBM VisualAge�C++ for OS/2 User's Guide

Building Your Target

 5 Building Your Target

This chapter introduces you to two very useful WorkFrame utilities: Build and
MakeMake. The Build utility dynamically builds your project's target and manages
your make file for you. MakeMake is WorkFrame's make file creation utility.

Build and Make
A Build action and a Make action are very similar. Both are project-scoped actions
used to build the target of a project. There are, however, very important differences
between the two:

Make
The Make action runs a make utility, like NMAKE, against an existing make
file. The make file is typically a project part that was generated by the
WorkFrame make file generation utility, MakeMake, or written by hand. A
make file is a static object that reflects the project settings at the time the make
file was generated. Whenever changes are made to the project settings, such as
the action options, you must update or regenerate the make file to reflect the
most current project settings.

Make files are useful when you want to package the source files for
distribution, and when you want to build the target in a constant and predictable
manner. A project may contain multiple make files to build the same target in
some variation, for debugging or profiling, and optimization, for example.
However the project recognizes only one make file as the object of a
project-scoped Make action. A file-scoped Make action can be invoked on any
make file in the project.

Build
A Build action runs the WorkFrame Build utility, which also uses a make file
and make utility to build the project target. However, the Build utility can
dynamically generate the make file and dependencies file each time a Build is
initiated. Therefore, if the project settings change, the build values are
implicitly updated. You don't have to do anything to update the make file
beyond changing the project settings.

The build utility also manages dependencies between projects in a project
hierarchy. It can build the projects lowest in the hierarchy before building the
ones higher up. You can initiate a build anywhere within a project hierarchy.

 Copyright IBM Corp. 1992, 1995 91

Building Your Target

The Build utility also provides two additional conveniences: it can lock projects
to prevent concurrent builds from colliding, and validate that the build target is
not in use before the build is started.

The Build Utility
The WorkFrame Build utility eliminates the need for explicitly generating and
maintaining make files. It uses the MakeMake utility to generate a new make file
each time a Build is initiated. You can also set Build options to have the Build
utility build all targets, even if they are not out of date with respect to their dependent
files, or to effectively perform a Make action by only building the out-of-date files.

See “Setting Build Options” on page 93 for more information on how to set up a
build action for a project.

 Build Prerequisites
The Build utility relies on a well-defined project setup to correctly generate the build
rules and dependency information for your project:

¹ The project dependencies must be expressed within the project hierarchy.
Follow the guidelines in “Organizing Projects” on page 38.

¹ Correct Build options, especially the build actions, must be set as described in
“Setting Build Options” on page 93 .

¹ The actions must have the source and target types set up correctly.See
“Action Settings” on page 49 for more information on how to set up actions.

¹ The Actions Support DLLs associated with each action involved in the Build
must provide a correct list of dependencies to the MakeMake utility.

Note: The VisualAge C++ actions are already configured correctly for use in your
builds. If you use only the VisualAge C++ actions in your builds, you only
need to concern yourself with the first two prerequisites.

You start a build action on your project by selecting Build from the project's pop-up
menu or toolbar.

92 IBM VisualAge�C++ for OS/2 User's Guide

Building Your Target

Setting Build Options
You set Build options for a project the same way you set options for any other action.
Open the project's Tools setup and then select Project options from the Build
action's pop-up menu. The Build options notebook has the following pages:

 ¹ Actions
 ¹ Make
 ¹ Project
 ¹ Display

Build Options - Actions Page

Figure 37. Build options - Actions page

The most important information needed to build a project's target is the set of actions
needed to build it. You select these actions from the Actions page of the Build
options notebook.

The Actions list box contains a list of file-scoped actions eligible for participation in
a build. These actions have both source and target types specified in their settings.
The Build utility attempts to formulate the build rules for your project by examining
the source files and the source and target types of file-scoped actions in the project.

 Chapter 5. Building Your Target 93

Building Your Target

You can select the build actions from the Actions list box on this page, or you can
select the MakeMake button to invoke the MakeMake utility and select actions, and
perhaps explicitly create a make file, from there. Where you select the Build actions
depends on:

¹ Whether you want to have descendant projects use the same set of Build actions.
If you do, you will need to:

1. Select the Build actions from the Actions list box on this page.
2. Select the Pass Build settings to child projects on the Projects page.
3. In the Build options for the descendant projects select the Use build settings

from parent project in the Project page (this is the default).

The Build actions you select in the Actions list box apply to all the source files
in the project. If you only want the Build actions to apply to some of the source
files in the project, you must select the Build actions and applicable source files
from MakeMake.

¹ Whether you want to explicitly select source files to which the Build actions
should apply. If you do, you will need to select the Build actions from
MakeMake. Descendant projects cannot use the current project's Build actions if
they are specified from MakeMake.

MakeMake saves the actions from your last successful make file generation in the
extended attributes of the generated make file. If you already have a make file
generated by MakeMake, you can use the previously saved actions by deselecting
any actions selected in the Actions list box.

Note: If any actions in the Actions list box are selected, those actions are used
for the Build, even if Build actions were previously set from MakeMake.

94 IBM VisualAge�C++ for OS/2 User's Guide

Building Your Target

Build Options - Make Page

Figure 38. Build options - Make page

The options in the Make page relate to the make utility, and how the make file is
managed and maintained.

Make processing options
Select whether or not the make file and separate dependency file are to be
generated before each build. Generating these files before each build guarantees
that the make file used to build the project target is up to date with the latest
project and action settings.

Generate a make file
Select this option if you want the make file generated before each build.
If you do not select this option, the existing make file is used.

Generate a dependency file
Select this option to create a separate dependencies file before every
build. If you select the Generate a make File option without selecting
this option, then the dependencies are stored with the make file.

Dependency file extension
Enter the file name extension for the dependency file, if one is to be
generated. The default is .DEP.

 Chapter 5. Building Your Target 95

Building Your Target

Selecting both of the Generate a make file and Generate a dependency file
options frees you from having to maintain the make and dependency files. If
you do not select either of the options, the make file and dependency file are
generated once and then never updated after that. You can then update the
make file and dependency file manually by running MakeMake.

Make utility
Use these fields to identify the make utility and options you want to use to
build the target.

Make file generator
The make file generator is a script used by MakeMake to generate the
make file in a format understood by the make utility. (See
“Compatibility with Make Utilities” on page 108 for more information
about make file generator scripts and how they can be used to generate
make files that are compatible with any make utility.) The default script
is IWFMMGEN, supplied by WorkFrame. This script enables MakeMake to
generate make files with relative path names that are compatible with the
NMAKE make utility included with VisualAge C++.

Make command
This field contains the command line to execute the make utility,
including the required options. The default is to use the NMAKE utility
from the IBM Developer's Toolkit with the command lineNMAKE /f %m,
which invokes the NMAKE utility on the project's designated make file.

See “Substitution Variables” on page 69 for a table of valid
WorkFrame substitution variables.

If you need a command run over the entire project hierarchy, you can specify
any command in the Make command field, build-oriented or not. You should
define a separate Build action for this. Copy an existing Build action by
highlighting it, and then selecting the Add button on the toolbar.

96 IBM VisualAge�C++ for OS/2 User's Guide

Building Your Target

Build Options - Project Page

Figure 39. Build options - Project page

The options on the Project page are only relevant if the project is part of a project
hierarchy. See “Organizing Projects” on page 38 for more information on how to
organize projects into hierarchies to establish dependency relationships between
projects.

 Chapter 5. Building Your Target 97

Building Your Target

Use Build settings from parent project
Select this option to assume the Build settings from the parent project, if one
exists. This feature enables a set of build actions to be specified at the root
project level and have them be used by the root project and all its descendant
projects, whether or not build actions have been configured for the subprojects.
If the set of build actions for a descendant project needs to be different from
those of its parent, you should explicitly set the build actions for the descendant
project.

If the Build utility detects that a build action selected in the parent does not
apply to the descendant project, or that the action does not exist in this project,
it ignores the action when it formulates the build rules for the current project.
If it cannot formulate the build rules from the build actions assumed from the
parent project, the build will fail.

The build utility always uses the action options from the current project to build
the target unless it has the Use Build settings from parent project setting
selected.

Pass Build settings to subprojects
Select this option to allow any nested projects to assume this project's Build
settings. If you do not select this option, and the subprojects are set to use the
Build settings from their parent, they will assume the Build settings from this
project's parent instead, if one exists. If this project is at the root of a project
hierarchy, its subprojects must define Build settings of their own or their builds
will fail.

Build any subprojects first
Select this option to have the Build utility build any subprojects before building
this project's target. Select this option if your project has dependencies on the
targets of the projects it nests.

Project hierarchies are built using a depth first search throughout the project
tree. Any projects at the same level are built in an unspecified order. No
dependencies should exist between projects on the same level in the project
hierarchy. See “Organizing Projects” on page 38 for more information on
project hierarchies.

98 IBM VisualAge�C++ for OS/2 User's Guide

Building Your Target

Lock the project as it is built
Select this option to have the build utility lock the project's target as it is being
built. This ensures that the build will not fail because another process has
gained access to the project's target while it is being built. For example, if the
target program is running when the Build utility is trying to build it, the build
will fail because the target file is locked.

Ensure the project target is not locked
Select this option to have the build utility check if the target can be accessed
before starting the build. If the target is in use, the build will not start.

Build Options - Display Page

Figure 40. Build options - Display page

Use the display page to set options for prompts and windows to be displayed during
the build.

 Chapter 5. Building Your Target 99

Building Your Target

Prompt if errors are detected during build
Select this option to have the build utility display a message box to report an
error. This is the default setting. If you do not select this option, any errors
are written to standard out (viewable from the project monitor).

Display MakeMake window during build
Select this option if you want the build utility to display the MakeMake
window during the build so that you can generate the make file explicitly
before the build is run. The default is not to display the MakeMake window.

You will only need to select this option if all of the following are true:

¹ You selected the option to generate a make file as part of the build (Make
page).

¹ Your build actions were selected through MakeMake (that is, no build
actions were selected from the Actions page).

¹ You think that the way the make file is generated will change often
between builds. For example, if you add another C++ file, you might want
to add it to the source files selected in the Make Make window. (See
“Generating Make Files” on page 104 for more information about the
MakeMake window.) If you select your build actions from the Actions
page, on the other hand, all applicable source files are processed
automatically.

100 IBM VisualAge�C++ for OS/2 User's Guide

Building Your Target

Running Build from the Command Line
You can also run the Build utility from the command line. To invoke the Build
utility from the command line, you need to specify the name of the project whose
target to build, along with any other options you might need.

Command Line Notes:

¹ When you run the Build utility from the command line, specifying only
the project name, the default Build action for the project is launched with
the options that were defined for the action. (See “Default Actions” on
page 71 for information about the default action within a class of
actions.) You only need to specify the optional command-line parameters
if you want to override the options already set for the action.

¹ If you do not specify any build actions on the command line, and no
Build actions were set in the Build action options, the Build utility uses
the Build actions from the last generated make file. Failing that, it
displays the MakeMake window so that you can select the build actions
from there.

The general syntax of the Build utility is:

iwfbuild /PROJ[ECT] <project> [options]

Required Options:

/PROJ[ECT] <project>
The name of the project to build. You can name the project with its path name
(for example, /PROJ D:\DESKTOP\MY_PROJECT) or its persistent object identifier
(for example, /PROJ <MY_PROJECT>).

 Chapter 5. Building Your Target 101

Building Your Target

Make file generation options:

/A[CTION] <action>
An action to be used in building the project's target, specified in the form
<action class>::<action name>. You can repeat this option as many times
as there are build actions to specify. If no actions are specified, the actions and
source files from the last successful make file creation are used.

/GENM[AKEFILE]
Generate a make file as part of the build. This is the default.

/NOGENM[AKEFILE]
Do not generate a make file as part of the build; use the existing make file.

/GEND[EPENDENCY] [<extension>]
Generate the dependency information in a separate file. You can also specify
the dependency file file name extension. The generated dependency file will
have the same name as the make file, with a default extension of .DEP.

/GENS[CRIPT] <script>
The make file generation script to use. The default,IWFMMGEN.CMD, produces
make files compatible with the NMAKE utility.

Make invocation options:

/M[AKE] <invocation command>
The make utility to run and its associated parameters. WorkFrame substitution
variables can be used in the parameter string. See “Substitution Variables”
on page 69 for a list of substitution variables you can use.

/GENF[ORCE]
Create the make file even if MakeMake detects that it has been user-modified.

/NOGENF[ORCE]
Prompt to determine whether or not to continue creating the make file if
MakeMake detects that it has been user-modified. This is the default.

102 IBM VisualAge�C++ for OS/2 User's Guide

Building Your Target

Project options:

/B[UILDSUBPROJECTS]
Build any descendant projects first. This is the default.

/NOB[UILDSUBPROJECTS]
Do not build any descendant projects.

/U[SEPARENTOPTIONS]
Use the build settings from the parent project, if one exists. This is the default.

/NOU[SEPARENTOPTIONS]
Do not use build settings from the parent project. Use this project's own build
settings.

/PA[SSOPTIONSTOSUBPROJECTS]
Pass build settings to any subprojects.

/NOP[ASSOPTIONSTOSUBPROJECTS]
Do not pass build settings to subprojects. Subprojects should obtain their
settings from this project's parent instead. If the project has no parent, and its
subprojects have no Build settings defined, the build will fail on the
subprojects.

Miscellaneous options:

/C[HECKTARGETS]
Check if the target can be accessed before starting the build. If the target is
locked, the build will not start.

/P[ROMPT]
Display a message box to report an error. This is the default.

/NOP[ROMPT]
Do not display a message box to report an error. Write the messages to
standard out.

/OPTIONC[LASS]
The name of the build action class to invoke. The default isBuild.

/OPTIONN[AME]
The name of the Build action to invoke. The default is to invoke the default
action of the project's build class.

 Chapter 5. Building Your Target 103

Building Your Target

The MakeMake Utility
Use the MakeMake utility to generate make files for your project. It can generate a
make file with the dependencies built in, or it can generate a separate dependencies
file.

MakeMake creates a make file for your project by examining the actions and source
files associated with your project and then trying to determine the correct sequence of
commands to build the project's target. Typically, in a hierarchy of projects, one
make file is generated per project. The Build utility handles the dependencies
between projects and determines the order in which each project's make file should be
processed to build the target of the current-level project.

Generating Make Files
The MakeMake window has two list boxes:

Actions
All the file-scoped actions in your project that have both source and target
types specified in their settings are listed here. Select the actions necessary for
building the target of your project. For example, if your project builds a simple
DLL, you might select the Compile::C/C++ Compiler and Link::Linker actions
from the Actions list.

Source Files
All the project files or parts that match the source types for the selected actions
are listed here. Select the source files that are to be processed by the make file.

For example, if you have a project that builds a C DLL with the
Compile::C/C++ Compiler and Link::Linker actions, select the .C source files.
You do not have to select header files because the Compile::C/C++ Compiler
Actions Support DLL, CPPICC30, parses C and C++ source files to detect any
dependencies on included header files.

104 IBM VisualAge�C++ for OS/2 User's Guide

Building Your Target

Figure 41. MakeMake window

When you have selected the actions and source files to build your target with, select
the Start push button to start the make file generation. After a short while, the
MakeMake Results window appears. It displays the generated make file. The targets
that are produced by each action in the make appear on a list box on the left side of
the Results window. You can edit the make file from this window. If a separate
dependency file was generated, the make file and dependency file are displayed in a
notebook format. Use the notebook tabs to view the dependency file.

 Chapter 5. Building Your Target 105

Building Your Target

Figure 42. MakeMake Results window

Note: The MakeMake Results window will not appear if the Always show make
file option on the MakeMake Options menu is not selected. In that case, you
can display the Results window to view the generated make file by selecting
the Change push button from the MakeMake window.

To save the make file, close the make file Results window and return to the main
MakeMake window. Press F4 to save the make file and exit MakeMake.

MakeMake generates make files using build rules determined by examining the
selected actions and source files. It does not use information from any existing make
files in your project to generate a new make file. If you have a make file that you
want to keep, rename it so that it is not overwritten by the newly generated make file.

106 IBM VisualAge�C++ for OS/2 User's Guide

Building Your Target

 Limitations
The MakeMake utility creates make files that build a single target by invoking a
series of actions. Since projects are typically organized as a hierarchies of projects,
with each project in the hierarchy representing a single target, MakeMake works very
well with WorkFrame projects. However, there are some limitations that you should
be aware of.

Note: These limitations would only concern you if you need to:

¹ Work with projects that use multiple PAMs

¹ Build with actions that use Actions Support DLLs not provided with
VisualAge C++.

¹ Use actions that specify types that are not provided with VisualAge C++

Here are four important MakeMake limitations:

¹ The source and target types of each action involved in the make must be
specified correctly so that MakeMake can infer the order in which the actions are
to be executed.

¹ The types specified in each action's settings for Source types and Target types
must be of the type classes "FileMask", "Logical OR", and "NOT in Logical OR"
or MakeMake will ignore the type. (See “Type Classes” on page 77 for
information about type classes).

All the types included with VisualAge C++ are of the allowed classes,
"FileMask", "Logical OR", and "NOT in Logical OR". The other type classes
can be used to specify the source types of actions that are not used in builds
(such as Edit), and for the project Parts filter .

¹ MakeMake only works with project parts that are accessed by the basic PAM,
IWFBPAM and other PAMs derived from it.

¹ MakeMake calls application programming interfaces (APIs) in the Actions
Support DLLs of every action involved in the make to determine the list of
project parts or files the source is dependent on. (See “Action Settings -
Support Page” on page 58 for more information about Actions Support DLLs).
For example, if the Link::Linker action is involved in a build, MakeMake calls its
Actions Support DLL to determine the list of Link dependencies, which might
include one or more .OBJ files and a .MAP file. The Actions Support DLL for
a Compile action returns a list of dependencies that includes the header files that
were included by the C or C++ source.

The accuracy of the dependencies and targets list is dependent upon the Actions
Support DLL for each action, not the MakeMake utility. If MakeMake fails to
generate the correct list of dependencies or targets for an action external to
VisualAge C++, contact the supplier of the Actions Support DLL.

 Chapter 5. Building Your Target 107

Building Your Target

Compatibility with Make Utilities
The make files produced by MakeMake are, by default, compatible with NMAKE, the
IBM Developer's Toolkit make utility. MakeMake can also produce make files that
are compatible with other make utilities if the make utility, or some other third party,
provides a generation script that transforms the intermediate make file produced by
MakeMake to its own format. WorkFrame provides a default generation script, called
IWFMMGEN.CMD, that produces make files compatible with the NMAKE utility.

The intermediate make file produced by MakeMake has the same name as the final
make file, with a .$mm file name extension.

Vendors of other make utilities can supply their own script to enable MakeMake to
generate make files in their required format. For more information on how to write a
make file generation script for MakeMake, obtain the WorkFrame Version 3.0
Integration Kit1.

Using MakeMake from the Command Line
The MakeMake utility can be invoked from the command line as well as from the
project pop-up menu. To invoke MakeMake from the command line, optionally
specify the name of the project to process, along with any other options you might
want. If you do not specify a project name on the command line, the MakeMake
window appears empty. You can load a project from the MakeMake window by
selecting Open project from the File menu.

The general syntax of the MakeMake utility is:

iwfmmake [options]

The options are:

/PROJ[ECT] <project> The name of the project to be processed. You can name the
project with its path name (for example, /PROJ D:\DESKTOP\MY_PROJECT) or
its persistent object ID (for example,/PROJ <MY_PROJECT>).

1

To find out when and where this kit will be available, send a note to workframe@vnet.ibm.com, or call the VisualAge C++ automated help line
1-800-992-4777. Availability will also be announced on various networks where VisualAge C++ Service and Support is present.

108 IBM VisualAge�C++ for OS/2 User's Guide

Building Your Target

Make file generation options:

/A[CTION] <action>
An action to be used in building the project's target, specified in the form
<action class>::<action name>. You can repeat this option as many times
as there are make actions to specify. If no actions are specified, the actions
from the project's default Build action are used. There are no Build actions
specified, the actions and source files from the last successful make file creation
are used.

/GEND[EPENDENCY] [<extension>]
Generate the dependency information in a separate file. You can also specify
the dependency file's file name extension. The generated dependency file will
have the same name as the make file, with a default extension of .DEP.

/GENS[CRIPT] <script>
The make file generation script to use. The default,IWFMMGEN.CMD, produces
make files compatible with the NMAKE utility.

/GENF[ORCE]
Create the make file even if MakeMake detects that it has been user-modified.

/NOGENF[ORCE]
Prompt to determine whether or not to continue creating the make file if
MakeMake detects that it has been user-modified. This is the default.

Miscellaneous options:

/P[ROMPT]
Display a message box to report an error. This is the default. If you also
specify the /NODISPLAY option, prompts that require a response are displayed in
an error box (these only occur in exceptional situations). Errors are sent to
standard out.

/NOP[ROMPT]
Do not display a message box to report an error. Send messages to standard
out. This option is only valid if /NODISPLAY is also specified.

/D[ISPLAY]
Display the MakeMake window. This is the default.

/NOD[ISPLAY]
Do not display the MakeMake window (execute the make file generation in
batch mode)./NOPROMPT implies /NODISPLAY.

 Chapter 5. Building Your Target 109

Building Your Target

The MakeMake utility fails and returns these error codes under the following
conditions:

88665 The access method (PAM) failed.
88666 One or more actions are not related to any other actions.
88667 No files that match the source types of <action> were found.
88668 An action creates a file not listed in the action's list of target types.
88669 An action's support DLL did not return any source files to be processed.
88671 The <action> action does not produce any files.
88672 An action returned an invalid command line string.
88673 Help could not be initialized.
88675 No valid actions were defined.
88682 A file was selected as a source file for the <action> action, but is also listed

as a dependency for the <action> action. You will be prompted whether or
not to continue.

88683 A loop was detected in the list of actions to process. You will be prompted
whether or not to continue.

88684 Error loading project files.
88685 Bad parameter.
88686 Error allocating memory.
88687 Project load cancelled by user.
88689 Unable to invoke the specified make file generation script.
88690 Unable to write file <file> to disk.
88691 The make file has been modified since the last time it was generated. You

will be prompted whether or not to continue generating the make file.
88692 The project has no source directories specified, and thus has no source files.

Note: MakeMake returns error codes only if it was invoked with the/NOP or /NOD
options.

110 IBM VisualAge�C++ for OS/2 User's Guide

Project Smarts

 6 Project Smarts

Project Smarts is a powerful tool to help you quickly get started writing
VisualAge C++ applications. It is a catalog of skeleton applications you can use as a
base with which to write your own applications.

To use Project Smarts, find the Project Smarts icon in the VisualAge C++ folder and
double-click on it to open the VisualAge C++ Project Smarts catalog. It contains
projects of common applications including:

¹ UI Class Library Application
¹ Presentation Manager Application
¹ Workplace Shell Application

 ¹ Direct-to-SOM Application
¹ Data Access Application
¹ Visual Builder Application
¹ Resource Dynamic Link Library
¹ C++ Dynamic Link Library
¹ C Dynamic Link Library
¹ IPF Context-Sensitive Help

 ¹ IPF Document

When you instantiate one of these Project Smarts applications, a fully-configured,
development-ready project is created on your desktop. All the actions, options, and
environment variables you need to develop a similar application are preconfigured for
you. Each project is created with template source files to help you get started quickly
on the real work, without having to set up the basics every time. Project Smarts
applications are skeleton programs that you can actually build and run.

A Project Smarts application is distinct from a sample project; it does not teach you
programming techniques or concepts. The code provides a starting point for you to
build on when developing your own applications from the code templates.

The VisualAge C++ Samples folder is another resource for creating fully-configured
projects. You could create a project and have it inherit from a similar sample project
so that your new project uses the sample project's Tools setup. (See “Project
Settings - Inheritance Page” on page 29 for more information on project inheritance.)

 Copyright IBM Corp. 1992, 1995 111

Project Smarts

Creating Projects from Project Smarts
Project Smarts is one of many ways you can create a WorkFrame project. You create
projects from Project Smarts when you want to develop an application similar to the
application skeletons in the VisualAge C++ Project Smarts catalog.

To open the VisualAge C++ Project Smarts catalog, double-click on its icon. The
Project list box in the catalog contains a list of VisualAge C++ applications as
shown in Figure 43. As you select an project title, the Description field is updated
with a short description of it.

Figure 43. VisualAge C++ Project Smarts catalog

To create one of the Project Smarts projects, select its name and then click on the
Create push button. Because the creation is controlled by a REXX script that is
customized for each project template, the installation process may differ slightly
between projects. In general, a Project Smarts console window appears where you
can see the installation progressing. During the installation, a Location window

112 IBM VisualAge�C++ for OS/2 User's Guide

Project Smarts

appears asking you for the directory to install the source files in, and the folder to
create the project in.

In most cases, a Variable Settings window, as shown in Figure 44, will also appear.
Use it to customize the generated project by setting values for certain substitution
variables, such as the source-file prolog text, current date, and user name. As you
select each variable name in the Variable list box, the Variable description list box
is updated with a short description about the variable. Verify the defaults and set
values of your own by editing the Variable setting field. When you have verified all
the variable settings, select the OK push button to continue with the installation.

The values that you set are substituted when the application is installed. They are
also saved for the next time you install the same Project Smarts application.

Figure 44. Project Smarts Variable Settings window

 Chapter 6. Project Smarts113

Project Smarts

When the installation is complete, the created project appears on your desktop or in
the folder you specified. You are now ready to begin working on developing the
specifics of your application.

Adding Your Own Project Smarts Application
If you have code skeletons of your own, you can add them to the VisualAge C++
Project Smarts catalog, or you can create your own catalog. You can create your
own Project Smarts catalog by dragging the Project Smarts template from the
Templates folder on your desktop, or by selecting Create another from the pop-up
menu of the VisualAge C++ Project Smarts catalog. REXX utilities for creating
Project Smarts catalogs are also available, and are described in “Writing An
Installation Script” on page 118 .

You will need to specify a REXX installation script for every Project Smarts
application you add. You can use the default install script, IWFSMART.CMD, or
write your own customized script. Project Smarts REXX programming interfaces are
available to make writing the script an easy task. They provide the mechanisms for
displaying and updating the Project Smarts installation console, as well as Variable
Settings and Project Location dialogs. Refer to “Writing An Installation Script”
on page 118 for instructions on how to use the Project Smarts utilities to write your
own customized script.

To add your own Project Smarts application, open the Settings notebook of the
Project Smarts catalog. The Catalog page shows a list of Project Smarts projects.

114 IBM VisualAge�C++ for OS/2 User's Guide

Project Smarts

Figure 45. VisualAge C++ Project SmartsSettingsnotebook

Select the Add... push button. The Project Smarts Catalog Entry window appears
where you can enter all the information for your new application. The Catalog
Entry window is shown in Figure 46 on page 116.

An easy way to create a Project Smarts application from an existing project or folder
is to drag the project or folder into the Project Smarts catalog. When you drop it, the
Catalog entry window is displayed. The fields are updated with information from
the dropped object.

 Chapter 6. Project Smarts115

Project Smarts

Figure 46. VisualAge C++ Project Smarts Catalog Entry window

Fill in the fields in the Catalog Entry window to describe your new Project Smarts
application:

Project
Enter the project's title. Your application is listed under this title in the catalog.

Description
Enter a description of your application. This description also appears in the
catalog.

Source
Enter the location of the source file skeletons for your application. The
location can be a directory or an existing WorkFrame project. The install script
copies the source from this location.

Your application's source files can contain substitution variables whose default
values are set by your installation script (the default installation script assumes
that there are no substitution variables). Substitution variables imbedded in the
source files must be of the form %VARIABLE%. A REXX Project Smarts utility
substitutes the variables in the source files with their specified values in the
script when the files are copied over to the new location during the install.

116 IBM VisualAge�C++ for OS/2 User's Guide

Project Smarts

Script
Enter the name of the Project Smarts REXX install script that creates your
Project Smarts application. You can enter a fully qualified path name or a
command file found on the PATH.

You can specify your own customized script, or use the default script,
IWFSMART.CMD. See “Writing An Installation Script” on page 118 for
more information on how to write a custom installation script.

Parameters
List any parameters that your install script may require. Project Smarts will
pass these parameters to your script when it invokes it during the installation.
Five substitution variables are also available to be passed as parameters to your
script:

%project%
The name of the project, as specified in the Project field of the
Catalog Entry window when the Project Smarts application was
added to the catalog. Your install script can use this name as the
default name of the project it creates. See “Project Creation
Utilities” on page 129 for more information on project creation
utilities.

%location%
The directory where the base source files are located, as specified in
the Source field of the Catalog Entry window. Your install script
can use this information to copy the files from the source directory, or
do some other file processing. See “File Substitution Utility” on
page 129 for more information on file copying and substitution
utilities

%description%
The description of the application, as specified in the Description
field of the Catalog Entry window. You can use this variable in the
prolog of the source files.

%catalog%
The fully-qualified path name of the Project Smarts catalog. The path
name of the catalog is a required parameter for the IwfSaveVariables
and IwfRestoreVariables utilities because the variable settings are
stored with the Project Smarts catalog. See “Variable Settings
Utilities” on page 127 for more information about the Variable
Settings utilities.

%script%
The name of the installation script, as specified in the Script field of
the Catalog Entry window.

 Chapter 6. Project Smarts117

Project Smarts

Note: If you specified the default Project Smarts installation script,
IWFSMART.CMD, on the Script field, you must enter these required
parameters:

 %project% %location%

When you click on the OK push button, your new Project Smarts application is added
to the catalog.

Writing An Installation Script
Every Project Smarts application needs an associated installation script. Because the
install script is a REXX program, you can easily write highly customized scripts to
install any kind of application. As an alternative, you can use the generic, default
Project Smarts script IWFSMART.CMD, to install your application. No customization
is done if you use the default install script to install your Project Smarts application.
This script will ask for the following information during the installation:

Project
The name to give the created project.

Directory
The directory where the source files are to be copied to.

Folder
The Workplace Shell folder where the project is to be created.

The default install script then creates a project based on this information.

If you created your Project Smarts application by dragging a WorkFrame project into
the Project Smarts catalog, the default script creates a project from the source files in
the project source directories. The created project inherits its environment from the
VisualAge C++ Default Project. See “The Default Project” on page 36 for more
information about default projects.

The full power of REXX is available to customize your install script any way you
want, including the ability to:

¹ Display a window to gather information from the end user. Any information an
install script needs from the end user for customization or special processing can
be obtained using substitution variables. Project Smarts programming interfaces
provide a generic window, called Variable Settings, where end-users can set the
values for the variables during the installation. See “File Substitution Utility”
on page 129 for more information on file copying and substitution utilities, and
“Variable Settings Utilities” on page 127 for more information on the Variable
Settings window utilities.

118 IBM VisualAge�C++ for OS/2 User's Guide

Project Smarts

¹ Manipulate the contents of the source files in different ways, such as changing
titles, removing or adding functionality, depending on the preferences of the end
user. This can be accomplished by expressing some of the source file contents as
substitution variables.

¹ Install files based on options selected by the end user. For instance, a project
might provide a number of selectable features, like context-sensitive help and
SOM support. Files of the selected type can then be created for these features.

¹ Set up projects based on local coding standards.

By writing your own installation script, you have unlimited customization
opportunities as the application provider, and as the end-user.

The next few sections of this chapter assume a working knowledge of the REXX
command language. Refer to the OS/2 Procedures Language 2/REXX online
document to learn more about REXX. To view it, type view rexx from an OS/2
command line.

Project Smarts Installation Script Utilities
A number of Project Smarts REXX utilities are available to help you write an
installation script:

The Initialization Utilities
The Project Smarts utilities need to be initialized before they can be used. You
need to call the initialization utilities to do this.

 Project Smarts Catalog utilities
Use these utilities to create and update new Project Smarts catalogs on a system.

The Progress Console utilities
The Progress Console communicates the status of the installation process to the
end-user. It has three areas:

1. A progress indicator
2. A status area
3. A log area that shows all the status lines displayed so far.

All REXX output from REXX SAY and TRACE commands are displayed in the
console status and log areas. Interfaces that control updates to the progress
indicator are also provided.

Location dialog utility
The Location dialog queries the end-user for the title, target directory and folder
to place the created project in.

 Chapter 6. Project Smarts119

Project Smarts

Variable Settings window utilities
The end user uses this window to specify the values for any substitution variables
used by the script. It lists the variables with their associated descriptions and
default values. The end user can change the value of any variable (for example, a
%USER_NAME% variable) to customize the created project.

The script can use these variables any way it needs to, including imbedding them
in source files to customize the application, or performing further processing. The
File substitution utility transforms any imbedded substitution variables in the
source files before it copies them to the target directory.

The values the end user enters can be saved for the next time the application is
installed.

The File Substution utility
This utility copies the base files specified in the Source entry field in the Catalog
Entry window, and transforms their contents according to the variable settings
received from the Variable Settings window. This enables you to customize the
source file contents using substitution variables.

Project Creation utilities
These utilities create and set up a WorkFrame project from a set of files in a
directory, or another existing WorkFrame project. You can also copy and then
customize existing projects with these utilities.

Project Setup utilities
These utilities configure a WorkFrame project's Tools setup. You can use these
utilities to add and delete actions, environment variables, and types.

Note: Your installation script does not need to use any of these utilities. You can
choose to display your own customized windows instead. The utilities are
provided to make writing installation scripts an easy task.

 A sample installation script is shown in “Project Smarts Sample Installation
Script” on page 139.

120 IBM VisualAge�C++ for OS/2 User's Guide

Project Smarts

Initialization To use the Project Smarts utilities in your script, you first need a few statements to
initialize them:

¹ Declare a global stem variable. It is a structure that you initialize and pass to the
Project Smarts utilities:

/* Initialize - use a global stem variable. */
/* This is required to use any of the Project Smarts */
/* REXX programming interfaces. */
stem = "stem"

¹ You might want to initialize some return code constants. All the Project Smarts
REXX utilities return 0 for sucess, and 95 for cancel:

RC_OK = 0
RC_CANCEL = 95

¹ If you are using the Project Smarts Progress Console window, one of the first
things you should do in your script is call the IwfOpenConsole utility to open it.
Call it with the stem global variable:

/* Open the installation Console. */
rc = IwfOpenConsole(stem);

¹ You need to load the REXX utility functions. They are used by the Project
Smarts utilities. RexxUtil functions provide OS/2 system commands, user or text
screen input and output, and OS/2 INI file input and output. For more
information on RexxUtil functions, refer to theOS/2 Procedures Language/2
REXX document (type view rexx from an OS/2 command prompt).

/* Load the REXX utility functions. */
rc = RxFuncAdd('SysLoadFuncs', 'RexxUtil', 'SysLoadFuncs');
rc = SysLoadFuncs();

¹ The functions for all the Project Smarts utilities are loaded automatically for you
when your script is started, with the exception of the Project Setup utilities. You
must load these utilities explicitly if you intend to use them in your script.

/* Load the Project Setup functions */
rc = RxFuncAdd('IwfEnvPrfLoadFuncs','IWFPAPI','IwfRxEnvPrfLoadFuncs');
rc = IwfEnvPrfLoadFuncs();

Note: At the end of your script, issue this call to unload the Project Smarts
Project Setup utilities:

rc = IwfEnvPrfDropFuncs()

 Chapter 6. Project Smarts121

Project Smarts

¹ If your script uses one or more Project Setup utilities repeatedly, you can
optimize performance by optionally calling an initialization function before
calling any Project Setup utilities, and a deinitialization function afterwards, so
that the initialization and deinitialization processing is done only once for the
entire script. If you do not call these utilities, the initialization and
deinitialization processing is performed each time a Project Setup utility is called.

/* Initialize the Project Setup utilities */
rc = IwfInitEnvPrfAPIs();
 :
/* Calls to Project Setup utilities */
 :
/* De-initialize the Project Setup utilities */
rc = IwfTermEnvPrfAPIs();

¹ The Project Smarts catalog can pass arguments to your script. They are passed in
the order that they are listed in the Catalog Entry window. For example, if your
application expects three arguments, then you need to extract them:

/* Extract the passed arguments (substitution variables).
 * This script expects 3 substitution variables:
 * Project name, description, and location. You can use
 * your own internal variable names.
*/
if (Arg() <> 3) Then

call Abort("Error in parameter list.");
Parse Arg Proj,Desc,Locn;

Catalog
Utilities

Use these utilities to create and tailor your own Project Smarts catalog.

The IwfOpenCatalog, IwfCloseCatalog, and IwfUpdateCatalog utilities all return
the catalog's object handle in the stem.hCatalog variable.

 ¹ SysCreateObject

Use the RexxUtil function, SysCreateObject, to create a new Project Smarts
catalog object.

rc = SysCreateObject
(objectClass, /* Workplace Shell object class name */
title, /* The object title */
location, /* Object location e.g. <WP_DESKTOP> */
setupString, /* Project Smarts object setup string */
options); /* What to do if object exists */

122 IBM VisualAge�C++ for OS/2 User's Guide

Project Smarts

objectClass Specify 'IWFQuickStart' to create a Project Smarts catalog.

title The Project Smarts catalog title.

location The object location. You can specify this parameter as either an
object ID, as in '<WP_DESKTOP>', or a file-system path, as in
'C:\DESKTOP\MYFOLDER'.

setupString The Project Smarts catalog setup string. You can use the
following key names in your setup string:

ICONFILE The icon you want to associate with your Project
Smarts catalog. If you do not specify this key

name, the default Project Smarts icon is
used.

OBJECTID Use this key name if you want to assign a
persistent object ID to your new Project Smarts
catalog.

For example, your setup string could look like this:

stpString = 'ICONFILE=mysmarts.ico;OBJECTID=<MY_SMARTS_APPS>;'

options This parameter is optional. If you want, you can specify the
action to be taken if the object already exists. The allowed
options are:

'fail' Abort the operation.

'replace' Delete the existing object, and create a new one.

'update' Update the settings of the existing object.

rc The return code.SysCreateObject returns 1 (TRUE) if the
object was successfully created, and 0 (FALSE) if the object
was not created.

 Chapter 6. Project Smarts123

Project Smarts

For example, the following statement creates a Project Smarts catalog called My
Applications on the Desktop. The object uses the default icon, and is assigned
the object ID<QS_MYAPPS>:

rc = SysCreateObject ('IWFQuickStart',
'My Project Smarts Applications',

 '<WP_DESKTOP>',
 'OBJECTID=<QS_MYAPPS>',
 'Replace');

For more information about the SysCreateObject RexxUtil utility, refer to the
OS/2 Procedures Language 2/REXXonline document (typeview rexx from an
OS/2 command line).

 ¹ IwfOpenCatalog

This utility opens the Project Smarts catalog named in the stem variable. You
must open the catalog using IwfOpenCatalog before you update it, and close it
using IwfCloseCatalog after you are finished. You can name a catalog by its
object ID, as in <CSetQSCatalog> for the VisualAge C++ Project Smarts catalog,
or by a file-system path, as inC:\Desktop\Project Smarts.

/* Initialize the stem variable with the name of the catalog to open */
stem.pszCatalog = "<MySmartsCatalog>"
rc = IwfOpenCatalog(stem);
if (rc <> 0) then

call Abort("Unable to open the Project Smarts catalog");

 ¹ IwfUpdateCatalog

This utility adds a catalog entry to the named catalog. Initialize the stem
variable to contain the description of the Project Smarts application you are
adding. The stem fields for this utility correspond to the entry fields in the
Catalog Entry window.

/* Initialize stem variable for the catalog entry to be added */
stem.pszCatalog = "<MySmartsCatalog>"
stem.pszName = "My Enterprise Application"
stem.pszDescription = "My kind of application.\nIt does everything!"

 stem.pszSourceLocation = "D:\MYAPP"
stem.pszInstallScript = "D:\MYAPP\MYSCRIPT.CMD"
stem.pszInstallParameters = "%project% %location%"

rc = IwfUpdateCatalog(stem);
if (rc <> 0) then

call Abort("Unable to update the catalog");

124 IBM VisualAge�C++ for OS/2 User's Guide

Project Smarts

 ¹ IwfCloseCatalog

Use this utility to close the catalog after you have finished making updates to it.

stem.pszCatalog = "<MySmartsCatalog>"
rc = IwfCloseCatalog(stem);
if (rc <> 0) then

call Abort("Unable to close the catalog");

Progress
Console
Utilities

These utilities open, update, and close theProgress Consolewindow. They all
return the window handle of the Progress Console window in the stem.hwndConsole
variable.

 ¹ IwfOpenConsole

This utility opens the Project Smarts Progress Console. Call it with the stem
variable.

IwfOpenConsole(stem);

 ¹ IwfCloseConsole

This utility closes the Project Smarts Progress Console. The end user can also
close the it by selecting Close from the system menu.

Call this utility by passing it the stem variable:

IwfCloseConsole(stem);

 Chapter 6. Project Smarts125

Project Smarts

 ¹ IwfUpdateConsoleProgress

Use this utility to update the console progress indicator. Set the stem variable to
a percentage figure before calling the utility:

stem.usPercent = 10 /* Set indicator to 10% completion */

rc = IwfUpdateConsoleProgress(stem);

 ¹ IwfUpdateConsoleStatus

Use this utility to update the console status area. Set the stem variable to a text
string before passing it:

stem.pszStatusText = "Initializing..." /* Set the status text */

rc = IwfUpdateConsoleProgress(stem);

¹ All SAY and TRACE output is automatically displayed in the log message area.

Location
Dialog Utility

 ¹ IwfQueryLocation

This utility displays the Location dialog that queries the location where the
project files are to be copied. Initialize the stem variable to specify the initial
values for the fields in the dialog. For example:

/* Set the default values for the Location dialog, and display it */
stem.pszTargetProject = Proj /* Title as shown in the catalog */
stem.pszTargetDirectory = "C:\TMP" /* Default location */
stem.pszTargetFolder = "Desktop" /* Create project on Desktop */
do until (rc = RC_OK)

rc = IwfQueryLocation(stem);
if (rc = RC_CANCEL) then call Cancel;
if (rc <> RC_OK) then call Abort("Error querying target information.");

end

The IwfQueryLocation utility updates its three parameters with the values the
end-user set in the Location dialog.

126 IBM VisualAge�C++ for OS/2 User's Guide

Project Smarts

Variable
Settings
Utilities

 ¹ IwfQueryVariables

This utility displays the Variable Settings window the end user uses to verify
substitution variable values. Initialize the stem variable to contain the
substitution variables and their default values before calling this utility.

For example, consider a Project Smarts application with two substitution
variables, %USER_NAME% and %COMPANY%:

stem.usVariableCount = 2 /* Only two variables */

stem.pszVariableName.1 = "%USER_NAME%" /* Variable name */
stem.pszVariableDescription.1 = "Your name" /* Description */
stem.pszVariableValue.1 = "Type your name here" /* Default value */

stem.pszVariableName.2 = "%COMPANY%"
stem.pszVariableDescription.2 = "Your company name"
stem.pszVariableValue.2 = "Type your company name here"

do until (rc = RC_OK)
rc = IwfQueryVariables(stem);
if (rc = RC_CANCEL) then call Cancel;
if (rc <> RC_OK) then call Abort("Error querying variable settings.");

end

Note that the stem variable fields have an index that corresponds with the
variable number.

You can place C escape sequences, such as the \n (newline) character, in the
description and value fields.

The new variable values set by the end-user are returned in the parameters used
by the IwfQueryVariables utility. It also returns the window handle of the
project console in the stem.hwndConsole variable.

 Chapter 6. Project Smarts127

Project Smarts

 ¹ IwfSaveVariables

Call this utility after calling IwfQueryVariables to save the current variable
settings to disk so that it is available the next time the script is run. This utility
takes the same parameters as the IwfQueryVariables utility, plus two more:

stem.pszCatalog The Project Smarts catalog path name. The variable
settings are stored with the catalog file. This path name
can be passed in a substitution variable as an argument
to the installation script. See “Adding Your Own
Project Smarts Application” on page 114 for more
information about the substitution variables you can use
to pass arguments to your installation script.

stem.pszApplication An application key name used to store the data with.
Ensure that this key name is unique, and that there is
little chance that the key name might already exist or be
reused within the catalog. The data may be corrupted
otherwise.

/* Specify the catalog and application name */
stem.pszCatalog = CatName /* Catalog name from argument */
stem.pszApplication = "myApp" /* Any application key name */

rc = IwfSaveVariables(stem);
if (rc <> RC_OK) then call Abort("Error saving variable settings.");

 ¹ IwfRestoreVariables

Call this utility just before calling IwfQueryVariables to restore the saved
settings from disk so that they are shown in the Variable Settings window as
defaults. This utility takes the same parameters as the IwfQueryVariables
utility, plus two more.

/* Variable values have already been initialized to the script defaults */
/* Now just specify the catalog and application name. */
stem.pszCatalog = 'D:\Desktop\Project Smarts' /* Project Smarts catalog */
stem.pszApplication = "myApp" /* Application key name given */

/* on last IwfSaveVariables call */

rc = IwfRestoreVariables(stem);
if (rc <> RC_OK) then call Abort("Error restoring variable settings.");

The restored variable values are returned in the variables used by the
IwfQueryVariables utility.

128 IBM VisualAge�C++ for OS/2 User's Guide

Project Smarts

File
Substitution
Utility

 ¹ IwfCopyWithSubstitution

This utility copies all the source files to the target directory (as queried by the
Location dialog), substituting any substitution variables in the source with their
set values.

Call this utility with the stem variable. Since this utility requires the same
parameters as the IwfQueryVariables utility, the variables used for the
substitution are those specified by that utility.

The parameters are the same as those returned by the IwfQueryVariables utility,
plus two more parameters returned by the IwfQueryLocation utility.

/* These parameters have already been returned by the IwfQueryLocation */
/* and IwfQueryVariables utilities: */
/* stem.pszSourceFileMask (Path or file mask to copy from) */
/* stem.pszTargetDirectory (Directory to copy to) */
/* stem.usVariableCount (Number of variables used by script) */
/* stem.pszVariableName.1 */
/* stem.pszVariableDescription.1 */
/* stem.pszVariableValue.1 */
/* : */
/* stem.pszVariableName.n (Where n is stem.usVariableCount) */
/* stem.pszVariableDescription.n */
/* stem.pszVariableValue.n */

rc = IwfCopyWithSubstitution(stem);

if (rc <> RC_OK) then call Abort("Error performing copy and substitution.");

Project
Creation
Utilities

 ¹ SysCreateObject

You can use the RexxUtil function, SysCreateObject, to create a new
WorkFrame project.

rc = SysCreateObject (objectClass, /* Workplace Shell object class name */
title, /* The object title */
location, /* Object location. e.g. <WP_DESKTOP> */
setupString, /* Project Smarts object setup string */
options); /* Action if object already exists */

objectClass Specify 'IWFProject' for a WorkFrame project.

title The project title. You may want to specify the project title that
was queried by the Location dialog. The IwfQueryLocation
utility returns this value in thestem.pszTargetProject
variable.

 Chapter 6. Project Smarts129

Project Smarts

location The object location. Specify the location obtained via the
IwfQueryLocation utility, and returned in the
stem.pszTargetFolder variable. Its location can be specified
as an object ID, as in '<WP_DESKTOP>', or as a file system path,
as in 'C:\DESKTOP\MYFOLDER'.

setupString The Project Smarts catalog setup string. You can use the
following key names in your setup string (these key names
correspond to the fields of a project's Settings notebook):

TARGETNAME The project's target file name. If you do not
specify this key name, it defaults to
'target.exe'.

MAKEFILENAME The project's make file name. If you do not
specify this key name, it defaults to
'makefile'.

RUNPARAMETERS The parameters to use when running the
project's target program.

RUNPROMPT Prompt for parameters before running the
project's target program. Specify 'TRUE' to
prompt, 'FALSE' for no prompt.

RUNMONITORED Run the project's target program in the Monitor
window. Specify 'TRUE' for yes; 'FALSE' for
no. If you do not specify this key name, the
default is not to run the target program in the
Monitor .

PAMORDER An ordered, newline-delimited list of PAMs to
use. If you do not specify this key name, the
default is the basic PAM, IWFBPAM.

130 IBM VisualAge�C++ for OS/2 User's Guide

Project Smarts

PAMLOCATION:name Where name is the name of the PAM DLL,
with no path or extension, in uppercase. If your
project uses the basic PAM, the correct name
for this key is PAMLOCATION:IWFBPAM. The
data is a list of source directories for the
project, separated by a newline character. For
example,
'C:\PROJECT\HEADERS\nC:\PROJECT\SOURCE'
You can specify the target directory obtained
via the IwfQueryLocation utility as the value
of this key name. If you specify this key
name, you must also specify the
PAMDEFAULT:name key name. If you do not
specify this key name, the default is a
subdirectory of the TMP environment variable
directory.

PAMDEFAULT:name Where name is the name of the PAM DLL,
with no path or extension, in uppercase. If your
project uses the basic PAM, then the correct
name for this key is PAMDEFAULT:IWFBPAM.
The data is the working directory path for the
project, and must be a path specified by the
PAMLOCATION:name, for example
'C:\PROJECT\SOURCE'. You must specify this
key name if you specify the
PAMLOCATION:NAME key name.

FILTER A list of types or file masks to filter the project
container. The default is no filter.

INHERITLIST The list of projects to inherit from, separated
by a newline character. Each project name can
be an file system path name, as in
'D:\Desktop\Some Project', or a persistent
object ID, in the form '<OBJECT_ID>'. The
default is not to inherit from any projects.

To add projects to any projects already in the
inheritance list of a project, you can use the
INHERITLIST+ key name instead. To remove
any inheritance already defined in a project,
specify an empty string for the value of the
INHERITLIST key name.

 Chapter 6. Project Smarts131

Project Smarts

TITLE Use this key name to specify the project's name
or title.

OBJECTID Use this key name to assign a persistent object
ID to your new project. The object ID should
be in the format<OBJECT_ID>.

MONAUTOSCROLL Set the project's Monitor to scroll
automatically while displaying output from
actions. Specify 'TRUE' for automatic
scrolling, 'FALSE' for none. The default is
'TRUE'.

MONAUTOERASE Set the project's Monitor to erase its contents
before displaying the output from an action.
Specify 'TRUE' to erase monitor contents,
'FALSE' otherwise. The default is 'TRUE'.

MONDISPLAYONSTART Set the project's Monitor to automatically
show itself when a monitored action is started.
Specify 'TRUE' to have the monitor show itself
when a monitored action is started,'FALSE'
otherwise. The default is 'TRUE'.

MONHIDEONCOMPLETION Set the project's Monitor to hide itself
on the successful completion of an action.
Specify 'TRUE' to hide the Monitor upon
successful completion, 'FALSE' otherwise. The
default is 'FALSE'.

options This optional parameter specifies the action to be taken if the
object already exists. The allowed options are:

'fail' Abort the operation.

'replace' Delete the existing object and create a new one.

'update' Update the settings of the existing object.

rc The return code.SysCreateObject returns 1 (TRUE) if the
object was successfully created, and 0 (FALSE) if the object
was not created.

132 IBM VisualAge�C++ for OS/2 User's Guide

Project Smarts

For example, the following statement creates a WorkFrame project called My
Project on the Desktop. The object uses the basic PAM, has the source directory
D:\MYSOURCE, a target, PROGRAM.EXE, a make file, PROGRAM.MAK, inherits from a
project called Base Project on the Desktop, and is assigned the object ID
<MY_PRJ>:

Str = 'PAMLOCATION:IWFBPAM=d:\mysource; ,
 PAMDEFAULT:IWFBPAM=d:\mysource; ,
 TARGETNAME=program.exe;MAKEFILENAME=program.mak; ,

USEPROJECTS=d:\desktop\base project; ,
 OBJECTID=<MY_PRJ>',

rc = SysCreateObject ('IWFProject', /* Project object class name */
'My Project', /* Project title */
'<WP_DESKTOP>', /* Create project on Desktop */
Str, /* Setup string */
'Replace'); /* Replace if exists */

 ¹ IwfCreateProjectFromFiles

A simpler alternative to SysCreateObject, this utility creates a project, and then
sets the newly created project's source directory to the directory where the files
were copied to. You can specify a directory, file mask, or project path for the
stem.pszTargetFile parameter. If a directory or file mask is specified, the utility
searches the copied files to find an executable and make file, and sets these as
the project's target and make file name. If a project is specified, the project's
target, make file, and other settings are copied to the new project.

This utility takes the same parameters as the IwfQueryLocation , plus one more:

/* These parameters were set by the IwfQueryLoction utility: */
/* stem.pszTargetProject */
/* stem.pszTargetDirectory */
/* stem.pszTargetFolder */
/* */
/* Specify the project or directory specified in the "Source" */
/* field of the Catalog Entry dialog. The "Src" variable */
/* was passed as an argument to this script. */
stem.pszTargetFile = Src;

rc = IwfCreateProjectFromFiles(stem);

 Chapter 6. Project Smarts133

Project Smarts

 ¹ CreateProjectFromProject

This utility copies an existing project, and modifies it with the values you specify
in the argument setup string. (See SysCreateObject above for the valid key
name-value pairs). The advantage of using this utility over SysCreateObject and
IwfCreateProjectFromFiles is that action options are copied, along with other
project settings. You can create a model project for your Project Smarts
application with the appropriate action options already set. Then the installation
script can use this utility to copy the model project and customize certain settings
like the project source directory, target name, and make file name.

Initialize the stem variable with the following parameters:

pszSourceProject The project to copy, specified as an object ID (of the
form <OBJECT_ID>), or a fully-qualified path name
(for example, D:\DESKTOP\My Project).

pszTargetProject The name of the project to be created (for example,
New C++ Project). You can use the project name
returned by the IwfQueryLocation utility.

pszTargetProjectSetup An optional setup string to update the newly created
project with. See the discussion on creating an object
with the SysCreateObject REXX utility for more
information about project setup strings.

pszTargetDirectory If you do not specify a setup string in the
pszTargetProjectSetup parameter, you must specify
the path name for the new project's source directory
in this parameter. If you specify a setup string, this
parameter is ignored.

pszTargetFolder The folder in which to create the new project,
specified as a fully-qualified path name, for example
D:\DESKTOP\My Projects. You can use the target
folder path returned by the IwfQueryLocation utility.

For example, these statements create a project by copying a project identified by
<MY_MODEL_PROJECT> to the Desktop, and setting it with values indicated in the
parameter setup string:

stem.pszSourceProject = '<MY_MODEL_PROJECT>' /* Can specify as a path */
stem.pszTargetProject = 'My New Project' /* New project name */
stem.pszTargetProjectSetup = 'PAMLOCATION:IWFBPAM=d:\mysource;,
 TARGETNAME=program.exe;,

MAKEFILENAME=program.mak;' /* Setup string */
stem.pszTargetDirectory = '' /* No need if using setup string */
stem.pszTargetFolder = 'D:\DESKTOP' /* Copy project to Desktop */

rc = IwfCreateProjectFromProject(stem);

134 IBM VisualAge�C++ for OS/2 User's Guide

Project Smarts

Project Setup
Utilities

 ¹ IwfAddAction

Use this utility to add an action to the project. Initialize the stem variable with
the following parameters:

pszProject The fully-qualified path name of the project to which you
want to add the action.

pszActionName The name of the action.
pszActionClass The class of the action, for example 'Edit'.
pszCommand The command to run the action, for example 'EPM.EXE'.
pszSrcMask A newline-delimited list of source types or masks for the

action, for example:

C Source\nC++ Source\nText Files'

pszTgtMask A newline-delimited list of target types or masks for the
action, if any apply. For example 'Object Files'.

pszDllName The name of the action's support DLL, for example
'IWFOPT'.

pszDllEntryName The support DLL entrypoint to use, for example 'Edit'.
pszHelpCmd The help command for the action-specific help, if any.

For example,'VIEW.EXE'.
pszHelpTopic The help topic for the action-specific help, if any. For

example, 'EPM.INF'.
pszucActionScope The scope of the action, 'P' for project-scoped,'F' for

file-scoped, and 'B' for both. The default is file-scoped.
pszucRunMode The type of session the action should run in,'F' for

full-screen, 'W' for windowed,'M' for monitored, and
'D' for default.

pszucAccelKey The accelerator key for the action, that is used with the
Ctrl+Shift keystroke, for example 'E'. Ensure that no
other action in the project uses the same accelerator key,
or you will get undefined behavior.

pszPam If the action is project-scoped, specify the name of the
PAM responsible for invoking the action, for example
'IWFBPAM'.

pszfPrjMenu Specify 'T' if you want the action added to the project
menus, or 'F' otherwise.

pszfOptMenu Specify 'T' to add the action to the project Options
pulldown menu, or 'F' otherwise.

pszfTBMenu If the action is project-scoped, specify 'T' to add the
action to the project toolbar, 'F' otherwise. Specify
'F', the default, if the action is file-scoped.

 Chapter 6. Project Smarts135

Project Smarts

There are safe defaults for all of the parameters except forpszProject,
pszActionName, pszActionClass, pszCommand, andpszSrcMask, which are
required.

The following example adds the Edit::EPM action to the project
D:\DESKTOP\MY PROJECT:

/* Add an 'Edit::EPM' action to the project D:\DESKTOP\MY PROJECT */
stem.pszProject = 'D:\DESKTOP\MY PROJECT'
stem.pszActionName = 'EPM'
stem.pszActionClass = 'Edit'
stem.pszCommand = 'EPM.EXE'
stem.pszSrcMask = 'Editable'
stem.pszTgtMask = ''
stem.pszDllName = 'IWFOPT'
stem.pszDllEntryName = 'Edit'
stem.pszHelpCmd = ''
stem.pszHelpTopic = ''
stem.pszucActionScope = 'F' /* File scoped */
stem.pszucRunMode = 'W' /* Windowed session */
stem.pszucAccelKey = 'E'
stem.pszPam = 'IWFBPAM'
stem.pszfPrjMenu = 'T' /* Add to menus */
stem.pszfOptMenu = 'T' /* Add to Options menu */
stem.pszfTBMenu = 'F' /* Do not add to project toolbar */

rc = IwfAddAction(stem)

 ¹ IwfCopyAction

Use this utility to copy an action from one project to another. Initialize the stem
variable to contain the required parameters before calling this utility.

/* Copy the Edit::EPM action from D:\DESKTOP\MODEL to
D:\DESKTOP\MY PROJECT */
stem.pszProject = 'D:\DESKTOP\MODEL' /* Source project path name */
stem.pszActionClass = 'Edit' /* Class of the action to copy */
stem.pszActionName = 'EPM' /* Name of action to copy */
stem.pszDestProject = 'D:\DESKTOP\MY PROJECT' /* Destination project */
stem.pszDestActionClass = 'Edit' /* Destination action class */
stem.pszDestActionName = 'Enhanced Editor' /* Destination action name */

rc = IwfCopyAction(stem);

136 IBM VisualAge�C++ for OS/2 User's Guide

Project Smarts

 ¹ IwfDestroyAction

Use this utility to delete an action from a project. Initialize thestem variable to
contain the required parameters before calling this utility.

/* Delete the Edit::EPM action from D:\DESKTOP\MY PROJECT */
stem.pszProject = 'D:\DESKTOP\MY PROJECT' /* Project path name */
stem.pszActionClass = 'Edit' /* Class of action to delete */
stem.pszActionName = 'EPM' /* Name of action to delete */
stem.pszDeleteAny = 'TRUE ' /* Set to 'TRUE' to delete the action */

/* in the inherited project, if the action */
/* is inherited. */

rc = IwfDestroyAction(stem)

 ¹ IwfAddVariable

Use this utility to add an environment variable to a project. Initialize the stem
variable to contain the required parameters before calling this utility.

/* Add the HELP = D:\SOURCE\HELP;%HELP% environment variable */
stem.pszProject = 'D:\DESKTOP\MY PROJECT' /* Project path name */
stem.pszName = 'HELP' /* Variable name */
stem.pszValue = 'D:\SOURCE\HELP;%HELP%' /* Variable value */

rc = IwfAddVariable(stem);

 ¹ IwfDestroyVariable

Use this utility to delete an environment variable from a project. Initialize the
stem variable to contain the required parameters before calling this utility.

/* Delete the HELP = D:\SOURCE\HELP;%HELP% environment variable */
stem.pszProject = 'D:\DESKTOP\MY PROJECT' /* Project path name */
stem.pszName = 'HELP' /* Variable name */

rc = IwfDestroyVariable(stem)

 ¹ IwfAddType

Use this utility to add a type to a project. Initialize the stem variable to contain
the required parameters before calling this utility.

/* Define the 'C Source' type in my project */
stem.pszProject = 'D:\DESKTOP\MY PROJECT' /* Project path name */
stem.pszName = 'C Source' /* Type name */
stem.pszClass = 'FileMask' /* The type's class */
stem.pszValue = '*.c\n*.h' /* The list of file masks or filters */

rc = IwfAddType(stem);

 Chapter 6. Project Smarts137

Project Smarts

 ¹ IwfDestroyType

Use this utility to delete a type from a project. Initialize the stem variable to
contain the required parameters before calling this utility.

/* Delete the 'C Source' type from my project */
stem.pszProject = 'D:\DESKTOP\MY PROJECT' /* Project path name */
stem.pszName = 'C Source' /* Variable name */

rc = IwfDestroyType(stem)

 ¹ IwfRegisterTypeClass

Use this utility to register a new type class to the project. Initialize the stem
variable to contain the required parameters before calling this utility.

/* Register a 'State' type class to my project */
stem.pszProject = 'D:\DESKTOP\MY PROJECT' /* Project path name */
stem.pszClass = 'State' /* Type class name */
stem.pszDllName = 'STATETYP' /* Type DLL name */
stem.pszEntryPoint = 'QueryState' /* Type DLL entrypoint name */

rc = IwfRegisterTypeClass(stem);

 ¹ IwfDeregisterTypeClass

Use this utility to deregister a new type class from the project. Initialize the stem
variable to contain the required parameters before calling this utility.

/* Deregister the 'State' type class from my project */
stem.pszProject = 'D:\DESKTOP\MY PROJECT' /* Project path name */
stem.pszClass = 'State' /* Type class name */

138 IBM VisualAge�C++ for OS/2 User's Guide

Project Smarts

Project Smarts Sample Installation Script
Following is the source for the default Project Smarts installation script. It uses many
of the Project Smarts install utilities. You can also look at the installation scripts for
the Project Smarts applications that come with VisualAge C++. They are located in
the \SMARTS\SCRIPTS subdirectory under your VisualAge C++ installation
directory.

/*REXX*/

/* IWFSMART.CMD Project Smarts default install script
 *
 * (c) Copyright International Business Machines Corporation 1995.
 * All rights reserved.
 *
 */

/* Initialize - use a global stem variable. This is required to use */
/* any of the Project Smarts REXX utilities. */
stem = "stem"

/* Initialize some return code constants */
RC_OK = 0
RC_CANCEL = 95

/* Open the installation console. */
rc = IwfOpenConsole(stem);

/* Load the REXX utility functions. This is required if your script */
/* uses any RexxUtil functions, such as SysCreateObject. */
rc = RxFuncAdd('SysLoadFuncs', 'RexxUtil', 'SysLoadFuncs');
rc = SysLoadFuncs();

/* Extract the passed parameters. This script expects 3 arguments: */
/* Project name, description, and location. */
if (Arg() <> 2) Then

call Abort("Error in parameter list.");
Parse Arg Proj,Src;

 Chapter 6. Project Smarts139

Project Smarts

/* Initialize the progress, status, and log via the 'stem' */
/* variable. Use the stem.pszStatusText parameter to write */
/* text to the Status area of the console. */
stem.usPercent = 10
stem.pszStatusText = "Initializing..."
rc = IwfUpdateConsoleProgress(stem);
rc = IwfUpdateConsoleStatus(stem);
SAY "Initializing the Project Smarts install..."

/* Display the Location dialog to query the target */
/* location for the install. */
stem.usPercent = 30
stem.pszStatusText = "Querying the install location..."
rc = IwfUpdateConsoleProgress(stem);
rc = IwfUpdateConsoleStatus(stem);
SAY "Enter the project name, target directory, and ,

folder for the installation."

/* Set defaults for Location dialog */
env='OS2ENVIRONMENT'; /* Get Default target dir */
Locn = VALUE('tmp',,env)'\myprj'; /* from TMP env variable */
stem.pszTargetProject = Proj
stem.pszTargetDirectory = Locn
stem.pszTargetFolder = "Desktop"
do until (rc = RC_OK)
 rc = IwfQueryLocation(stem);
 if (rc = RC_CANCEL) then call Cancel
 if (rc <> RC_OK) then call Abort("Error querying location.")
end

/* Copy the files over to the target location. */
/* IwfCopyWithSubstitution substitutes any substitution */
/* variables in the files with their current settings. */
stem.usPercent = 60
stem.pszStatusText = "Copying files."
rc = IwfUpdateConsoleProgress(stem);
rc = IwfUpdateConsoleStatus(stem);
SAY "Copying files in "Src" to "stem.pszTargetDirectory"."
stem.pszSourceFileMask = Src;
rc = IwfCopyWithSubstitution(stem);
if (rc <> RC_OK) then call Abort("Error performing copy.");

140 IBM VisualAge�C++ for OS/2 User's Guide

Project Smarts

/* Create the WorkFrame project. The IwfCreateProjectFromFiles API */
/* creates a project for the copied files. */
stem.usPercent = 90;
stem.pszStatusText = "Creating the Workframe/2 project.";
rc = IwfUpdateConsoleProgress(stem);
rc = IwfUpdateConsoleStatus(stem);
SAY "The project will be created in "stem.pszTargetFolder;
stem.pszTargetFile = Src;
rc = IwfCreateProjectFromFiles(stem)
if (rc <> RC_OK) then call Abort("Error creating project.");

/* Done! Update the progress indicator to 100%, and display a */
/* message box informing the user. */
stem.usPercent = 100
stem.pszStatusText = "Installation successful."
rc = IwfUpdateConsoleProgress(stem);
rc = IwfUpdateConsoleStatus(stem);
SAY "Done!"
SAY "The installation is complete and was successful."
rc = RxMessageBox("The WorkFrame project has been created.",,

"Done!", "OK", "Information");

/* Perform uninitialization. */
call Done(0);

/* Subroutines */
Cancel:
rcCancel = RxMessageBox("Cancel installation?", , "YesNo", "Query")
if (rcCancel = 6) Then
 call Done(8)
return

Abort:
arg abortMessage
rcAbort = RxMessageBox(abortMessage, , "OK", "Error")
call Done(16)

Done:
arg exitRc
/* Close the installation console. */
rcDone = IwfCloseConsole(stem);
exit(exitRc)

 Chapter 6. Project Smarts141

Project Smarts

142 IBM VisualAge�C++ for OS/2 User's Guide

Migrating Old Projects

 7 Migrating Old Projects

If you have projects from previous versions of the WorkFrame product, you will need
to migrate them to this version. WorkFrame Version 3.0 comes with a migration
utility that migrates WorkFrame Version 1.x and Version 2.x projects and profiles to
new WorkFrame Version 3.0 projects.

Start the WorkFrame migration utility by double-clicking on the Migrate
WorkFrame Projects icon in the VisualAge C++ Tools folder, or by typing
iwfmig2 on an OS/2 command prompt. The Project Migration window appears as
shown in Figure 47.

Figure 47. Project Migration Window

Select the Migrate V1.X Projects radio button to migrate WorkFrame Version 1.1 or
Version 1.0 projects on your system. Select Migrate V2.X Projects to migrate your
Version 2.1 and Version 2.5 projects.

 Copyright IBM Corp. 1992, 1995 143

Migrating Old Projects

Migrating Version 2.x Projects
Projects from WorkFrame Version 2.1 or Version 2.5 projects can reside anywhere in
your system. As Workplace Shell objects, they are usually stored in folders on the
Desktop. The project migration utility can scan the drives on your system to search
for Version 2.x projects. If you have projects stored on a LAN drive that you want
to migrate, ensure that you are attached to these drives before you start the project
migration tool so that they are listed in the Select drives list box.

To start the search for Version 2.x projects, select the drives you want scanned then
click on the Find projects push button. The information area at the bottom of the
window informs you of the search progress. After a few seconds, another window
appears listing the found projects. Select the projects you want to migrate from the
Projects list box in the Select V2.X Projects to Migrate window. You can also
select the More projects... push button from this window to manually add other
projects to the list.

Figure 48. Window listing found Version 2.x projects

Note: The project migration tool does not scan for project templates. If you want to
migrate a project template, you must first transform it into a regular project by
opening its Settings notebook to the General page, and then deselecting the
Template check box.

144 IBM VisualAge�C++ for OS/2 User's Guide

Migrating Old Projects

You must also choose whether to migrate:

Only projects
This is recommended if you are also migrating your project code to use Version
3.0 of the VisualAge C++ tools. If you select this option, the project migration
tool creates a Version 3.0 project that emulates your Version 2.x project. It
inherits from the VisualAge C++ default project and so all the VisualAge C++
actions will be available to your migrated project. See “The Default
Project” on page 36 for more information about the VisualAge C++ default
project.

Note: Since the actions are not migrated, neither are their options. You will
need to reset the options for the new actions in your project.

Projects and actions
If you want to continue using actions, like Compile and Link, from the previous
version of VisualAge C++, you will need to migrate the actions as well. If you
select this option, the actions, variables, and types from the old project's actions
profile and the default actions profile are copied over to a new project that
contains only the information from the profiles. The migration utility calls
these projects actions projects.

Next, the migration tool creates another project, based on the Version 2.x
project, that inherits from the newly created actions project. If the actions
profile cannot be found, it is not migrated. In this case, the new project will
inherit from the default project, the VisualAge�C++ Project.

Migrate V2.x action parameters
You can also decide whether or not you want action options migrated as well.
The migration utility only migrates the options of actions that use the Version
2.1 default actions support DLL, DDE3DEF2. It cannot migrate the C Set C++
Compiler, Linker, Debugger, EXTRA, and Browser options because they use a
custom actions support DLL. Furthermore, some options are not valid for this
version of VisualAge C++.

Note: It is recommended that you do not migrate your old action options
because the default options of the VisualAge C++ actions are more
appropriate than those from the previous version. Some some may even
be invalid in this version.

When you push the Migrate push button, the migration process starts. The migration
tool creates a folder on your desktop called WorkFrame V3.0 Migration which
contains two folders called WorkFrame V3.0 Projects and WorkFrame V3.0
Action Projects. If you chose not to migrate the actions from your old projects, the
latter folder is empty. The WorkFrame V3.0 Projects folder contains the migrated
projects.

 Chapter 7. Migrating Old Projects 145

Migrating Old Projects

What Information is Migrated?
Here is a list of the Version 2.x project information that is migrated by the project
migration tool.

Information migrated from projects:

 ¹ Target name
 ¹ Run parameters
 ¹ Run prompt
 ¹ Run monitored
¹ Make file name

 ¹ Source directories
 ¹ Working directory
¹ File name filter

– The migration utility creates a new type called “Migrated file masks” and
adds it to the project's Parts filter entry field.

 ¹ Auto-scroll monitor
¹ PAMs are migrated as follows:

– DDE3BPAM to IWFBPAM
– EVFP370 to IWFP370
– EVFPADM to IWFPADM
– EVFP400 to IWFP400
– All others to IWFBPAM.

The following information is migrated from action profiles into Version 3.0 projects:

¹ Action scope (If an action is project-scoped, its controlling PAM defaults to
IWFBPAM.)

¹ Action source and target types
¹ Action run mode
¹ Options DLLs are mapped to new Actions Support DLLs as follows:

– DDE3DEF2 to IWFOPT
– DDE4ICC2 to CPPICC30
– DDE4ICL2 to CPPICL30
– All others are migrated as is.

 ¹ Environment variables
¹ Types (All types are migrated to types of class FileMask.)

The following information are not migrated:

¹ Since there is no concept of a composite project in WorkFrame Version 3.0,
composite projects are not migrated. However, any base projects in a composite
project can be migrated. The names of the migrated base projects include the
name of their composite project in parentheses.

¹ Action options are not migrated.

146 IBM VisualAge�C++ for OS/2 User's Guide

Migrating Old Projects

Migrating Version 1.x Projects
Projects from WorkFrame Version 1.x can only reside in a single directory, usually
the directory where Version 1.x of WorkFrame was installed. To start the search for
Version 1.x projects, enter the directory to search and select the Find projects push
button. The search progress is shown in the information area at the bottom of the
window.

After a few seconds, the Select V1.X Projects to Migrate window appears. Select
the projects you want to migrate, and then select the Migrate push button to start the
migration.

The migration tool creates a folder on your desktop called WorkFrame V3.0
Migration in which a folder called WorkFrame V3.0 Projects is created.
WorkFrame V3.0 Projects folder contains your migrated projects. Projects migrated
from Version 1.x inherit their actions from the VisualAge C++ default project.

What Information is Migrated?
The project migration tool migrates the following information from Version 1.x
projects:

 ¹ Target name
¹ Make file name

 ¹ Source directories
 ¹ Working directory
¹ File name filter

Actions are not migrated.

 Chapter 7. Migrating Old Projects 147

Migrating Old Projects

148 IBM VisualAge�C++ for OS/2 User's Guide

Project Access Methods (PAMs)

 8 Project Access Methods (PAMs)

Reader's Note: Unless you need to use projects that have parts from more than one
PAM, or are interested in providing a specialized PAM, you do not need to
know the information in this chapter to use WorkFrame effectively.

A Project Access Method (PAM) is a set of functions through which a simple
abstraction of a file system or repository is provided to WorkFrame. These functions
are packaged in a dynamic link library. PAMs allow a WorkFrame project to contain
any kind of object that a PAM can support, for example a version of a file in a
source code control library, a foreign file system like MVS or AIX, or an
object-oriented database. PAMs also allow WorkFrame to abstract tools from any of
these supported locations into actions, so that they can be executed from a
WorkFrame project just like any VisualAge C++ action.

Special-purpose PAMs are provided by tool or solution providers who want to use
WorkFrame as an integrating framework. WorkFrame includes a basic OS/2 PAM,
called IWFBPAM, that provides access to the OS/2 file system, including access to
OS/2 files stored on a LAN.

By default, every project uses the basic OS/2 PAM. If your project uses other PAMs
besides the basic PAM, the Locations tab in the project Settings notebook will
contain have one page for every available PAM.

Note: If your projects use a PAM other than the basic OS/2 PAM, refer to the
information provided by the PAM provider to find out more about how it
enhances the behavior of your projects.

The Role of a PAM
WorkFrame has no knowledge of how to access the parts of a project. It relies
entirely on the PAM to return the list of parts in a source location and to execute any
actions that run on the environment it supports. A PAM may provide specialized
support for its environment, like storage and retrieval of database objects, or
managing the communication with a remote file server. However, all PAMs must
provide the basic support for parts maintenance like returning the list of parts in a
source location, copying, moving, or deleting parts. PAMs must also launch actions
and pass the output of the action back to WorkFrame.

 Copyright IBM Corp. 1992, 1995 149

Project Access Methods (PAMs)

Support for Multiple PAMs
PAMs are registered globally with WorkFrame, and every registered PAM is available
to every project. Because a project can use more than one PAM at a time, a project
can contain a mix of project parts supported by different PAMs. This means that a
project can contain local files, remote objects, and any other parts supported by the
PAMs used by the project. The interface for manipulating project parts is consistent,
regardless of the physical location of the part.

Note: The basic OS/2 PAM must be used by all projects unless another PAM that
provides the same level of OS/2 support is used.

A PAM is registered with WorkFrame if its DLL name is listed on the IWFPAM
environment variable in the CONFIG.SYS file, space-delimited. The basic PAM is
always registered by default, even if the IWF.PAM environment variable is not set.
To register a PAM with WorkFrame, set the IWF.PAM environment variable like
this:

IWFPAM = YOURPAM MYPAM

The above statement registers two PAMs with WorkFrame, called YOURPAM and
MYPAM. The basic PAM, IWFBPAM, is implicitly registered.

Each PAM adds a page to the Settings notebook of every project. This page is for
configuration that is specific to a PAM. A project is using a PAM if it has
information entered on the page provided by the PAM. For example, the basic OS/2
PAM provides the OS/2 Files page where you can enter the source directories and
working directory of the project. It is called the Location page when there is only
one PAM. If your project uses more than one PAM, the OS/2 Files page appears as
a minor page within the Location tab. The OS/2 Files page is then accessible using
its minor tab within the Location page, as are the pages provided by the other PAMs.

In all cases, only the PAM that has access to a given part is responsible for
interpreting the part. If you launch an action against multiple parts managed by
multiple PAMs, the action is started once for each involved PAM, only for the parts
managed by the PAM.

Support for copying and moving parts to and from locations managed by different
PAMs, either within a project or between projects, depends on the support provided
by each PAM. If a PAM supports the copying of its parts to a location managed by
another PAM, both PAMs must either maintain an OS/2 representation of its parts, or
be able to copy parts to and from OS/2 as files. Copying and moving between
remote PAMs is completed by the source PAM copying the part to an OS/2 location
that WorkFrame specifies, and the target PAM copying the part to the destination.
Each PAM can specify whether its parts are always available locally, as OS/2 files.

150 IBM VisualAge�C++ for OS/2 User's Guide

Project Access Methods (PAMs)

If they are, WorkFrame can optimize copying files by bypassing the intermediate
copy step.

Project parts from different PAMs can be sorted together, or by PAMs. You can
specify the sort criteria for your project's parts in the the Sort page of the project's
Settings notebook. See “Project Settings - Sort Page” on page 31 for more
information on how to sort project parts.

For more information on how to write your own PAM, obtain the WorkFrame
Version 3.0 Integration Kit1.

 Compatibility
PAMs that were written for Version 2.1 of the WorkFrame product are no longer
supported in Version 3.0. This is because PAMs are now required to provide a
custom Location page for the project Settings notebook. Contact your PAM provider
for an updated version of a Version 2.1 PAM.

Different versions of PAMs with the same name cannot coexist on the same system.

1

To find out when and where this kit will be available, send a note to workframe@vnet.ibm.com, or call the VisualAge C++ automated help line
1-800-992-4777. Availability will also be announced on various networks where VisualAge C++ Service and Support is present.

 Chapter 8. Project Access Methods (PAMs)151

Project Access Methods (PAMs)

152 IBM VisualAge�C++ for OS/2 User's Guide

 Part 2. Editing Files

The following tasks will familiarize you with the VisualAge C++ editor. You can
use this editor to edit C and C++ files. You can also use the editor to start other
tasks, by selecting choices from the VisualAge C++ menu. From the editor, you can
compile, link, debug, and browse your program. For more help with using editor
commands, see theEditor Command Reference.

Chapter 9. Introduction to the Editor . 155
Creating a New File . 155
Entering and Editing Text . 156
Undoing Changes .159
Saving a File . 160
Closing an Editor Window . 161
Opening an Existing File . 161
Finding Text .162
Finding and Replacing Text . 163
Finding Lines in the File . 164
Creating and Finding Marks . 164
Inserting Text From Other Files . 167
Issuing Commands .168
Blocking and Manipulating Text . 170
Opening, Closing, and Moving between Views. 174
Using a Parser . 174

Chapter 10. Customizing the Editor . 179
Using the Editor Tool Bar . 179
Customizing the Menus on the Menu Bar. 180
Customizing the Keyboard . 182
Customizing the Autosave Facility for the Editor. 183
Customizing Editor Fonts and Colors. 184
Modifying Editor Behavior Permanently. 185

 Copyright IBM Corp. 1992, 1995 153

154 IBM VisualAge�C++ for OS/2 User's Guide

Editor Introduction

 9 Introduction to the Editor

This chapter introduces you to some of the basic features of the editor. Examples in
this section often build on each other and should be performed in the order given.

As you perform the suggested exercises in this section, pay close attention to the
various command menus you see. Many actions on these menus can also be accessed
directly from the keyboard with special keystroke combinations. Where applicable,
such keystroke combinations appear to the right of the command name in the menus.

Creating a New File
You can use the editor to create a new file in many different ways. Some are:

¹ If the editor is not already running, start the editor by doing one of the following:

– Double-click on the editor icon in an application folder. An empty editor
window similar to that shown in Figure 50 on page 156 will appear.

– Type lxpm at an OS/2 Command Line prompt.

¹ If the editor is already running, do the following:

1. Select the File menu choice from the editor menu-bar.

2. Select the New... choice from the resulting pulldown menu. The window
shown in Figure 49 will appear.

Figure 49. New File Window

3. Use the check boxes and selection lists to select the options you want. For
example, in Figure 49, the CPP language profile has been selected.

4. Click on the New button in this window. A new, empty editor window
similar to that shown in Figure 50 on page 156 will appear.

5. You can start entering the text for your new file into this window.

 Copyright IBM Corp. 1992, 1995 155

Editor Introduction

Figure 50. Editor Window

Entering and Editing Text
This section shows you how to enter text in the editor window. This section also
introduces you to some of the special keys you can use to edit text. For more
information on the keys available for a window, select the Help choice from the
menu-bar, then select the Keys help choice from the resulting pulldown menu.

Entering Text To enter text, just begin typing. Type the following text in the editor:

/* This is only the beginning! */
/* And for now, this is the end. */

If you make a typing error, use the backspace key to go back and correct the error.
When you are done, your editor window will look similar to Figure 51 on page 157.

156 IBM VisualAge�C++ for OS/2 User's Guide

Editor Introduction

Figure 51. Editor Window with New Text

Moving the
Cursor

Use any of the following methods to move the cursor in the editor window:

¹ Position the mouse pointer where you want the cursor to be, and click mouse
button 1.

Tip! If you inadvertently select text by dragging the mouse, deselect the text by
pressing Alt+U or by clicking mouse button 2.

¹ Press the Up, Down, Left, or Right arrow keys.

¹ Press the Home key to move the cursor to the beginning of a line, or the End key
to move it to the end of a line.

¹ Press Alt+Left arrow to move the cursor one word left, or Alt+Right arrow to
move it one word right.

¹ Press the Page Up or Page Down keys to move the cursor up or down one
window at a time.

¹ Press Ctrl+Home to move the cursor to the beginning of a file, or Ctrl+End to
move it to the end of a file.

¹ Press Ctrl+J to move the cursor to the place where you last entered text in the
file.

 Chapter 9. Introduction to the Editor157

Editor Introduction

Inserting a
Blank Line

To create a new line in the editor window, do one of the following:

¹ Move the cursor to any point on a line. Press Ctrl+Enter.
¹ Move the cursor to the end of a line. Press the Enter key.

A blank line is created after the current line and the cursor moves to the first column
position of this new line.

Replacing
and Inserting
Text

The status area below the menu-bar indicates which mode the editor is in. In
Replace mode, the shape of the cursor is a solid block one character width in size.
Text under this block is replaced by any new text you type. In Insert mode, the
shape of the cursor is a thin vertical line. Any new text you type is inserted into the
file at the cursor position, and existing text right of the cursor shifts to the right.

To toggle back and forth between the two modes, press the Insert key. For example,
place the cursor at about the middle of any line and do the following:

1. Ensure that the editor is in Insert mode and type a few words. New text is
inserted at the cursor position without overwriting existing text.

2. Put the editor in Replace mode and type a few words. New text overwrites
existing text at the cursor position.

Splitting and
Joining Lines
of Text

To split a line so part of it forms a new line below the current line, do the
following:

1. Move the cursor to where you want to split the line. When you split a line, all
text right of the cursor moves to a new line created below the current line.

2. Press Alt+S to split the line and leave the cursor at its current position, or press
the Enter key to split the line and move the cursor to beginning of the new line.

To rejoin the lines, do one of the following:

¹ If the cursor is at the end of a line, press the Delete key to join the current line
and the next line together.

¹ If the cursor is at the beginning of a line, press the Backspace key to join the
current line and the previous line together.

¹ You can also place the cursor anywhere on a line and press Alt+J to join the
current line and next line together.

Deleting Text There are many ways to delete unwanted text. Some are:

Deleting Single Characters with the Delete Key -In Insert mode, the character right of
the cursor is deleted. In Replace mode, the character under the cursor is deleted.
In either mode, text right of the cursor moves left to fill the resulting gap.

Deleting Single Characters with the Backspace Key -The character left of the cursor
is deleted. Text right of or under the cursor moves left to fill the resulting gap.

158 IBM VisualAge�C++ for OS/2 User's Guide

Editor Introduction

Deleting from the Cursor to the End of the Line -To delete all text between the cursor
position and the end of the current line, press Ctrl+Delete.

Deleting an Entire Line -To delete a complete line, move the cursor to the unwanted
line and press Ctrl+Backspace.

Exercise Before continuing with the next exercise, edit your file so it contains only the
following lines:

/* This is only the very beginning! */
/* And for now, this is the end. */

 Undoing Changes
The editor records each change you make to a file in the editor window. The number
of changes made since the last file save is displayed on the status line below the
editor menu-bar. If you want to undo a change, do the following:

1. Select the Edit choice from the editor menu-bar.

2. Select the Undo choice from the resulting pulldown menu. The last change to
the file is undone.

3. Repeat the above steps until all unwanted changes have been undone.

Exercise Try this with the text you entered in the previous exercise:

1. Move the cursor to the left of the word very on the first line in your file.

2. Delete text from the cursor to the end of the line by pressing Ctrl+Delete.

3. Undo this change as described above.

4. Press the backspace key a few times.

5. Undo the changes until the original line is restored.

6. Type some text anywhere in the file. Move the cursor to a different line and
type some more text.

7. Undo changes until the original lines are restored.

Before continuing with the next exercise, restore your file so it contains only the
following lines:

/* This is only the very beginning! */
/* And for now, this is the end. */

 Chapter 9. Introduction to the Editor159

Editor Introduction

Saving a File
To save your file, do the following:

1. If you have more than one editor window open, select the window that contains
the work you want to save.

2. Select the File menu choice from the editor menu-bar.

3. Select the Save choice from the resulting pulldown menu.

4. If you are saving an existing file, the file will be saved under its current name.
If you are saving a new file, the Save As window will appear, as shown in
Figure 52. Enter the new name of the file and click on the Save As button.

Figure 52. Save As Window

Before continuing with the next exercise, do the following:

1. Edit your file so it contains only the following lines:

/* This is only the very beginning! */
/* And for now, this is the end. */

2. Save your file under the name my_file.txt, as described above.

160 IBM VisualAge�C++ for OS/2 User's Guide

Editor Introduction

Closing an Editor Window
The editor lets you have more than one view of a document open at a time, each
within its own editor window. This may affect the method you choose to close an
editor window.

If you have more than one view of a document open, and:

¹ you want to close all views of that document, do the following:

1. Select the File menu choice from the editor menu-bar.

2. Select the Close all views choice from the resulting pulldown menu.

3. All windows containing views of that document are closed. The editor will
warn you if an editor window has unsaved changes.

¹ you want to close only one view of a document, do the following:

1. Open the system menu of the editor window you want to close.

2. Select the Close choice from the resulting pulldown menu.

3. The selected editor window is closed. The editor will warn you if the editor
window has unsaved changes.

At this time, close all views before continuing with the next exercise.

Opening an Existing File
To open an existing file, do one of the following:

¹ Drag a file icon from a File Manager window onto an Editor icon.

¹ If you are in the WorkFrame/2 environment, you can:

– Double-click on an icon representing a source file, or,
– Select an icon representing a source file, then select Edit from the pop-up

menu for that icon. To raise an icon's pop-up menu, move your mouse
pointer to the desired icon and press mouse button 2.

¹ At an OS/2 Command Line prompt, type

lxpm filename.ext

where filename.ext is the name of the file you want to edit.

An editor window opens showing the chosen file. You can begin editing this file, as
described in “Entering and Editing Text” on page 156.

For this and the following exercises, open themy_file.txt file that you saved in
“Saving a File” on page 160.

 Chapter 9. Introduction to the Editor161

Editor Introduction

 Finding Text
To find a word in your document, do the following:

1. Select the Edit choice from the editor menu-bar.

2. Select the Find... choice from the resulting pulldown menu. A window similar to
that shown in Figure 53 appears.

Figure 53. Finding Text

3. Type the word you want to find in the Find text entry area.

4. Select any desired options.

5. Click on the Find, then cancel button. The Find window disappears and the
cursor moves to the next occurrence of the chosen word.

Exercise Try this with the my_file.txt file:

1. Move the cursor to the beginning of the first line.

2. Find the word very.

162 IBM VisualAge�C++ for OS/2 User's Guide

Editor Introduction

Finding and Replacing Text
To search for and replace words with other words of your choice, do the following:

1. Bring up the Find window as described above.

2. Type the word you want to find in the Find text entry field.

3. Type the word that will replace the found word in the Change to text entry field.
Figure 54 shows an example.

Figure 54. Finding Text

4. Click on the Change button to find and replace only the next word found, or
click on Change all to replace all occurrences of the found word in the file.

Exercise Try this with the my_file.txt file:

1. Bring up the Find window. Fill in the entries required to replace the word the
with ze.

2. Click on the Change all button to change all occurrences of the to ze.

3. Look at the resulting file to see the changes.

4. Bring up the Find window. Fill in the entries required to replace the word ze
back to the word the.

5. Click on the Change, then find button. The first occurrence of ze is changed,
then the cursor is moved to the next occurrence of ze.

6. Continue clicking on the Change, then find button until the message line at the
bottom of the window indicates that there are no more occurrences of the word
ze. Then click on the Cancel button.

 Chapter 9. Introduction to the Editor163

Editor Introduction

Finding Lines in the File
A quick way to find a specific line in a file is to use the Locate Line window.

1. Select the Edit choice from the editor menu-bar.

2. Select the Locate choice from the resulting pulldown menu.

3. Select the Line... choice from the next pulldown menu. The Locate Line
window appears, as shown in Figure 55. The Line Number text entry field
displays the line number of the current cursor position.

Figure 55. Locate Line Window

4. Replace the current line number with another number, and click on the Find
button. The Locate Line window disappears and the cursor moves to the
beginning of the chosen line.

Note: If you try to go to a line number that is greater than the number of lines
in the file, the cursor will move to the beginning of the last line in the file.

Creating and Finding Marks
Marks function like bookmarks in a file. You can use marks to easily move around
between marked positions in your file.

 Marks have the following characteristics:

¹ Marks are not attached to a specific character, but to a specific cursor position.
Changes to text at a marked position does not alter the mark.

¹ If text is inserted or deleted to the left of a marked position, the mark will shift
accordingly.

¹ If lines are inserted or deleted before the line that a marked position is on, the
mark will shift accordingly.

¹ If the marked position itself is deleted, the mark is lost.

¹ When you close a file, all marks are lost.

164 IBM VisualAge�C++ for OS/2 User's Guide

Editor Introduction

 Naming Marks
To create, or name, a mark, do the following:

1. Place the cursor at the position to be marked.

2. Select the Edit choice from the editor menu-bar.

3. Select the Name a mark... choice from the resulting pulldown menu. A window
similar to that shown in Figure 56 appears.

Figure 56. Name a Mark Window

4. Enter the name of the new mark in the text entry field.

5. Click on the OK button.

 Finding Marks
To move the cursor to a named mark, do the following:

1. Select the Edit choice from the editor menu-bar.

2. Select the Locate choice from the resulting pulldown menu. A window similar to
that shown in Figure 57 appears, listing all marks currently defined in the file.

Figure 57. Find a Mark Window

3. Select the name of the mark you want to move to.

4. Click on the OK button.

 Chapter 9. Introduction to the Editor165

Editor Introduction

Exercise Try this with the my_file.txt file:

1. Move the cursor anywhere on the first line of your file.

2. Create a mark called my_mark, as described in “Naming Marks.”

3. Move the cursor anywhere near the middle of the second line.

4. Create a mark called my_other_mark.

5. Find the mark called my_mark, as described above.

6. Move the cursor to the start of the second line, and insert some text. Then find
the mark called my_other_mark.

7. Find the mark called my_mark. Press the Delete key to remove the marked
position, then try to find the mark again.

Using a Quick Mark
To mark one cursor position quickly, you can use the Quick Mark feature. To do so,
do the following:

1. Move the cursor to the position where you want to set a mark.

2. Select the Edit choice from the editor menu-bar.

3. Select the Set quick mark choice from the resulting pulldown menu. A quick
mark is set at the chosen position in your file.

To find a quick mark, do the following:

1. Select the Edit choice from the editor menu-bar.

2. Select the Locate choice from the resulting pulldown menu.

3. Select the Quick mark choice from the next pulldown menu. The cursor is
moved to the position marked by the quick mark.

You can have only one quick mark per editor window. Setting a new quick mark will
cause a previous quick mark to be lost.

Exercise Try this with the my_file.txt file:

1. Move the cursor to any position within your file.

2. Create a quick mark.

3. Move the cursor elsewhere in the file.

4. Find the quick mark using the method described above.

5. Repeat steps 1 to 4 at a different cursor position in your file.

166 IBM VisualAge�C++ for OS/2 User's Guide

Editor Introduction

You can also find a quick mark using the procedure described in “Finding Marks” on
page 165. The quick mark will appear in the list of named marks as @QUICK .

Figure 58. Find a Mark Window

Inserting Text From Other Files
To read existing text from another file into your file, do the following:

1. Move the cursor anywhere on the line above where the inserted text is to appear.

2. Select the File choice from the editor menu-bar.

3. Select the Get file... choice from the resulting pulldown menu. A window similar
to that shown in Figure 59 appears.

Figure 59. Get File Window

 Chapter 9. Introduction to the Editor167

Editor Introduction

4. Select the desired file and click on the OK button. The inserted text will appear
on the line(s) after the cursor position.

Exercise Try this with the my_file.txt file:

1. Position the cursor anywhere on the first line in your file.

2. Insert the file from \IBMCPP\SAMPLES\COMPILER\SAMPLE03\SAMPLE03.C into your
file.

3. Look at the resulting file, then undo the change.

 Issuing Commands
The editor is fully programmable. The following exercises describe how to issue
commands to it:

1. Select the Actions choice from the menu-bar.

2. Select Issue edit command... choice from the resulting pulldown menu. The
Issue a Command window appears. See Figure 60.

Figure 60. Issue a Command Window

3. In the text entry field, type:

bottom

and select the OK push button (or press Enter). The cursor moves to the last
character in the file.

4. Bring up the Issue a Command window again.

5. In the entry field, type:

add 5

Make sure to leave a space between the command and the number.

6. Click on the OK push button (or press Enter). Five lines are added at the end of
the file after the cursor.

168 IBM VisualAge�C++ for OS/2 User's Guide

Editor Introduction

Issuing Multiple Commands
The mult command lets you issue multiple commands on one command line. This
exercise shows how to use it to perform the two steps of the previous exercise in one
step.

1. Bring up the Issue a Command window and enter the following command:

mult ;bottom ;add 5

This mult command includes two editor commands: bottom moves the cursor to
the last character in the file, andadd 5 adds five lines to the end of the file.

2. Select the OK push button (or press Enter). Five new lines are added to the end
of the file.

There are many other commands you can use in the Issue a Command window. For
a complete listing of editor commands, select the Help menu-bar choice in the Editor
window, and then select Editor reference.

Tips!

¹ To use a command again, press the down arrow in the Issue a Command window
to display previously used commands, and select one.

¹ You can use command synonyms when entering commands. For example, ; is the
editor default synonym for mult ; . In step 1 above, you could have instead
entered the command:

; bottom ;add 5

Note: Synonyms are used in the standard profiles that are supplied with the
editor.

¹ You can view a log of the messages produced by commands and macros you have
used. Try this. Bring up the Issue a command window and enter the following
command:

query list.synonym

Then select the Windows choice from the menu-bar, and the Macro log choice
from the resulting pulldown menu. The synonyms currently in use are listed at the
bottom of the log.

¹ To get help for a command or determine what its return codes are, type HELP
command in the Issue a Command window, wherecommand is the name of the
command for which you want help.

 Chapter 9. Introduction to the Editor169

Editor Introduction

Blocking and Manipulating Text
This section describes how you can mark and manipulate selected blocks of text.

Editor Block Manipulation Facilities
You can use the standard OS/2 clipboard to cut, copy, and paste selected text both
within the editor and between the editor and other OS/2 applications. The editor also
offers you other ways to quickly manipulate blocks of text within the editor.

Default Editor
Marking
Mode

The editor usesstream markingas its default marking mode. In this mode, the
cursor is tied to the marked text selection. If you move the cursor, the marked text
selection area will either change or be deselected. Also, if a text block is marked, the
marked text will be replaced by the next character you type.

Other Editor
Marking
Modes

Stream marking, while probably most familiar to users, is of limited use to
programmers. The editor offers other marking modes that may be more appropriate
for programmers.

In these modes, the cursor is not coupled to the marked text selection. You can mark
a text block in a document or view, and copy that text block directly to the same or
another document or view without using the OS/2 clipboard. Also, this lack of
coupling means that typing within a marked text block does not cause the entire
marked text block to be replaced. Instead, depending on whether the editor is in
insert or replace mode, each typed character is either inserted before or replaces the
character at the current cursor position.

You can change the default marking mode to one of the following choices:

stream Default. The cursor is coupled to the marked text selection.

character Similar to stream, except that the cursor is not coupled to the marked text
selection.

element Whole elements are marked. The cursor is not coupled to the marked text
selection.

rectangle Rectangular areas can be marked starting at any character position on a
line, and extend over as many lines as needed. Rectangular blocking is
useful for copying or deleting columns of text. The cursor is not coupled
to the marked text selection.

170 IBM VisualAge�C++ for OS/2 User's Guide

Editor Introduction

Changing the
Default
Marking
Mode

To change the default block marking mode for the current editing session, do the
following:

1. Open the Issue a Command window by pressing Shift+F9.

2. Enter the following command,

set blockdefaulttype markmode

where markmode is one of the modes listed above.

Unmarking a Block of Text
The following section shows you several ways to mark blocks of text. During and
between exercises, you will also have to unmark these blocks.

To do so, use one of the following methods:

¹ Select the Edit menu-bar choice, then select Block, and then select Unmark .

 ¹ Press Alt+U.

¹ Click mouse button 2.

Marking Blocks of Text
Some of the many ways to mark blocks of text are described below.

Marking a
Block of Text
with the
Mouse

To select a block of text with the mouse, do the following:

1. Position the mouse pointer over the character that will start the block.

2. Press and hold mouse button 1.

3. Drag the mouse pointer to the to the end of the block of text you want and
release the mouse button. The block is now marked, as shown in Figure 61 on
page 172.

Note: The default block marking mode is used when marking text with the
mouse.

Exercise Try this with the my_file.txt file:

1. Mark the block is only the very on the first line of your file.

2. Unmark the block using one of the methods described in “Unmarking a Block of
Text.”

 Chapter 9. Introduction to the Editor171

Editor Introduction

Figure 61. Marking a Block of Text

Marking a
Block of Text
without the
Mouse

You can mark a block of text with or without a mouse by doing the following:

1. Use the mouse or the cursor keys to move the cursor to the character that will
start the block, and press Alt+B.

2. Move the cursor to the end of the block of text and press Alt+B again. Text
between the two points are marked.

Marking
Complete
Lines of Text

Place the cursor anywhere on a line and press Alt+L. The entire line is marked.
To mark additional lines of text, move the cursor to the last line to be marked and
press Alt+L. All lines between the two selected lines are marked.

Marking a
Rectangular
Block

To mark a section of text occupying certain columns and lines:

1. Move the cursor to one corner of the desired block, and press Alt+R.
2. Move the cursor to the opposite corner of the desired block, and press Alt+R

again. The entire block between corner points is selected.

Alternatively, double-click with mouse button 2 where you want the rectangular block
to start, click and hold mouse button 1, and drag to where you want the block to end.

172 IBM VisualAge�C++ for OS/2 User's Guide

Editor Introduction

Manipulating Marked Blocks
Once you have marked a block of text, you can manipulate the marked block with
either OS/2's standard clipboard-based facilities or the editor's own block
manipulation facilities. The following examples illustrate the editor's own block
manipulation facilities and the power of marking modes in which the cursor is not
coupled to the marked text selection.

Before continuing, do the following:

1. Open a file of your choice for editing.

2. Bring up the Issue a Command window by pressing Shift+F9, and issue the
following command to change the default marking mode:

set blockdefaulttype rectangle

3. Mark a rectangular block of text.

Copying a
Marked Block

1. Move the cursor to the location in the file where the blocked text will be copied.

2. Select the Edit choice from the editor menu bar.

3. Select the Block choice from the resulting pulldown menu.

4. Select the Copy choice from the next pulldown menu. A copy of the marked
block is inserted at the cursor position.

Alternatively, position the cursor and then press Alt+C to copy a selected block.

Deleting a
Marked Block

1. Select the Edit choice from the editor menu bar.

2. Select the Block choice from the resulting pulldown menu.

3. Select Delete from the next pulldown menu to delete the marked block.

Alternatively, press Alt+D to delete a marked block.

Moving a
Marked Block

To move a marked block to a different location in the file, do the following:

1. Move the cursor to the desired location.

2. Select the Edit choice from the editor menu bar.

3. Select the Block choice from the resulting pulldown menu.

4. Select the Move choice from the next pulldown menu. The block is placed
below the cursor.

Alternatively, position the cursor and then press Alt+M, or use Alt+Z if you want to
place the block over existing text.

 Chapter 9. Introduction to the Editor173

Editor Introduction

Exercise Try this with your file:

1. Mark any word on the first line, and copy it to the end of the second line.

2. Mark a rectangular block of text. Move the cursor anywhere outside the marked
block. Move the marked block to the new cursor location.

3. Delete the rectangular block that you have just moved.

4. Mark a complete line. Copy the marked line to a different line.

Opening, Closing, and Moving between Views
Displaying multiple views of a source file can help you carry out functions such as
cutting and pasting from one section to another. Any changes you make to one view
are automatically updated in all other views.

Exercise Try this with the my_file.txt file:

1. Open a new view. Select the File menu bar choice, then select Open new view.
A second Editor window appears, containing exactly the same text as the first.

2. Arrange the two windows so you can see as much of them as possible.

3. Press Ctrl+End in both windows to go to the end of the file. In one window,
position your cursor to the start of the phrasethe end in the last line.

4. Change the end to the new end. The change occurs in both windows.

5. Move to another view. Select the Window menu bar choice, then select Next
view.

6. Close one of the views by selecting its system menu, and then selecting Close.

Using a Parser
The Editor supplies parsers for several programming languages such as C, C++,
COBOL, and REXX. An emphasis parser uses colors and fonts to highlight different
items in the program, but maintains the original indentation of the program.

To see how the parser works, do the following:

1. Open the \IBMCPP\SAMPLES\COMPILER\SAMPLE03\SAMPLE03.C file for editing.

174 IBM VisualAge�C++ for OS/2 User's Guide

Editor Introduction

Figure 62. C Program in Editor

When a file is opened, the editor uses the file name’s extension to select the
appropriate load macro. A load macro contains a line that specifies which parser
to load. When you opened the SAMPLE03.C file, the C parser was automatically
invoked. A parser and its load macro also:

¹ Set default fonts and colors

¹ Set up special actions for keys

¹ Color and emphasize the data being displayed

¹ Set up additions to the View menu that contain selections specific to the
chosen parser

2. Scroll the document to see the different colored fonts used to identify the
different parts of a C language document.

 Chapter 9. Introduction to the Editor175

Editor Introduction

Using Elements, Fonts, and Classes
Each element or line in a document may contain more than one class. Classes are
used to describe the type of data the element contains. The element displayed in
Figure 63, for instance, is made up of a CODE class and a COMMENT class.

A variety of colored fonts distinguish the different classes. Figure 63 shows how the
fonts and the classes work to emphasize a line of C language code:

Figure 63. Classes and Fonts in a C Language Element

 CODE class COMMENT class
Lines of C language code in
document.

lowkey = array[i]; /* array indices */

Each letter in this font string
represents a font type for each
character in the line. Each font
type could be assigned a different
color.

IIIIII_O_IIIIIPIPP CCCCCCCCCCCCCCCCCCC

To display the fonts in a line of code:

1. Put the cursor on a line of code.

2. Select the Issue edit command... choice from the Actions menu.

3. Type query fonts in the text entry box and click on OK . The font names in
the selected element are shown on the message line below the edit window.

To display the classes in a line of code:

1. Select the Issue edit command... choice from the Options menu again.

2. Type query class in the text entry box and click on OK . The class names in
the selected element are shown on the message line below the edit window.

Displaying Different Classes
To display different classes of the C language document:

1. Select the Outline logic choice from the View menu to display only the logic
structure of the program sample. See Figure 64 on page 177.

2. Select the Functions choice from the View menu to display only the names of
functions in the program sample.

3. Select Include all from the View menu to display all the lines.

Note: Available View menu choices differ according to the type of file being edited.

176 IBM VisualAge�C++ for OS/2 User's Guide

Editor Introduction

Figure 64. C Program in Editor with only Logic Structures Displayed

The View menu choices are based on the include and exclude commands that allow
you to see only those elements that have specified classes associated with them.

To use the include command to display only the elements that contain items from the
COMMENT class:

1. Select the Issue a command... choice from the Actions menu.

2. In the text entry box, type:set include comments

3. Click on OK . Only lines with COMMENT class elements are displayed.

4. Select the Include all choice from the View menu to display all classes again.

 Chapter 9. Introduction to the Editor177

Editor Introduction

Entering Some Code
The editor is a live parsing editor because it monitors and records all the changes
made to the document as you work. New data is colored or formatted as you add to
its contents.

To type some lines of code into the sample03.c document:

1. Position the cursor in the program code, and press Enter several times to insert
some blank lines.

2. Type in your own program code. When you have completed a line of code,
either press the Enter key or click mouse button 1. The line of code is parsed by
the C parser.

3. Do not save changes to the sample03.c file.

You are now finished the introduction to the editor.

178 IBM VisualAge�C++ for OS/2 User's Guide

Customising the Editor

10 Customizing the Editor

You can customize the editor so that you can design anything from key assignments
to more complex functions such as external commands and parsers.

This section covers some simple modifications you can perform. More complicated
procedures, such as creating external commands or parsers, require an extensive
knowledge of the editor commands and programming.

Using the Editor Tool Bar
The editor has an optional Tool Bar that you can use to invoke commonly used
commands with a single mouse click.

If the Tool Bar is not already enabled, you can enable it by doing the following:

1. Select the View choice from the editor menu-bar.

2. Select the Tool bar choice from the resulting pulldown menu. The Tool Bar
appears below the menu-bar, as shown in Figure 65.

Figure 65. Editing Window with Tool Bar Enabled

 Copyright IBM Corp. 1992, 1995 179

Customising the Editor

To invoke an action, click on a Tool Bar item. As you move the mouse over a Tool
Bar item, a description of that item's action appears in the message line area at the
bottom of the editing area.

Customizing the Tool Bar
You can add your own items to the tool bar. The following exercise shows how to
add a simple text button calledmy button to the tool bar to the right of the third
item already in the tool bar. Pressing the button invokes the mult ;bottom ;add 5
command, which adds 5 lines to the bottom of the file in the current editor window.

1. Enable the tool bar as described in “Using the Editor Tool Bar” on page 179.

2. Press Shift+F9 to open the Issue a Command window.

3. Enter the following command to define your new tool bar entry. Press Enter or
click on the OK button when you are done.

set toolbar.my_button 3 mult ;bottom ;add 5

4. Open the Issue a Command window again. To add a message line description
to your new tool bar entry, issue the following command:

set help. This button adds 5 lines to the bottom of the file.

A new entry called my button will appear on the tool bar. If you place your mouse
pointer over this new button, the button's description will appear in the message line
area below the edit window. Selecting the new button will run the mult ;bottom
;add 5 command, which adds 5 lines to the end of your file.

You can also add icons to the tool bar. For more information, refer to toolbar
Parameter in the Editor reference.

Customizing the Menus on the Menu Bar
You may want to customize the menus on the menu bar rather than create action keys
because:

¹ Menus are visible and accessible immediately to the new user

¹ Some menu items can be grayed out and disabled under certain conditions

¹ Menus can be selected with the mouse

¹ If desired, a mnemonic key can be assigned to a menu selection.

¹ If desired, an accelerator key can be assigned to a menu selection.

¹ You can create context-sensitive help for menus.

180 IBM VisualAge�C++ for OS/2 User's Guide

Customising the Editor

To create a new menu and to assign key sequences to each of its selections, use the
set actionbar command. With the set actionbar command, you can add, modify,
and delete menus on the editor window action bar.

The menus and key sequences you create are lost when you close the file. To make
them available each time you start the editor, see “Modifying Editor Behavior
Permanently” on page 185.

Exercise This exercise creates a new menu bar selection called Queries. Pulldown choices
associated with this menu bar selection will query various editor parameters. You can
substitute the command or commands sequence of your choice. Some of the newly
created pulldown choices can be accessed by mnemonic and/or accelerator keys.

1. Press Shift+F9 to open the Issue a Command window.

2. Enter the following command to define the menu bar selection and its first
pulldown choice.

set actionbar.˜Queries.Class 5 query class

The ̃ before the Q designates the Q as being the mnemonic for the menu bar
selection. There is no mnemonic or accelerator key associated with the Class
pulldown menu choice. The new menubar selection is placed to the right of the
fifth selection already on the menu bar.

3. Enter the following command to define another pulldown choice.

set actionbar.˜Queries.F˜onts\tCtrl+Z 5
query fonts

The new pulldown choice uses the letter o as a mnemonic, and displays but does
not define Ctrl+Z as an accelerator key. Use the set action command to define
the accelerator key action. For example:

set action.c-Z query fonts

4. Define one more pulldown menu entry.

set actionbar.˜Queries.˜Block_default 5 query blockdefaulttype'

5. Select the new menu bar choice and its pulldown choices using the mouse,
mnemonic, and accelerator keys as available.

 Chapter 10. Customizing the Editor181

Customising the Editor

Customizing the Keyboard
The editor provides two mechanisms for customizing the keyboard:

¹ The set key command lets you remap the connections between the physical
keyboard and the logical keyboard. This remapping is global and affects all files.

¹ The set action command lets you program the logical keyboard, and assign a
command or set of commands to a key. This programming is file related, so the
same key can have a different effect for different files.

Remapping the Keyboard Using the Set Key Command
Each physical key on the keyboard is mapped to a key on a logical keyboard. By
default, each physical key is mapped onto the corresponding logical key, but this
mapping can be altered with the set key command.

You can use set key to use the editor with a restricted keyboard that does not have
all of the required keys. For example, if your keyboard does not have the F11 and
F12 keys, you can remap the Alt+1 and Alt+2 key combinations to have the same
affect with the following:

set key.A-1 F11
set key.A-2 F12

Similarly, you can use various accented characters that are not on the keyboard by
assigning them to keys:

set key.A-A 132 lowercase a umlaut
set key.C-A 142 uppercase A umlaut

Note: For both Ctrl and Alt keys, you can use uppercase and lowercase. Alt+a and
Alt+A represent the same key combination.

The set key command is sometimes simpler than using set action because the
remapping is global. For example, you could define the Ctrl+H key as the help key
in all files using the following:

set key.C-H F1

Remapping the Keyboard Using the Set Action Command
The editor performs an action associated with a key when it determines which logical
key has been pressed. Many keys have default actions built in, while others are set
by the PROFSYS macro. Any key can be assigned an action using the set action
command. For example, the following command makes the F7 key scroll the text in
a window up one screen:

set action.F7 scroll screen up

Presentation Manager reserves some keys, such as F1 and F10.

182 IBM VisualAge�C++ for OS/2 User's Guide

Customising the Editor

Customizing the Autosave Facility for the Editor
The autosave facility saves a file automatically after a specified length of time has
elapsed or a specified number of changes have occurred. You may want to customize
the autosave facility for each file.

An autosave triggered by time occurs when a specified number of minutes has elapsed
and at least one change has occurred during the elapsed time. The number of minutes
elapsed must be greater than or equal to the duration set by the autotime parameter.

An autosave triggered by changes occurs when a specified number of changes have
occurred. The minimum number of changes is specified by the autocount parameter,
while the autochanges parameter keeps track of the number of changes made. When
the total number of changes as recorded by autochanges is greater than or equal to
autocount, an autosave occurs.

In both cases, the keyboard has to be idle for a number of seconds as set by the
idletime parameter. This ensures that you are not typing data while the editor is
trying to autosave.

Example A file is opened with the following autosave variables:

 ¹ autotime 5
 ¹ autocount 50
 ¹ idletime 2

This means an autosave is triggered every 5 minutes, provided at least one change has
been made. An autosave is also triggered after every 50 changes made to the file,
regardless of the elapsed time. However, no autosave actually takes place unless you
stop typing data for at least two seconds.

Procedure To customize the autosave settings for a file:

1. Find out the current autosave settings with the following commands:

query autocount Gives the number of changes that must occur before each
autosave. This is set by set autocount.

query autonext Gives the number of seconds before the next autosave will
occur.

query autotime Gives the number of minutes that must elapse before each
autosave. This is set by set autotime.

query idletime Gives the number of seconds of no data entry before an
autosave will occur. This is set by set idletime.

 Chapter 10. Customizing the Editor183

Customising the Editor

query autochanges
Gives the number of changes since the last autosave. This
can be changed by set autochanges.

2. Use the appropriate parameters (autotime, autochanges, autocount, and
idletime) to alter the autosave settings.

For example:

set autotime 15

Customizing Editor Fonts and Colors
To customize the colors and fonts used to emphasize different parts of a program
source file, do the following:

1. Select the Options choice from the editor menu-bar.

2. Select the Fonts/colors... choice from the resulting pulldown menu. A window
similar to that shown in Figure 66 appears.

Figure 66. Fonts/Colors Window

184 IBM VisualAge�C++ for OS/2 User's Guide

Customising the Editor

3. Use the selection lists and check boxes to:

¹ Select a base font for the editor window

¹ Select a color scheme for each type of text element.

¹ Select a character emphasis for each type of text element.

For example, Figure 66 on page 184 shows that the color coding for a C
Keyword token is Bright Blue on a White background, with no special
character emphasis.

4. If you want your font and color selections saved for future edit sessions, select
the Save Settings check box. Otherwise, color and font settings will stay in
effect only for the current edit session.

5. When done, click on the OK. button.

Modifying Editor Behavior Permanently
Most customizations remain in effect only for the current edit session. To use your
customizations in future edit sessions, you must save those customizations to a
profile.

Standard Editor Profiles
Much of the editor’s flexibility comes from profiles, which are text files containing
editor commands. Some of the profiles supplied with the editor provide specific
editing features, and run automatically at specified times.

The standard editor profiles are kept in the \IBMCPP\MACROS directory. You can edit
these profiles directly, but always keep a backup. If you change them incorrectly, the
behavior of the editor may be affected.

The following types of profiles are provided:

PROFINIT Sets global settings when the editor is initialized. This profile is
only run once during initialization.

PROFSYS.LX Sets up the editor for each document. It contains commands such as
menu and key setup commands that need to be run only once and
are for all types of files. This profile is run once per document,
before the xxx.LXL and PROFILE.LX profiles. Its contents should
not be altered directly. To customize editor behavior, use the
PROFILE.LX file instead.

xxx.LXS This profile runs whenever a file with filename type xxx is saved,
including autosaves. Use of this profile is optional. For example,
you could create an CPP.LXS profile to be run when files with a
CPP source type are saved.

 Chapter 10. Customizing the Editor185

Customising the Editor

xxx.LXL This is a load profile containing commands (such as parser selection)
specific to files with a certain source type. For example, the C.LXL
load profile is run if a file with a filename extension of C is opened.

PROFILE.LX This is a profile in which you can save your own customization
commands. It is the last standard profile that is run before a file is
opened, and its commands will modify the commands used in
previous profiles.

User-Defined Load Profiles
You can directly modify the IBM-supplied editor load profiles to your own personal
preferences, but your modifications may be lost if you later reinstall the editor. To
avoid losing your load profile modifications, we suggest you do the following:

1. Do not directly modify the xxx.LXL standard load profiles.

2. Instead, create an xxx.LXU user load profile in the\IBMCPP\MACROS directory,
where xxx is the file type to which this profile will apply.

For example, if your personalized load profile is to apply to .CPP files, your
personalized load macro will be called CPP.LXU.

3. In the xxx.LXU, include only the editor commands needed to modify the standard
load profile behavior to your preferences.

4. When you load an editor with file type xxx, the editor will load your xxx.LXU
user load profile immediately after the xxx.LXL standard load profile.

Note: Personalized load profiles can be stored in the\IBMCPP\MACROS directory, but
we recommend that you store them in your own directory. See “Storing Personalized
Profiles” for more information.

Storing Personalized Profiles
Personalized profiles should be stored in your own directory. This helps to ensure
that your profiles will not be lost if you later reinstall the editor. It also simplifies
profile management when the editor is used in a network environment.

To store your profiles in your own directory, do the following:

1. Create a directory in which to store your personal profiles, for example:

mkdir \my_prof

2. Create your personalized profiles and store them in this directory.

3. Add the new directory to the LPATH environment variable in your config.sys
file. If this environment variable does not already exist, create it. For example:

set LPATH=d:\my_prof;d:\lpex\macros;

4. Reboot your OS/2 system.

186 IBM VisualAge�C++ for OS/2 User's Guide

Customising the Editor

Sample Personalized Profile
This exercise saves some of the customizations performed in this chapter to the
PROFILE.LX file.

Perform the following steps:

1. Select the Options choice from the menu bar.

2. Select the Profiles choice from the resulting pulldown menu.

3. Select the User preferences choice from the next menu. The editor will load the
PROFILE.LX file for editing in a new edit window.

Note: To open all active profiles for editing, select the All active choice from
the menu. Be sure you have made backup copies of the standard editor profiles
before you try to edit them.

4. Modify the PROFILE.LX file to contain the following lines. The first line of the
profile must be a comment, as shown. Do not forget the quotation marks around
the each command line.

/* profile.lx */
'set blockdefaulttype rectangle'
'set toolbar.my_button 3 mult ;bottom ;add 5'
'set help. This button adds 5 lines to the bottom of the file.'
'set actionbar.˜Queries.Class 5 query class'
'set actionbar.˜Queries.F˜onts\tCtrl+Z 5 query fonts'
'set action.c-Z query fonts'

5. Save the file and quit the editor. Your new editor customizations will take effect
the next time you start the editor.

6. To cancel your customizations, edit the PROFILE.LX file to remove the unwanted
editor commands. Save the modifed file.

Note: If you later reinstall the editor software, you will lose your customizations.
See “Storing Personalized Profiles” on page 186 for information on how to safely
store your personalized profiles.

 Chapter 10. Customizing the Editor187

Customising the Editor

188 IBM VisualAge�C++ for OS/2 User's Guide

Part 3. Using the Data Access Builder

This part of the User's Guide describes the Data Access Builder, which you can use
to create database access classes.

Chapter 11. Overview .191
Using the Actions Profile . 191
Starting Data Access Builder. 192
Saving a Data Access Builder Session. 192
Saving a Data Access Builder Session under Another Name. 193
Opening a Previously Saved Data Access Builder Session. 193
Displaying Pop-Up Menus in Data Access Builder. 193
Opening the Settings for a Class or Table. 193
Creating Classes from Existing Tables or Views. 193
Generating Code Using Data Access Builder. 197
Viewing Files Generated by Data Access Builder. 198

 Copyright IBM Corp. 1992, 1995 189

190 IBM VisualAge�C++ for OS/2 User's Guide

Using the Data Access Builder

11 Overview

Data Access Builder is an application development tool and classes you use to create
database access classes. You then use these methods with the database access classes
to access a DB2/2 relational database.

Using the Data Access Builder tool, you map your existing relational database tables
to object interfaces. Relational database tables map to a class, and columns of the
table map to class attributes. Foreign keys are mapped as attributes with the value of
the foreign key identifier. Once you've defined your mapping, you can generate code
based on it.

This approach is fast and efficient where you have existing data and want to do a
simple mapping between the data and an object interface.

The database access methods that Data Access Builder generates perform data
manipulation. These methods use static SQL for efficient access. In an application
they allow you to:

 ¹ Add data
 ¹ Delete data
 ¹ Update data
 ¹ Retrieve data.

In addition, Data Access Builder also gives you a set of pre-defined C++ and SOM
classes to:

¹ Connect to the DB2/2 database
¹ Access database tables to manage transactions
¹ Disconnect from the DB2/2 database.

Collectively these are the database access classes.

Using the Actions Profile
Data Access Builder provides an actions profile that you can use for WorkFrame
projects that use the Data Access Builder tool. To use the Data Access Builder
actions profile with a project:

1. Open the VisualAge C++ 3.0 Tools folder.
2. Copy the DAXSAMP Database DLL project from the Database folder in the

Samples folder of VisualAge C++. The project should be copied with a new
project name.

 Copyright IBM Corp. 1992, 1995 191

Using the Data Access Builder

3. Open the new project.
4. Choose Settings from the View menu and fill in the appropriate target and

location (directories) information for the new project.
5. The SQLPrep, compile, link and import library actions are set appropriately to

create the DLL. You need to set the LIB and INCLUDE environment variable to
reference this new project target for any projects that use the DLL. You also
need to copy the DLL produced by this project to a directory on your LIBPATH.
If you generate more than one class for the DLL, you need to create a .def file.
Use the ones generated as an example.

Starting Data Access Builder
You can start Data Access Builder using any of the following methods:

¹ Double click on the Data Access Builder icon in the VisualAge C++ 3.0 Tools
folder.

¹ Choose Data Access Builder from the:

– DATABASE cascade of the Project menu of any WorkFrame-integrated tool
that uses the Data Access Builder actions profile.

– Actions cascade in the system menu of any WorkFrame project that uses the
Data Access Builder actions profile.

¹ Type icsdata from an OS/2 command line, and press Enter.
¹ Select Database from the pop-up menu of any *.dax file in a project.

Saving a Data Access Builder Session
At any time, you can save your Data Access Builder session. All information about
the session is saved.

1. Choose Save from the File menu. If this is the first time you are saving this
session, the Save as window displays.

a. Type the name you want to assign to the session in the Filename entry field.
For example, it is recommended that the file extension be .DAX.

b. Indicate the directory you want the information stored in by selecting one of
the drives in the Drives list box.

c. Choose OK to save the session.
On subsequent saves of the same session, the Save window does not appear. The
session is saved in the name shown in the title bar.

192 IBM VisualAge�C++ for OS/2 User's Guide

Using the Data Access Builder

Saving a Data Access Builder Session under Another Name
At any time, you can save the current Data Access Builder session under a different
name.

1. Choose Save as from the File menu.
2. Type the name you want to assign to this session in the Filename entry field.

For example, it is recommended that the file extension be .DAX.
3. Indicate the directory you want the information stored in by selecting one of the

drives in the Drives list box.
4. Choose OK to save the new session name.

Opening a Previously Saved Data Access Builder Session
1. Choose Open from the File menu.
2. Type the name of the session you want to restart in the Filename entry field.
3. Choose OK to open the session.

Displaying Pop-Up Menus in Data Access Builder
In Data Access Builder, table icons and class icons have pop-up menus.

To display a pop-up menu:

¹ Position the mouse pointer over the icon and click mouse button 2.

Opening the Settings for a Class or Table
¹ Choose Open settings from the pop-up menu, or

¹ Double click on the icon.

Creating Classes from Existing Tables or Views
If you have a table or a view that you want to create a corresponding class for:

1. Create a class following the steps described in “Creating Classes” on page 194.
2. Change the default mapping information following the steps in “Changing the

Mapping between a Table and a Class” on page 195. By default, all columns in
the table are chosen. This step is only necessary if you want to change the
default.

3. Change any settings you want for the class following the steps described in
“Changing the Class Name” on page 194. This step is only necessary if you
want to change the default.

4. Generate the class following the steps described in “Generating Code Using Data
Access Builder” on page 197.

 Chapter 11. Overview 193

Using the Data Access Builder

 Creating Classes
By default, the Startup window displays.

1. Choose the Create classes... push button. The Create classes window displays.
2. Select the database you want to work with from the Databases list box. Choose

the Connect push button. The Tables list box fills with all tables in that
database.

3. Select the table, or tables, you want to create a class for.
4. Choose Create classes. An icon for each table selected and the associated class

is created in Data Access Builder.

Viewing a
Table

You can view the table by looking at its settings notebook. The settings notebook
contains:

¹ Table name and the database it resides in
¹ Column names and their definitions

 ¹ Constraints

To open a table's settings notebook, follow the steps described in “Opening the
Settings for a Class or Table” on page 193.

Deleting the
Table
Mapping

Data Access Builder automatically provides the mapping between a table and a
class. You may decide later to remove the mapping. To delete a mapping:

1. Choose Delete from the class icon's pop-up menu. The class is removed from
Data Access Builder.

Deleting a
Table

Once you have selected a table from the database to use in Data Access Builder,
you may decide not to use it.

To delete a table from Data Access Builder

1. Choose Delete from the table icon's pop-up menu.

Changing the Class Name
1. Choose the Open settings from the class icon pop-up menu.
2. Choose the Name page of the class notebook.
3. Type the name you want to assign to the class in the Class name entry field.

You can also change the File name on the same Name page.

1. Type the name you want to assign to the files in the File name entry field. The
file name should not exceed seven characters. One character is reserved for Data
Access Builder to distinguish generated file contents.

194 IBM VisualAge�C++ for OS/2 User's Guide

Using the Data Access Builder

Changing the Mapping between a Table and a Class
By default, each column in the table is automatically mapped to one attribute in the
class. Changing this default mapping is optional.

Deleting a
Mapping

1. Choose Open settings from the class icon's pop-up menu.
2. Choose the Attributes page of the class notebook.
3. Select the mapping you want to delete from the list.
4. Select the Delete push button.

Adding a
Mapping

If you previously deleted a mapping, you can add that mapping back.

1. Choose Open settings from the class icon's pop-up menu.
2. Choose the Attributes page of the class notebook.
3. Select the mapping you want to add from the list.
4. Select the Add pushbutton to map the table column to the class attribute.

SQL data types are mapped to default C++ data types and IDL data types as follows:

Warning: Data type double is an inexact representation of a decimal field. Errors
could occur due to arithmetic rounding.

Mapping
Tables
without
Primary Keys

The Attributes page of the class notebook shows the details of how the class
maps to the table.

A gold (right-pointing) key indicates the primary key. A grey (left-pointing) key
indicates the foreign key. By default, the gold key is also indicated on the Attributes
page as the data identifier. This is because there must be a value in the primary key
column (not nullable) and the value kept in the column must be unique.

SQL Data Type C++ Data Type IDL Data Type

char IString string <n>
date IString string <10>
decimal double double
double double double
float double double
integer long long
long varchar IString string
smallint short short
time IString string <8>
timestamp IString string <26>
varchar IString string <n>

 Chapter 11. Overview 195

Using the Data Access Builder

Data identifiers are used to identify a row uniquely. Before the update, delete, and
retrieve operations, assign the values to the data identifiers to indicate the row. An
error will occur if the row indicated by the data identifier does not exist. For the add
operation assign values to the data identifier.

If the table does not have a primary key, the first attribute is selected as the default
data identifier. Your applicationmust ensure this attribute contains unique values. If
values kept in the data identifier identify more than one row, errors occur for the
retrieve operation and multiple rows are affected for update and delete operations.

To change the data identifier from its default assignment to your own specified value:

1. Choose Open settings from the class icon pop-up menu.
2. Choose the Attributes page of the class notebook.
3. Select the mapping that contains the attribute to be the data identifier.
4. Click on the Data identifier check box. A check mark appears in the check box.

An icon appears in the Data Id column, indicating that this attribute is the data
identifier.

To remove the data identifier:

1. Choose Open settings from the class icon pop-up menu.
2. Choose the Attributes page of the class notebook.
3. Select the mapping that contains the attribute to be the data identifier.
4. Click on the Data identifier check box. A check mark disappears from the

check box. An icon disappears from the Data Id column.

At least one attribute must be identified as the data identifier.

Changing
Attribute
Names

1. Choose the Open settings from the class icon pop-up menu.
2. Choose the Attributes page of the class notebook.
3. Select the mapping that contains the attribute to be changed.
4. Type the name you want to assign to the attribute in the Attribute Name entry

field.

196 IBM VisualAge�C++ for OS/2 User's Guide

Using the Data Access Builder

Generating Code Using Data Access Builder
You can use Data Access Builder to generate Visual Builder parts, IDL, or both.

Once the source code has been generated it should not be modified. Any manual
changes are lost when the source code is re-generated.

Generating Visual Builder Parts Using Data Access Builder

Generating
the Part

1. Create a class following the steps described in “Creating Classes from Existing
Tables or Views” on page 193.

2. Choose Generate from the class icon's pop-up menu.

The following files are created:
filenamey.cpp C++ source code
filenamev.vbe Visual Builder part information file
filenamev.def Module definition file for creating DLL, if you are running

from the command line
filenamev.hpp C++ header file
filenamev.mak Makefile for the generated files, if you are running Data

Access Builder from the command line.
filenamev.sqc SQL source file

The files are created in the current directory. If files with the same filename
exist in the directory, you are asked whether you want to overwrite them.

Generating IDL Using Data Access Builder
1. Create a class following the steps described in “Creating Classes from Existing

Tables or Views” on page 193.
2. Choose Generate from the class icon's pop-up menu.

The following files are created in the directory that you started Data Access
Builder from:
filenamex.cpp C++ source code
filenamei.idl IDL source code
filenamei.mak Makefile for the generated files if you are running Data Access

Builder from the command line.
filenamei.sqc SQL source file

Note: filename is the name assigned to the class as described in “Changing the
Class Name” on page 194.

 Chapter 11. Overview 197

Using the Data Access Builder

Viewing Files Generated by Data Access Builder
1. Choose View source from the pop-up menu of the class icon. The View source

window displays.
2. Choose the files you want to view.
3. Choose VIEW . The default WorkFrame editor displays the source file.

198 IBM VisualAge�C++ for OS/2 User's Guide

Compiling Your Program

Part 4. Compiling Your Program

This part of the User's Guide describes the input to the compiler, how to compile and
link programs, how to set compiler options, and how to use the compiler listing. It
also describes static and dynamic linking of programs.

Chapter 12. Starting the Compiler . 201
Compiling within WorkFrame . 201
Compiling from the Command Line . 202
Compiling from a Make File . 204

Chapter 13. Controlling Compiler Input . 205
OS/2 Environment Variables for Compiling. 207
Controlling #include Search Paths . 211
Setting the Source Code Language Level. 214

Chapter 14. Controlling Compiler Output 219
Using the Intermediate Code Linker. 225
Inlining User Code . 229
Setting the Calling Convention. 235
Choosing Your Runtime Libraries . 236
Using Precompiled Headers. 239
Controlling the Logo Display on Compiler Invocation. 247
Controlling Stack Allocation and Stack Probes. 247

Chapter 15. Setting Compiler Options . 253
Specifying Compiler Options . 253
Using Parameters with Compiler Options. 255
Scope of Compiler Options. 257
Compiler Option Classification . 263
Compiler Options Summary . 264
Output File Management Options . 268
#include File Search Options. 274
Listing File Options . 276
Debugging and Diagnostic Information Options. 281
Source Code Options . 289
Preprocessor Options .296
Code Generation Options. 299
System Object Model (SOM) Options. 313
Other Options .316

 Copyright IBM Corp. 1992, 1995 199

Compiling Your Program

200 IBM VisualAge�C++ for OS/2 User's Guide

Starting the Compiler

12 Starting the Compiler

The icc command invokes the VisualAge C++ compiler, which takes your C or C++
source code as input and produces an intermediate code file, a preprocessed file, or an
object file. The command also invokes the VisualAge C++ linker to link the object
file into an executable module or a dynamic link library (DLL).

You can invoke the compiler from:

 ¹ WorkFrame
¹ A make file
¹ An OS/2 command line or using a .CMD file

You can also invoke it from within a program by using thesystem function. For
example:

 system("icc myprog.c");

 See the C Library Reference for information about the system function.

To compile without linking, use the icc command with the /C+ option. Then you
can link your program yourself, using either the VisualAge C++ linker or any other
linker that processes IBM 32-bit object files. See Part 5, “Linking Your
Program” on page 319 for more information on linking.

Compiling within WorkFrame
To use the compiler through WorkFrame, do the following:

1. Open the VisualAge C++ folder.

2. Double click on the Project Smarts icon to open the Project Smarts Catalog.

3. In the Project Smarts - Catalog window, select the type of project you want to
build.

If you want to build a type of project that is not listed, you can either pick a
similar project type and then customise its settings, or create one from the
Project template without project-specific defaults, and customise its settings
extensively.

4. Select Create. WorkFrame begins creating the project. The Console window
shows the status of the process. Other windows may appear, for you to provide
additional information about your project.

 Copyright IBM Corp. 1992, 1995 201

Compiling from the Command Line

5. In these other windows, provide specific information in fields where the default
information is unacceptable.

6. Select OK when you are done, in each window.

7. Your project becomes an icon on the desktop, or in a folder if you specified a
different destination. Find your project.

8. Double click on your project icon. The Project Window appears.

At this point you can customise settings for the project, if the default settings for
the project type are unacceptable. The Options menu contains choices that allow
you to specify the actions available to the project, and compiler and linker
options. Use Build Smarts to set options for a standard task. Use the Compiler
and Linker Options dialogs to set options on an individual basis.

9. Select Build from the Actions menu. Your project is created, with the compiler
and linker invoked as required.

Compiling from the Command Line
The syntax for the icc command is as follows:

55──icc─ ──┬ ┬──@response_file ────────────────────────── ─5%
 │ │┌ ┐──
 │ ││ │┌ ┐─────────────
 └ ┘ ───6 ┴───6 ┴┬ ┬───────── ──┬ ┬───────────────────

└ ┘──/option ├ ┤─source────────────
 ├ ┤─intermediate_file─
 ├ ┤─object────────────
 ├ ┤─library───────────
 └ ┘─def_file──────────

Depending on how you want to compile your files and how you have set up the ICC
environment variable, many of the parameters used with the icc command are
optional when you issue the command from a command line.

For example, to compile and link the program bob.c, you would enter the following:

 icc bob.c

An object code file bob.obj, and an executable file bob.exe are created.

202 IBM VisualAge�C++ for OS/2 User's Guide

Compiling from the Command Line

For a list of all the VisualAge C++ compiler options see “Compiler Options
Summary” on page 264. This summary is also available in the online version of the
User's Guide. You can jump directly to the summary (or any other topic) from the
command line with the view command, followed by the book name (cppug.inf) and
the topic name. For example:

view cppug compiler options

You can also access an options summary with the/? option. Go to an OS/2
command line and type:

 icc /?

This listing is printed to stderr, but you can use the OS/2 redirection symbols to
redirect it to stdout or to a file.

Note: The listing generated by this command is not intended to be used as a
programming interface.

Using Response Files
Instead of specifying compiler options and source files on the command line, you can
use a response file. A response file is a text file that contains a string of options
and file names to be passed to icc. (The string does not specify icc itself.) For
example, a response file that contains the single line:

/Sa /Fl catherine.c

would give the following command line:

icc /Sa /Fl catherine.c

A response file can have any valid file name and extension. To use the response file,
specify it on the icc command line preceded by the at sign (@). For example:

 icc @d:\response.fil

No space can appear between the at sign and the file name. You can use multiple
response files, and even call another response file from within a response file. You
can mix response files with other input on the command line. Options and file names
set in the ICC environment variable are still used.

The command string in a resource file can span multiple lines. No continuation
character is required. The string can also be longer than the limit imposed by the
OS/2 command line. In some situations you may need to use a response file to
accommodate a long command line, such as when you use the intermediate code
linker or compile C++ code containing templates.

 Chapter 12. Starting the Compiler203

Because the compiler appends a space to the end of each line in the response file, be
careful where you end a line. If you end a line in the middle of an option or file
name, the compiler may not interpret the file as you intended. For example, given
the following response file:

 /Sa /F
 l catherine.c

the compiler would construct the command line:

icc /Sa /F l catherine.c

The compiler would then generate an error that the /F option is not valid, and would
try to compile and link the filesl.obj and catherine.c.

Compiling from a Make File
Use a make file to organize the sequence of actions (such as compiling and linking)
required to build your project. You can then invoke all the actions in one step. The
NMAKE utility can save you time by performing actions on only the files that have
changed, and on the files that incorporate or depend on the changed files. See
Chapter 58, “Program Maintenance Utility (NMAKE)” on page 815 for more
information.

You can write the make file yourself, or you can use WorkFrame to manage the make
file. When you build through WorkFrame, a make file is created and maintained
automatically.

204 IBM VisualAge�C++ for OS/2 User's Guide

Compiler Input

13 Controlling Compiler Input

This section describes the methods you can use to control input to the compiler.

Compiling Programs with Multiple Source Files
To compile programs that use more than one source file, specify all the file names on
the command line. For example, to compile a program with three source files
(mainprog.c, subs1.c, and subs2.c), type:

icc mainprog.c subs1.c subs2.c

The source file containing the main module can be anywhere in the list. The
executable output file will have the same name as the first source file name but with
the extension .exe. In the example above, the executable file will be mainprog.exe.

You can compile a combination of C and C++ files. For example:

icc cprog.c cppprog.cpp cxxprog.cxx othprog.oth

The file extension determines whether the file is compiled as a C file (.c or any other
unrecognized extension) or as a C++ file (.cpp or .cxx). In the example above,
cprog.c and othprog.oth are compiled as C files, and cppprog.cpp and
cxxprog.cxx are compiled as C++ files.

You can also use the /Tc, /Tp, and /Td options to specify whether a file is a C or
C++ file, regardless of its extension. The/Tc and /Tp options apply only to the file
name immediately following the option, and specify that the file is a C file (/Tc) or a
C++ file (/Tp). For example, given the following command line:

icc /Tc cprog.cpp cppprog.cpp /Tp cxxprog.c

cprog.cpp is compiled as a C file, and cppprog.cpp and cxxprog.c are compiled as
C++ files.

The /Td option applies to all files that follow it on the command line. Use /Tdc to
specify that all source and unrecognized files that follow are to be treated as C files,
or /Tdp to specify that they are to be treated as C++ files. (You can specify /Td to
return to the default handling of files.)

 Copyright IBM Corp. 1992, 1995 205

File Types

Option Behavior
/Tc Compile next file as C file.
/Tp Compile next file as C++ file.
/Tdc Compile all subsequent source files and unrecognized files as C files.
/Tdp Compile all subsequent source files and unrecognized files as C++ files.
/Td Compile *.c and unrecognized files as C files.

Compile *.cpp and *.cxx as C++ files.

For example, given the following command line:

icc /Tdp cxxprog.c othprog.oth /Td newprog.new

cxxprog.c and othprog.oth are compiled as C++ files, and newprog.new is
compiled as a C file because /Td reset the default handling of files (files with
unrecognized extensions are treated as C files).

 File Types
The VisualAge C++ compiler uses file extensions to distinguish between the different
types of file it uses. The default file extensions are:

.asm assembler listing file

.c C source file

.cpp C++ source file

.cxx C++ source file

.ctn temporary file

.def definition file

.dll dynamic link library

.exe executable file

.h C header file

.hcp precompiled header file

.hpp C++ header file

.i preprocessor output file

.l temporary file

.lst listing file

.lib library file

.m temporary file

.map map file

.obj object file

.pdb browser file

.w intermediate file

.wh intermediate file

.wi intermediate file

.wit temporary file

.wli temporary file

.ws intermediate file

206 IBM VisualAge�C++ for OS/2 User's Guide

OS/2 Environment Variables

For example, when you are using VisualAge C++ defaults, the command:

icc module1.c module2.obj mylib.lib mydef.def

compiles the source code file module1.c and produces the object file module1.obj.
When the linker is invoked, the object files module1.obj (created during this
invocation of the compiler) and module2.obj (created previously), the library file
mylib.lib, and the definition filemydef.def are passed to the linker. The result is
an executable file called module1.exe.

Using Wildcards in File Names
You can use wildcards (* or ?) in the name for any input file. Use * to stand for
zero or more unknown characters. Use ? to stand for exactly one unknown character.

For example,

icc module?.c my*.lib mydef.def

compiles all source code files that begin with module plus one additional character
(such as module1.c and module2.c) and generates object files, with names derived
from the source files (for example, module1.obj and module2.obj). When the
linker is invoked, the object files are linked with all libraries that begin with my (such
as mylib.lib and myothr.lib).

You cannot use wildcards in the name for an output file. Either accept the default
output filenames, or specify an output filename in full.

OS/2 Environment Variables for Compiling
The VisualAge C++ compiler checks the OS/2 environment variables for path
information and for the default values of compiler options. If the VisualAge C++
installation program updated your CONFIG.SYS file, many of the environment
variables already have values for the compiler to use. If the program did not update
CONFIG.SYS, you can set these values by running the CSETENV.CMD file in your
OS/2 session before using the compiler.

Some environment variables, for example ICC, are optional. They are not added to
your CONFIG.SYS file or to CSETENV.CMD for you.

The environment variables described in this section are called the compiler
environment variables. A number of environment variables are also used at run time.

 See the Programming Guide for more information on the runtime environment
variables.

 Chapter 13. Controlling Compiler Input 207

OS/2 Environment Variables

The following OS/2 environment variables affect the operation of the VisualAge C++
compiler during compilation.

DPATH Lists the directories that the compiler searches for help and message files.

ICC Sets compiler options and file names. See “Specifying Compiler
Options” on page 253 for a detailed description of the ICC variable.

ILINK Sets options that the VisualAge C++ linker uses when it links the object
files that the compiler generates. The options in this variable are
processed after the options on the command line, but before any options
in the ICC environment variable. If some options conflict, the option that
was processed last takes effect.

Note: You cannot specify file names in the ILINK environment variable.
If you invoke the linker through the compiler, you can specify file names
for the linker in ICC.

INCLUDE Lists directories that the compiler searches for header files.

LIB Lists directories that the linker searches for library (.LIB) files. This
should include the directory that contains the VisualAge C++ libraries,
and the directory that contains the Toolkit's OS2386.LIB library.

LIBPATH Lists directories that executables (including the compiler and linker)
search for DLLs that they use to run.

LOCPATH Lists directories that the setlocale() function uses to locate locale
data. See the Programming Guide for more information on creating
locales and using the setlocale() function. See Chapter 53,
“LOCALDEF Utility” on page 689 for information on using the
LOCALDEF utility.

PATH Lists the directory (or directories, separated by semicolons) to be searched
for executable files when the compiler is invoked. This variable should
include the directories containing VisualAge C++ executables, for
example the VisualAge C++ compiler (icc.exe) and linker (ilink.exe)
executable files.

TMP Sets the directory where the VisualAge C++ compiler places all its
temporary work files. This directory might also be used by other
applications that generate temporary files. If this variable is undefined,
the compiler uses the current directory. If you installed the compiler on a
LAN, temporary files are stored in your local directory. The work files
created by the compiler are normally erased at the end of compilation;
however, if an interruption occurs during compiling, these work files may
still exist after the compilation ends. If you set the TMP variable, you
eliminate the possibility of work files being scattered around your file
system.

208 IBM VisualAge�C++ for OS/2 User's Guide

OS/2 Environment Variables

You may be able to reduce compile time by setting TMP to point to a
virtual disk (also called a RAM disk). See the OS/2 documentation for
information on using the VDISK device driver to create a virtual disk.

Setting Environment Variables
Use the OS/2SET command to give values to environment variables. Set the
LIBPATH variable, and all DEVICE statements, in CONFIG.SYS. You can set other
variables in any of three places:

CONFIG.SYS file
Add a line that sets the environment variable to the value you want. For
example,

 SET TMP=C:\IBMCPP\TMP

If the environment variable already exists in CONFIG.SYS, add the
VisualAge C++ values to the existing variable. You can also have the
VisualAge C++ installation program update CONFIG.SYS for you.

Environment variables specified in CONFIG.SYS are in effect for every session
you start. This is a good place to specify variables that you want to apply each
time you compile.

CSETENV.CMD file
The VisualAge C++ installation program creates this OS/2 command file. You
must invoke this file in each session where you will use VisualAge C++. The
variables set by CSETENV.CMD are in effect only for the session or sessions
in which it is invoked.

If the installation program updated your CONFIG.SYS file, CSETENV.CMD
contains commands to set the TMP and TZ variables only. If the installation
did not update CONFIG.SYS, CSETENV.CMD contains statements to set up all
the VisualAge C++ environment variables.

You can add environment variables of your choice to this file, to specify
variables that you always use without having to type them individually on the
command line. The variables in this file override environment variables in the
CONFIG.SYS file. To avoid overriding values in CONFIG.SYS, append the
original value of the variable using %variable%, as shown in this PATH
statement:

 SET PATH=C:\IBMCPP\BIN;%PATH%

 Chapter 13. Controlling Compiler Input 209

OS/2 Environment Variables

command line
When the SET command is used on the OS/2 command line, the values you
specify are in effect only for that OS/2 session. They override values
previously specified in CONFIG.SYS or CSETENV.CMD. You can append the
original value of the variable using %variable%.

Example The following example could be used in the CSETENV.CMD file or on the
command line. If the executable files that make up the compiler are in
C:\IBMCPP\BIN, the following command adds this directory to the PATH variable:

 SET PATH=C:\IBMCPP\BIN;%PATH%

This command makes C:\IBMCPP\BIN the first directory searched by the OS/2
operating system (after the current directory). To put the new directory at the end of
the search sequence, put %PATH% before the new directory name.

File Names in ICC
In addition to compiler options, you can also put file names into the ICC variable.
For example, if you specify:

SET ICC=test.c check.c

the command

 icc main.c

causes test.c, check.c, and main.c to be compiled and linked, in that order. You
can also specify intermediate files (created with the /Fw option) in ICC. They are
treated like source files.

If you specify library (.LIB), object (.OBJ), or module definition (.DEF) files in ICC,
they are passed to the linker when the compiler invokes it.

210 IBM VisualAge�C++ for OS/2 User's Guide

Controlling #include Search Paths ¹#include File Name Syntax

Controlling #include Search Paths
The #include preprocessor directive allows you to retrieve source statements from
secondary input files and incorporate them into your program.

You can nest #include directives in an included file. You can have up to 127 levels
of nesting in a C file (128 including the main level), and up to 255 levels of nesting
in a C++ file (256 including the main level), when using the VisualAge C++
compiler.

Compiler options and environment variables let you choose the disk directories
searched by the compiler when it looks for #include files.

This section describes how to specify #include file names and how to set up search
paths for these files.

 #include Syntax

55──#include─ ──┬ ┬──<filename> ─5%
└ ┘──"filename"

In the above figure, angle brackets indicate a system #include file, and quotation
marks indicate a user #include file.

#include File Name Syntax
You can specify any valid OS/2 file name in a #include directive. The file name
must be sufficiently qualified (have enough of a path) for the compiler to be able to
locate the file. In some cases, an unqualified or partially qualified file name may be
sufficient, for example:

 #include "..\HEADERS\myheader.h"

In other cases, you may have to include the entire path name.

 Chapter 13. Controlling Compiler Input 211

If a path name is too long to fit on one line, you can place a backslash (\) as a
continuation character at the end of the unfinished line to indicate that the current line
continues onto the next line. The backslash can follow or precede a directory
separator, or divide a name. For example, to include the following file as a user
#include file:

 c:\cset\include\mystuff\subdir1\subdir2\subdir3\myfile.h

You could insert one of the following #include directives in your program:

 #include "c:\cset\include\mystuff\subdir1\sub\
 dir2\subdir3\myfile.h"

or

 #include "c:\cset\include\mystuff\subdir1\\
 subdir2\subdir3\myfile.h"

Notes:

1. The continuation character (\)must be the last non-white-space character on the
line. (White space includes any of the space, tab, new-line, or form-feed
characters.) The line cannot contain a comment.

2. The continuation character (\), although the same character as the directory
separator, does not take the place of a directory separator or imply a new
directory.

Ways to Control the #include Search Paths
You can control the #include search paths in three ways:

¹ Use the /I, /Xc, and /Xi compiler options on the command line when invoking
the compiler.

¹ Use the /I, /Xc, and /Xi compiler options in the ICC environment variable.
¹ Specify the search paths in the INCLUDE environment variable.

For more information on the compiler options/I, /Xc, and /Xi, see “#include
File Search Options” on page 274.

212 IBM VisualAge�C++ for OS/2 User's Guide

#include Search Order

#include Search Order
When the compiler encounters either a user or system #include file statement with a
fully qualified file name (full path and file name), it looks only in the directory
specified by the name.

User #include Files

When the compiler encounters a user #include file specification that is not fully
qualified, it searches for the file in the following places, in order:

1. The directory of the original top-level file.

2. Any directories specified using /I that have not been removed with /Xc.
Directories specified in the ICC environment variable are searched before those
specified on the command line.

3. Any directories listed in the INCLUDE environment variable, unless you
specified the /Xi option.

System #include Files

When the compiler encounters a system #include file specification that is not fully
qualified, it searches for the file in the following places, in order:

1. Any directories specified using /I that have not been removed with /Xc.
Directories specified in the ICC environment variable are searched before those
specified in the command line.

2. Any directories listed in the INCLUDE environment variable, unless you
specified the/Xi option.

Accumulation of Options
The #include search options are cumulative between the ICC and INCLUDE
environment variables and the command line. For example, given the following ICC
and INCLUDE environment variables:

 ICC=/I\rosanne
 INCLUDE=c:\kent;\alan

and the following command line:

icc /Xi+ /Ic:\connie test.c /Xi- /Xc /Id:\dal f:\moe\marko\jay.c

 Chapter 13. Controlling Compiler Input 213

Setting the Language Level

The #include files are processed as follows:

User #include files

Any user #include files referenced intest.c are searched for first in the current
directory, then in the directory \rosanne, and then in c:\connie. Because of the
/Xi option, none of the directories in INCLUDE are searched.

Any user #include files referenced in jay.c will be searched for in the following
directories, in the given order: f:\moe\marko, d:\dal, c:\kent, and \alan. The
directories in INCLUDE are searched because the /Xi- option overrides the /Xi+
option specified previously. The /Xc option removes the directories \rosanne and
c:\connie from the current search path.

System #include files

Any system #include files referenced in the filetest.c are searched for first in the
directory \rosanne and then in the directory c:\connie. Because of the /Xi+
option, none of the directories in INCLUDE are searched.

Any system #include files referenced in the filef:\moe\marko\jay.c will be
searched for first in thed:\dal directory, then in the c:\kent directory, and finally
the \alan directory. The directories in INCLUDE are searched because the /Xi-
option overrides the /Xi+ option specified previously. The /Xc option removes the
directories \rosanne and c:\connie from the current search path.

Setting the Source Code Language Level
You can set the language level of your source code to one of the following levels:

ANSI Compile according to a strict interpretation of the ANSI standard.
Use this level when you want your code to be portable to other
compilers.

C SAA Level 2 Compile according to the SAA Level 2 standard. Use this level
when you want your code to be portable to other IBM compilers.

 Extended Allow extended language features, allow non-standard language
usage. Use this level when you are compiling code ported from
another compiler, or when you are compiling code that does not
need to be portable. If you will be compiling and running your
code primarily on the personal computer platform, you should use
the extended language level.

C++ Compatible Allow older versions of the C++ language. Use this level when you
are compiling older code.

214 IBM VisualAge�C++ for OS/2 User's Guide

Setting the Language Level

The levels are described in detail below. You can set the level using compiler
options either on the command line or in ICC, or by using a#pragma langlvl
directive. Note that a #pragma langlvl directive in your source code overrides any
conflicting compiler options. When you set the language level, you also define the
macro associated with that level. The SAA C standards conform to the ANSI
standards, but also feature some additional elements.

 ANSI
Allow only language constructs that conform to ANSI C standards or, for C++ code,
that conform to the standards in the ANSI working paper on C++ standards. All
non-ANSI constructs cause compiler errors.

Use this language level to write code that is portable across ANSI-conforming
systems. If your code is error-free at this level, it should be error-free with any other
compiler.

Note: Because VisualAge C++ has a strict interpretation of the ANSI standard, it
can find errors in code that compiles cleanly with other compilers. If you are porting
code into VisualAge C++, compile with the Extended language level.

To set this language level, use either the /Sa option or #pragma langlvl(ansi),
which define the macro __ANSI__.

SAA Level 2
C Allow only language constructs that conform to SAA Level 2 C standards. This

language level is valid for C code only, because there is no SAA standard for C++.
SAA constructs include all those allowed under the ANSI language level, because the
SAA C standard conforms to the ANSI standard. All non-SAA constructs cause
compiler errors. This language level supports some additional library functions, and
specifies some behaviors that are left as implementation-defined by the ANSI
standard. See the Language Reference for a full description of the SAA C
standard.

Use this language level to write code that is portable across SAA systems. If your
code is error-free at this level, it should be error-free with any other IBM compiler.

To set this language level, use either the /S2 option or #pragma langlvl(saal2),
which define the macro __SAA_L2__.

Note: You can also use #pragma langlvl(saa), which defines the macro __SAA__.
This level allows constructs that conform to the most recent SAA C definition.
Because Level 2 is currently the most recent definition, the __SAA__ and __SAA_L2__
macros are equivalent at this time.

 Chapter 13. Controlling Compiler Input 215

Setting the Language Level

 Extended
Allow all VisualAge C++ language constructs. These include all constructs that fall
under the ANSI and SAA Level 2 language levels and the VisualAge C++ extensions
to those standards. This level also allows certain OS/2 library functions. See the
Programming Guide for more information.

Use the Extended language level when you are creating code that does not need to be
portable, or when you are porting code into VisualAge C++ from another compiler or
platform. Extended is the default language level.

To explicitly state this default (for example, on the command line to override a
setting in ICC), use the/Se option or #pragma langlvl(extended), which define
the macro __EXTENDED__.

 Compatible
C++ Allow constructs and expressions that were allowed by earlier levels of the C++

language. This language level is valid for C++ code only.

When the language level is set to compatible:

¹ Classes declared or defined within classes or declared within argument lists are
given the scope of the closest non-class.

¹ typedefs and enumerated types declared within a class are given the scope of the
closest non-class.

¹ The overload keyword is recognized and ignored.
¹ An expression showing the dimension in a delete expression is parsed and

ignored. For example, given:

delete [20] p;

20 is ignored.
¹ Conversions from const void* and volatile void* to void* are allowed. At

other language levels, these conversions would require an explicit cast.
¹ Where a conversion to a reference type uses a compiler temporary type, the

reference need not be to a const type.
¹ You can bypass initializations as long as they are not constructor initializations.
¹ You can return a void expression from a function that returns void.
¹ operator++ and operator-- without the second zero argument are matched

with both prefix and postfix ++ and --.
¹ You can use the $ character in identifiers. Note that you can also use $ in C++

files when the language level is set to extended.
¹ In a cast expression, the type to which you are casting can include a storage class

specifier, function-type specifier (inline or virtual), template specifier, or
typedef. At other language levels, the type must be a data type, class, or
enumerated type.

216 IBM VisualAge�C++ for OS/2 User's Guide

Setting the Language Level

¹ You can have a trailing comma in a list of enumerators, for example, enum E {e
, };.

¹ Given the expressionclass A *a = new(x) A[100];, the compiler looks for a
member operator new because the placement syntax (new(x)) is used. The
member operators are not typically used to allocate arrays.

¹ You can use the comma operator in a constant expression. This allows comma
expressions to be used in places likecase labels and array bounds, where they
are normally prohibited.

¹ You can declare a member function using both the inline and static keywords,
for example, inline static void sandra :: pete(void);. Thestatic
keyword is ignored.

¹ No error is generated if a function declared to return a non-void type does not
contain at least one return statement. Such a function can also contain return
statements with no value without generating an error.

¹ If two pointers to functions differ only in their linkage types, they are considered
to be compatible types.

Use this language level to write code that is portable to systems with older
implementations of C++, or to port older code to the VisualAge C++ product.

To allow older C++ constructs, use the /Sc option or #pragma langlvl(compat),
which define the macro __COMPAT__.

 Chapter 13. Controlling Compiler Input 217

Setting the Language Level

218 IBM VisualAge�C++ for OS/2 User's Guide

Compiler Output

14 Controlling Compiler Output

The VisualAge C++ compiler can generate the following output:

¹ An object module for each C/C++ source file input.

¹ One executable module (or dynamic link library).

¹ A listing file for each C/C++ source file that contains information about the
compilation.

¹ Preprocessed header files.

¹ Template-include files. See the chapter on generating template-include files
in the IBM VisualAge�C++ for OS/2 Programming Guide for more information
about these files.

¹ A linker map file.

¹ A preprocessor output file for each C/C++ source file. You can use this output
file for debugging information.

Note: This information is not intended to be used as a programming interface.

¹ An assembler listing file for each C/C++ source file. The format of the listing is
in the style of the MASM 5.1 assembler input. The C/C++ source is annotated in
the listing. Assembler listings will not always compile, especially if reserved
MASM keywords are used as external variables or functions.

Note: This listing is not intended to be used as a programming interface.

¹ A browser listing file for use by the VisualAge C++ browser.

¹ Intermediate code files. Four files (.w, .wh, .wi, .ws) are produced per source
file.

Note: These files are not intended to be used as a programming interface.

 ¹ Temporary files.

Note: These files are not intended to be used as a programming interface.

¹ Diagnostic information about possible programming errors.

Note: This information is not intended to be used as a programming interface.

¹ Messages (for example, the IBM logo and help messages).

¹ A return code (0 for a compile without errors).

 Copyright IBM Corp. 1992, 1995 219

Compiler Output

 Object Files
The object files that are produced by VisualAge C++ compiler can be linked to create
either executable (.EXE) files or dynamic link libraries (.DLL files). Use the /Ge+
option to create an executable file or /Ge- to create a DLL. See “Code
Generation Options” on page 299 for more information on using compiler options to
specify the type of object file to be created.

Optimizing Object Code: VisualAge C++ compiler can perform many optimizations,
such as local and global optimizations, function inlining, and instruction scheduling
on object code. Use the /O+ option to generate code that executes as fast as possible.
By default, optimization is turned off (/O-). When you specify /O, you can also
specify:

/Oc Optimize code for size as well as speed.

/Os Invoke the instruction scheduler. Turned on by default when you specify /O.

By default, /O also sets /Oi to inline user functions qualified with the _Inline or
inline keywords.

The compiler can perform more complete optimization when you specify/Ol, to
invoke the intermediate code linker.

Specify /Gl to perform additional optimization during the linking step, by removing
unreferenced functions. See Chapter 17, “Optimized Linking” on page 333 for
more information on linker optimizations.

 See “Code Generation Options” on page 299 for more information on using
compiler options to control optimization. For more information on how you can
optimize your code, see the chapter on optimizing code in the Programming
Guide.

Generating Debugger Information: The information necessary for running the
VisualAge C++ Debugger can be placed in the object file produced by the compiler
using the /Ti+ option. To include the debugger information in the executable file or
DLL, use the /DE linker option. If you use icc to invoke the linker and specify
/Ti+, the /DE option is automatically passed to the linker.

When you use /Ti+, do not turn on optimization (/O+, /Oc+, /Oi+, or /Os+), unless
you are using the information with the performance analyzer, and not with the
debugger. Because the compiler produces debugging information as if the code were
not optimized, the information may not accurately describe an optimized program
being debugged, which makes debugging difficult. Accurate symbol and type
information is not always available.

220 IBM VisualAge�C++ for OS/2 User's Guide

Compiler Output

If you cannot avoid debugging an optimized program, turn the scheduler off (/Os-),
and step through the program at the assembly level, using the Register and Storage
windows for information.

To make full use of the VisualAge C++ Debugger, set optimization off and use the
/G3 option. (Note that these are the defaults.)

 See “Debugging and Diagnostic Information Options” on page 281 for more
information on using compiler options to control the generation of debugging
information.

 See Part 6, “IBM VisualAge C ++ Debugger” on page 393 for more information
on the VisualAge C++ debugger.

Generating Performance Analyzer Information: To include the information
required by Performance Analyzer in the object file, use both the/Ti+ and /Gh+
options. To include the Performance Analyzer information in the executable file or
DLL, use the /DE linker option. If you use icc to invoke the linker and specify
/Ti+, the /DE option is automatically passed to the linker.

When you specify /Gh+, the compiler generates a call to a profiling hook function as
the first instruction in the prolog of each function. There are two profiling hook
functions:

_ProfileHook32 Profile hook for all 32-bit functions.

_ProfileHook16 Profile hook for all 16-bit callback functions. These functions are
defined with either the _Far16 __cdecl or _Far16 _Pascal linkage
keywords.

Other profiler vendors who plan to support the VisualAge C++ product must provide
their own profiling hook functions to gather all necessary runtime information.

Generating Browser Information: To create browser information, use the/Fb+
option to produce .PDB files that the browser can use to display information about
your program.

If you use icc to invoke the linker and specify /Fb, the /BROWSE option is
automatically passed to the linker.

If you are compiling only, you must specify the /BROWSE option directly, when you
link, to

 See “Creating Files to Use with the Browser” on page 559 for more information
on generating browser files, and the differences between /Fb and /Fb*.

 Chapter 14. Controlling Compiler Output221

Compiler Output

 Executable Files
By default, the compiler generates one executable file for each compiler invocation.
If you specify /C+, the compiler generates only object files, which you can then link
separately to create an executable file.

There are two types of executable files:

¹ Those that run in the VisualAge C++ runtime environment.

This is the default, and most C and C++ applications run under this environment.
It supports all the VisualAge C++ runtime functions and automatically provides
initialization, exception management, and termination routines for C and C++.

¹ Those that run as subsystems.

Programs developed as subsystems can only make use of a subset of the
VisualAge C++ runtime library. You have to take care of initialization,
exception management, and termination using OS/2 services and APIs.

Subsystems are intended for developing applications that cannot have a resident
environment, such as PM display and printer drivers. If your application does
not require the VisualAge C++ runtime environment, you can also use the
subsystem library to reduce your program's size and improve its performance. To
compile a subsystem executable file, use the/Rn option.

For more information on subsystems and their uses, see the chapter on
developing subsystems in the Programming Guide. For information on the
compiler options used to produce subsystems, see “Code Generation Options” on
page 299.

You can use several compiler options to change the executable file created by the
compiler (see “Code Generation Options” on page 299 for more information).

 Compiler Listings
When you compile a program, you can produce a listing file that contains information
about the source program and the compilation. You can use this listing to help you
debug your programs.

Note: The compiler listing file is not intended to be used as a programming
interface.

222 IBM VisualAge�C++ for OS/2 User's Guide

Compiler Output

At the very minimum, the listing will show the options used by the compiler, any
error messages, and a standard header that shows:

¹ The product number
¹ The compiler version and release number
¹ The date and time compilation commenced
¹ A list of the compiler options in effect.

For information on how to use compiler options to specify the information and format
of this file, see “Listing File Options” on page 276.

 Temporary Files
The VisualAge C++ compiler creates and uses temporary files during compilation.
Temporary files are usually erased at the end of a successful compilation; however, if
the compilation is interrupted, these files may be left on the disk. They are located in
the path specified by the TMP environment variable. If you use memory files and
they overflow to the disk, they will also be located in the path specified by TMP. If
this variable is undefined, the compiler uses the current directory. For more
information on the TMP variable, see “OS/2 Environment Variables for
Compiling” on page 207 and the chapter on run-time environment variables in the
IBM VisualAge�C++ for OS/2 Programming Guide.

Compilation time may be improved if you specify a virtual disk as the location for
the temporary files.

Note: Do not copy the compiler executables onto a virtual disk. They are already
preloaded.

 See the OS/2 documentation for information on using theVDISK device driver to
create a virtual disk.

 Messages
You can use compiler options to control:

¹ The level of error message that the compiler outputs and that increments the error
count maintained by the compiler (with the /Wn option).

¹ How many errors are allowed before the compiler stops compiling (with the /Nn
option).

¹ The diagnostics run against the code (with the /Wgrp option).

See the online User's Guide for a list of compiler error messages.

See “Debugging and Diagnostic Information Options” on page 281 for more
information on using the compiler options to control messages.

 Chapter 14. Controlling Compiler Output223

Precompiled Header Files

 Return Codes
VisualAge C++ compiler returns the highest return code it receives from executing
the various phases of compilation. These codes are:

Code Meaning

0 The compilation was completed, and no errors were detected. Any
warnings have been written to stdout. Your executable file should run
successfully.

12 Error detected; compilation may have been completed; successful execution
impossible.

16 Severe error detected; compilation terminated abnormally; successful
execution impossible.

20 Unrecoverable error detected; compilation terminated abnormally and
abruptly; successful execution impossible.

If the error code is greater than 20, contact your IBM service representative.

For every compilation, the compiler generates a return code that indicates to the
operating system the degree of success or failure it achieved.

Precompiled Header Files
You can use the /Fi+ compiler option to create or recreate precompiled versions of
header files used during that compilation.

To use the precompiled header files, specify the/Si+ option. You can specify a
name for the precompiled header object and a directory. If you do not specify a
name or directory, the precompiled header files are stored in the current working
directory, with the name csetc.pch (for C files) or csetcpp.pch (for C++ files).

For more information on generating and using precompiled headers, see “Using
Precompiled Headers” on page 239.

Note: In the previous version of C Set++, it was possible to use the same
precompiled header file for both C and C++ files. This is no longer possible with
VisualAge C++ version 3.0.

224 IBM VisualAge�C++ for OS/2 User's Guide

Using the Intermediate Code Linker

When you use precompiled header files, the following restrictions apply:

¹ You cannot use the same precompiled header file for C and C++ programs.

¹ To create a precompiled header file, the compiler process must have write
permission to the directories you specify, or to the current working directories if
none are specified. To use a precompiled header, the compiler process must have
read permission for that file.

¹ Precompiled header files do not appear in any listing files.

¹ If you specify /P+ to run the preprocessor only, the /Fi and /Si options are
ignored.

Using the Intermediate Code Linker
The intermediate code linker combines the information in all .w, .wh, .wi, and .ws
intermediate code files into one set of files which is then used by the compiler to
optimize the code and generate a single object file.

In addition to the optimizations performed by the intermediate linker itself, using this
linker exposes more of your program to the optimizer at a time. The optimizer can
then generate more efficient code. Using the intermediate linker can result in
improved code optimization, especially where inlining is used, and better program
performance. Note that using the intermediate linker on code being compiled into an
.EXE file results in better performance improvements than if the same code were
being compiled into a .DLL file.

The intermediate linker also performs more thorough error checking than the compiler
can perform on its own. See “Error Checking” on page 228 for more
information.

To use the intermediate linker, specify the/Ol+ option on the icc command line.
For best results, use the /Gu option, as described in “Using the /Gu Option” on
page 227, and specify /O+ to turn optimization on.

Note: Because optimization limits the generation of debugging information, use /O-
if you want to debug your program. The/Ol option does not affect debugging
information.

Given the following command:

icc /O+ /Ol+ vij.c thomas.c tim.c

the compiler:

1. Compiles each source file into a set of intermediate code files (.w, .wh, .wi, and
.ws files).

 Chapter 14. Controlling Compiler Output225

Using the Intermediate Code Linker

2. Invokes the intermediate code linker to link the intermediate code files of all
three source files.

3. Optimizes the code.
4. Creates one object module for all three files and names it after the first file

specified on the command line (vij.obj). (You can change the name of the
object file using the /Fo option.)

5. Invokes the linker to create an executable module (vij.exe). (You can change
the name of the executable file using the/Fe option.) If you want to link your
object files separately, use the/C+ option on the icc command line. You can
then invoke the linker as you would for any other object file.

Intermediate code files
Instead of creating an object file directly, you can use the /Fw+ option to create and
save the intermediate code files to be linked by the intermediate linker at a later time.
When you use /Fw+, compilation stops when the intermediate files are created. For
example:

icc /Fw+ brian.c jim.c

creates only the intermediate files for brian.c and jim.c. No object or executable
modules are created.

The /Fw option also takes an optional file-name parameter that lets you specify the
file name for the intermediate files. For example:

icc /Fwtony jeff.c

names the resulting intermediate files for jeff.c to tony.w, tony.wh, tony.wi, and
tony.ws. Note that there is no space allowed between /Fw and the file-name
parameter.

You can specify existing intermediate files on the icc command line to run the
intermediate linker and complete the compilation. You need only specify the name of
the .w file; the .wh, .wi, and .ws files are included automatically. No option is
required. For example, the command:

icc brian.w jim.w

links all intermediate files for brian.c and jim.c, creates an object file, and invokes
the linker to create an executable module.

Note: You cannot use compiler options related to source files with intermediate files
because the source has already been partially compiled. For example, you cannot
produce a listing file from intermediate files or set the language level for the program.

226 IBM VisualAge�C++ for OS/2 User's Guide

Using the Intermediate Code Linker

You can also combine intermediate and source files on the command line to run the
intermediate linker on all the files and complete the compilation. No option is
required. For example:

icc brian.w jim.c

 Restrictions
Consistent Options

When you use the intermediate linker, some options must be consistent across all
files. Without the intermediate linker, these options can be inconsistent, allowing you
to compile different object files with different options. Because the intermediate
linker creates only one object file, you can no longer have these different options in
effect. The following options must be consistent across all source files, when you use
the intermediate code linker:

System Requirements

If you use the intermediate code linker on a large application, you will require more
system resources than if you were simply compiling. For example, compiling and
intermediate linking a 40 000-line application requires a working set of approximately
25M. If your executable module or DLL contains more than 100 000 lines of code,
using the intermediate code linker is not recommended.

/G3 /Gr /O
/G4 /Gs /Oc
/G5 /Gt /Oi
/Ge /Gv /Om
/Gf /Gw /Op
/Gh /Re /Os
/Gi /Rn /Ti
/Gp /Nd /Tn

Using the /Gu Option
One of the optimizations performed by the intermediate linker is to discard any
defined data or functions that are:

¹ Not referenced in the files included in the link.
¹ Not defined as exports either by the _Export keyword, by #pragma export, or

in the .DEF file. (Note: If you define exports in the .DEF file, you must include
the file name in the icc command line.) Export functions when you are creating
a DLL, and want its functions to be available to other DLLs or .EXE files.

If you call functions in files not included in the intermediate link, such as library
functions or OS/2 APIs, this optimization cannot be performed because the data and
functions could possibly be used by one of these external functions. Because library

 Chapter 14. Controlling Compiler Output227

Using the Intermediate Code Linker

functions and APIs rarely use data defined in user code, the result is often poorly
optimized code.

To ensure that all unreferenced data and functions are discarded, use the /Gu+ option.
This option tells the intermediate linker that any external functions that are referenced
will not use anything defined in the files being linked. Use the _Export keyword to
mark any definitions that will be used in a separate compilation unit (by another
DLL, or .EXE file).

In addition, /Gu+ causes all external functions and data that are not exported to be
defined as static, which can result in better optimization.

 Error Checking
Another benefit of using the intermediate code linker is enhanced error checking of
all files included in the intermediate link step. The intermediate linker can find errors
that would otherwise generate linker errors or unexpected runtime behavior, such as:

¹ Redefinition of variables and functions

¹ Inconsistent declarations or definitions of the same function (including differences
in return type, linkage, number of arguments, and argument properties)

¹ Type mismatches between different declarations or definitions of the same
variable, with the exception of:

– Differences in integer type of the same length (int and long)
– Some mismatches within structures and unions
– Mismatches between array declarations where one of the declarations is an

external reference

The intermediate linker also checks for inconsistent compiler options that could cause
conflicts. If the intermediate linker warns you of conflicting options, either change
the options to make them consistent or, if it is necessary to use the options
inconsistently, turn off the intermediate code linker (/Ol). See “Restrictions” on
page 227 for a list of options that must be consistent across source files.

The intermediate linker generates compiler errorsEDC6004 through EDC6024 See
the online User's Guide for explanations of error messages.

228 IBM VisualAge�C++ for OS/2 User's Guide

Inlining User Code

Inlining User Code
By default, the compiler inlines certain library functions, meaning that it replaces the
function call with the actual code for the function at the point where the call was
made. These library functions are called intrinsic or built-in functions.

You can also request that the compiler inline the code for your own functions. There
are two ways to inline user code:

1. Use the _Inline keyword to specify which functions you want to have inlined.
You must specify the /Oi option to turn inlining on.

C++ The C++ language provides the function specifierinline that you can use in the
same manner as _Inline. The _Inline keyword is not supported for use in C++
programs.

2. Use the /Oi option with a value parameter to automatically inline functions
smaller than the value specified.

Note: Requesting that a function be inlined makes it a candidate for inlining but
does not necessarily mean that the function will be inlined. In all cases, whether a
function is actually inlined is up to the compiler.

 Using Keywords
C For C files, use the _Inline keyword to qualify either the prototype or definition of

the functions you want to have inlined. For example:

_Inline int james(int a);

specifies that you want james to be considered for inlining.

C++ In C++ files, use the inline function specifier in the same way as _Inline. For
example:

inline int angelique(char c);

specifies that you want angelique to be considered for inlining.

The _Inline and inline keywords have the same meaning and syntax as the storage
class static. When you turn inlining on, the keywords also cause the functions they
qualify to be considered for inlining. In addition, C++ member functions that are
defined in a class declaration are considered candidates for inlining by the compiler.

 Chapter 14. Controlling Compiler Output229

Inlining User Code

Using the /Oi Option
The /Oi option controls whether user functions are inlined or invoked through a
function call:

/Oi- Do not inline user code. This is the default.

/Oi+ Inline functions qualified with the _Inline or inline keyword. When
optimization is turned on (/O+), /Oi+ becomes the default.

/Oivalue Inline functions qualified with the _Inline or inline keyword, as well as
other functions that are smaller than or the same size as value in abstract
code units (ACUs) as measured by the compiler. This option is called
auto-inlining. In general, choosing the functions you want inlined yields
better results than auto-inlining.

The /Oi option only affects user code, and does not affect the inlining of intrinsic
VisualAge C++ library functions. To disable the inlining of library functions,
parenthesize the function call. For example:

 (strcpy)(str1, str2);

In this way, you can selectively disable inlining of VisualAge C++ functions.

Some library functions are implemented as built-in functions, meaning there is no
backing code in the library. You cannot parenthesize calls to these functions.

See the C Library Reference for a list of all the intrinsic and built-in library functions.

You cannot selectively disable inlining for user functions: you can request that a
function be inlined, but you cannot turn inlining on and then request that a specific
user functionnot be inlined.

If you use auto-inlining,value has a range between 0 and 65 535 ACUs (abstract
code units). The number of ACUs that constitute a function is proportional to the
size and complexity of the function. Because the compiler calculates ACUs based on
internal algorithms, you can only estimate the number of ACUs for a given function.
The following code samples provide some examples on which you can base your
estimates.

230 IBM VisualAge�C++ for OS/2 User's Guide

Inlining User Code

The following function is 33 ACUs:

int florence(char a, int b)
 {

if(a != 10)
 b++;
 else

b += 10;
 return(a);
 }

The next function is 51 ACUs:

int sanjay(long par1, long par2)
 {
 while(par1)
 {
 if(par2)
 test3();
 par1--;
 }

 if(par1)
 testing();

par1 += par2;
 }

When you compile, the compiler generates a message for each function in inlines
based on the value you specified. Messages are not generated for functions qualified
with _Inline or inline, or for C++ functions defined in a class declaration. For most
applications, the most effective value for auto-inlining is between 5 and 20.

Note: The value required to inline a specific function may be slightly larger when
/O+ is specified than when/O- is specified.

When you turn inlining on for C programs,static functions that are called only
once and are relatively small (16 ACUs or less) are also inlined. For this type of
function, there is always a greater benefit in inlining. You can use /Oivalue with a
very small value to display the names of these functions. They are not inlined for
C++ programs.

 Chapter 14. Controlling Compiler Output231

Inlining User Code

Benefits of Inlining
Inlining user code eliminates the overhead of the function call and linkage, and also
exposes the function's code to the optimizer, resulting in faster code performance.
Inlining produces the best results when:

¹ The overhead for the function is significant; for example, when functions are
called within nested loops.

¹ The inlined function provides additional opportunities for optimization, such as
when constant arguments are used.

For example, given the following function:

void glen(int a, int b)
 {

if (a == 10)
 {
 switch(b)
 {
 case 1: .
 :

case 20: puts("b is 20");
 break;

case 30: .
 :
 default: .
 :
 }
 }
 }

and assuming your program calls glen several times with constant arguments, for
example, glen(10, 20);, each call to glen causes the if and switch
expressions to be evaluated. If glen is inlined, the compiler can then optimize
the function. The evaluation of the if and switch statements can be done at
compile time, and the function code can then be reduced to only theputs
statement from case 20.

The best candidates for inlining are small functions that are called often. Use
Performance Analyzer or a profiler to determine which functions to inline to obtain
the best results.

232 IBM VisualAge�C++ for OS/2 User's Guide

Inlining User Code

To improve performance further:

¹ Use constant arguments in inlined functions whenever possible. Functions with
constant arguments provide more opportunities for optimization.

¹ If you have a function that is called many times from a few functions, but
infrequently from others, create a copy of the function with a different name and
inline it only in the functions that call it often.

¹ Turn optimization on.

Drawbacks of Inlining
Inlining user code usually results in a larger executable module because the code for
the function is included at each call site. Because of the extra optimizations that can
be performed, the difference in size may be less than the size of the function
multiplied by the number of calls.

Inlining can also result in slower program performance, especially if you use
auto-inlining. Because auto-inlining looks only at the number of ACUs for a
function, the functions that are inlined are not always the best candidates for inlining.
As much as possible, use the _Inline or inline keyword to choose the functions to
be inlined.

When you use inlining, you need more stack space. When a function is called, its
local storage is allocated at the time of the call and freed when it returns to the
calling function. If that same function is inlined, its storage is allocated when the
function that calls it is entered, and is not freed until that calling function ends.
Ensure that you have enough stack space for the local storage of the inlined functions.

Restrictions on Inlining
The following restrictions apply to inlining:

¹ You cannot inline functions that use a variable number of arguments.

¹ You cannot inline functions with _System linkage that make use of the
__parmdwords function.

¹C++ For C++, you cannot declare a function as inline after it has been called.

 Chapter 14. Controlling Compiler Output233

Inlining User Code

¹ To use _Inline or inline, the code for the function to be inlined must be in the
same source file as the call to the function. To inline across source files you
must either:

1. Place the function definition (qualified with _Inline) in a header file that is
included by all source files where the function is to be inlined.

2. Use the intermediate code linker (with the/Ol+ option) and auto-inlining.
The intermediate code linker is described in “Using the Intermediate Code
Linker” on page 225.

¹ Turn off inlining (/Oi-) if you plan to debug your executable module. Inlining
can make debugging difficult; for example, if you set an entry breakpoint for a
function call but the function is inlined, the breakpoint will not work.

¹ Performance Analyzer treats an inlined function as part of the function in which
it is inlined.

¹ A function is not inlined during an inline expansion of itself. For a function that
is directly recursive, the call to the function from within itself is not inlined. For
example, given three functions to be inlined,A, B, and C, where:

– A calls B
– B calls C
– C calls back to B

the following inlining takes place:

– The call to B from A is inlined.
– The call to C from B is inlined.
– The call to B from C is not inlined because it is made from within an inline

expansion of B itself.

234 IBM VisualAge�C++ for OS/2 User's Guide

Setting the Calling Convention

Setting the Calling Convention
The VisualAge C++ compiler supports six 32-bit calling conventions, and three 16-bit
conventions:

32-bit: _Optlink
_System
__cdecl
__stdcall
_Pascal
_Far32 _Pascal

16-bit: _Far16 __cdecl
_Far16 _Pascal
_Far16 _Fastcall

C The _Far32 _Pascal convention can only be used in C programs and only when the
/Gr+ option is specified.

The default is _Optlink for calls to 32-bit code. You must explicitly specify a
calling convention for all 16-bit calls. If you specify only _Far16, the convention
defaults to _Far16 __cdecl. You can change the default for 32-bit code with the /M
option:

Option Calling Convention
/Ms _System calling convention
/Mc __cdecl calling convention
/Mt __stdcall calling convention
/Mp _Optlink calling convention (the default)

 See “Code Generation Options” on page 299 for more information on these
compiler options.

You can also set the calling convention for individual functions using linkage
keywords.

For example, to declare kathryn as a function with the _System calling convention,
you could use the following statement:

int _System kathryn(int i);

You can also use #pragma directives to set the calling convention for C programs, but
this is obsolete and may not be supported in future versions of the compiler.

For example:

#pragma linkage(kathryn, system)

 Chapter 14. Controlling Compiler Output235

Choosing Runtime Libraries

Note that, when using the #pragma linkage directive, you must declare the function
separately. Using linkage keywords is generally quicker and easier than using
#pragma linkage directives.

Both the keywords and the #pragma linkage directive take precedence over a
conflicting compiler option. If you use both methods and specify different
conventions for the same function, an error message is generated.

Note: You cannot change the calling convention for C++ member functions.
Member functions always use the _Optlink convention.

The linkage keywords and #pragma linkage directive are described in more detail in
the Language Reference. For more information on the calling conventions and how
they work, see the Programming Guide.

Choosing Your Runtime Libraries
When you compile, the compiler defines default VisualAge C++ runtime libraries for
the linker to use. You can use compiler options to control the linking process by
changing the type of runtime library you link to. If you do not specify any options,
the compiler uses the library that produces single-thread executable modules that are
statically linked. You can link to another library by specifying the appropriate
options. You would link to another library to:

¹ Dynamically link your program (discussed in the following section).

¹ Create a multithread executable module. (See the Programming Guide for
more detailed information.)

¹ Develop a subsystem. (See the Programming Guide for more detailed
information.)

¹ Create a DLL for use with another executable module. (See the Programming
Guide for more detailed information.)

236 IBM VisualAge�C++ for OS/2 User's Guide

Choosing Runtime Libraries

The naming conventions used for the libraries are intended to help identify their
function. The libraries are named as follows:

For example, the library CPPO30S.LIB is the standard single-thread library for
building both executable modules and DLLs, while CPPON30I.LIB is the standard
import library for creating a subsystem.

For a list of all libraries and files shipped with the VisualAge C++ product, see
the appendixes of the Programming Guide.

Figure 67. VisualAge C++ Library Naming Conventions

Character Position Significance

1 - 4 5 6-7 8

CPPO Product prefix

S
M
N

Single-thread library
Multithread library
Subsystem library (no runtime environment)

30 Version of VisualAge C++

I
O

Import library
Object library (contains initialization routines)
Statically bound library (no eighth letter)

Static and Dynamic Linking
Static linking means that code for all the VisualAge C++ runtime functions called in
your program is copied from a .LIB file into your output .EXE or .DLL file. The
.EXE or .DLL files will be larger because there is a copy of the runtime functions in
each file. These programs will take up more storage, and if you run them at the same
time, there will also be a copy of the library functions in memory for each program.
Statically linked programs, however, are easier to distribute because the library
functions are part of your executable file. See Note 1 below.

Dynamic linking means that code for the VisualAge C++ runtime functions called in
your program is not copied into your output .EXE or .DLL file. Instead, the function
code stays in a separate VisualAge C++ DLL file, and your calls to the function are
resolved at load time. The amount of disk space required by your .EXE or .DLL file
is reduced, and there is only one copy of the library functions in memory for all
programs that use them. Dynamically linked programs can be harder to distribute,
since the separate DLL file must be distributed along with your executable file.

Use the /Gd compiler option to control whether your executable file links to the
runtime library statically or dynamically.

 Chapter 14. Controlling Compiler Output237

Choosing Runtime Libraries

The default is /Gd-, which statically links with the .LIB version of the runtime
library.

Specify /Gd+ to dynamically link with the DLL version of the runtime library.

The compiler option you choose causes the corresponding library to be linked in by
default. If you override the default libraries with the /NOD linker option, you must
explicitly give the name of all libraries you are using on the linker command line.

You can also statically or dynamically link to other libraries. For more information,
see Chapter 19, “Linking with Library Files” on page 343.

Under the VisualAge C++ licensing agreement, you cannot ship the VisualAge C++
DLLs as they are with a product that you develop. If you want to dynamically link
to the VisualAge C++ library, you can create your own version of the
VisualAge C++ runtime DLLs, as described in the Programming Guide, or you
can use the DLLRNAME utility, described on page 675, to rename the
VisualAge C++ DLLs before you ship them.

Notes:

1. When you use static linking, all external names beginning with Dos, Vio, or Kbd
(in the case shown) become reserved external identifiers. They are not reserved
if you use dynamic linking.

2. You can also link dynamically to your own DLLs. Creating and using your own
DLLs is discussed in “Producing a Dynamic Link Library” on page 339,
“Linking to Dynamic Link Libraries” on page 345, and in the Programming
Guide.

Using the Multithread Library
More than one thread may use the same runtime functions. To avoid contention for
internal resources, the library ensures that only one thread at a time is active in the
critical section of a function. Although this support is mandatory in a multithread
program, it is unnecessary in a single-thread program.

This section describes only the compiler options you use to choose the single-thread
or multithread version of the library. There is more information on creating a
multithread program in the Programming Guide.

If you want to create an executable file with multithread capabilities:

1. Specify the /Gm+ option when you compile.
2. Use the multithread library when you link the object files.

238 IBM VisualAge�C++ for OS/2 User's Guide

Using Precompiled Headers

If you want to create an executable file designed for a single thread only:

1. Use the default option /Gm- when you compile.
2. Use the single-thread library when you link the object files.

The compiler option you choose causes the corresponding library to be linked in by
default. If you override the default libraries with the /NOD linker option, you must
explicitly give the name of all libraries you are using on the linker command line.

Enabling Subsystem Development
If you are creating a subsystem (for example, a PM display or printer driver), specify
the /Rn option to select the subsystem libraries. See page 312 for a description
of the option.

Functions in the subsystem libraries are intended for use in single-thread applications
only. No multithread support is provided. If you want to use the subsystem libraries
in multithread programs, you must provide your own protection and serialization
using OS/2 semaphores. You must also provide your own buffering for input and
output.

 See the Programming Guide for information on developing subsystems.

Using Precompiled Headers
You can improve your compile time by using precompiled headers. Use the options
/Fi+ and /Si+ together to automatically create and maintain precompiled header files
for your application.

Note: In the previous version of C Set++, it was possible to use the same
precompiled header file for both C and C++ files. This is no longer possible with
VisualAge C++ version 3.0.

If you use the options consistently, precompiled header files are created if they do not
exist, and used if they do. When a source file is changed, the precompiled version is
automatically regenerated.

In previous versions of C Set++, each header was precompiled separately. This
meant that the precompiled headers still had to be interpreted by the compiler, to
allow for the context in which they were being included (for example, different
#define directives that might be in effect).

The compiler now generates a single precompiled object for the first initial sequence
of #include directives. The next time you compile, this single object can be used
wherever that initial sequence appears. Since the precompiled object is only used in
cases where the context is the same (same language, same beginning sequence of

 Chapter 14. Controlling Compiler Output239

Using Precompiled Headers

#include directives, compatible options and macro definitions), the precompiled
object does not have to be re-interpreted every time it is included.

To get the most benefit from this new method, use the same initial sequence of
headers wherever possible. The more files that share the same initial sequence, the
greater the improvement in your compile time. See “Organizing Your Source
Files” on page 245 for tips on getting the most improvement.

You can specify different names or directories for precompiled header files, with the
/Fi and /Si options, or using #pragma hdrfile. This allows you to create more
than one initial sequence, and further improve your compile time. If you do not
specify a name or directory, the precompiled headers are stored in the current
working directory, with the name csetc.pch (for C files), or csetcpp.pch (for C++
files).

Note: In the previous version of C Set++, it was possible to use the same
precompiled header file for both C and C++ files. This is no longer possible with
VisualAge C++ version 3.0.

Determining the Initial Sequence
The initial sequence of headers can consist of the following:

 ¹ #include directives
 ¹ comments
 ¹ #error directives
 ¹ null directives
¹ false conditional compilation blocks beginning with #elif or #else.

 ¹ #endif directives

The first #include directive can be preceded only by comments and preprocessing
directives. If it is preceded by anything else, then the compiler does not create or
attempt to use precompiled headers with that source file.

The initial sequence is ended by any construct not in the above list. You can also
stop the initial sequence with #pragma hdrstop. If you use #pragma hdrstop
before the first #include directive, there is no initial sequence.

Any #include directives after the initial sequence are not precompiled: they will be
compiled every time you compile the source file.

Note: When a header contains conditional compilation directives to prevent it from
being included a second time, it is only counted once in the initial sequence, even if
it appears multiple times.

240 IBM VisualAge�C++ for OS/2 User's Guide

Using Precompiled Headers

Example

Given the following code:

main.c h1.h
------------------------- ------------------
/* Comments are OK */ int h1;
#define M 1 #include "h3.h"
#undef N
#line 10
#if F
 int f(int); h2.h
#endif ------------------
#if STDIO int h2;
 #include <stdio.h>
#endif
#include "h1.h"
/* Comments are OK */ h3.h

#include "h2.h" #ifndef H3_H
#include "h3.h" #define H3_H
main() { int h3;
} #endif

The initial sequence can vary, depending on whether any macros are defined on the
command line.

Macros defined Resulting initial sequence

None "h1.h", "h2.h", "h3.h"

STDIO <stdio.h>, "h1.h", "h2.h", "h3.h"

F No initial sequence (because int f(int) occurs before any
#include directives)

Although h3.h is included twice (once in main.c and once in h1.c), only the first
#include is considered in the initial sequence, because the second#include does
not take effect.

Matching the Initial Sequence
Once the precompiled initial sequence is created, it can be used by other compilation
units (in the next compile, and in subsequent compiles). Other compilation units can
use the precompiled initial sequence under the following conditions:

¹ The compilation unit has a matching initial sequence of #include directives.
The compilation unit can have a longer initial sequence, as long as the first part

 Chapter 14. Controlling Compiler Output241

Using Precompiled Headers

of the sequence matches. Any #include directives beyond the initial matching
portion are compiled normally.

¹ The files that make up the precompiled header object have not changed. The
compiler checks the modification date on each file.

¹ Any macros that were expanded or tested while generating the precompiled
header object are defined with the same replacement tokens. The compiler
checks macro names that are:

– Defined before the start of the initial sequence, using #define or the /D
option.

– Undefined before the start of the initial sequence, using #undef or the /U
option.

– Predefined by the compiler.

If the macro was not expanded or tested during the precompile, then the status of
the macro does not matter, and does not have to match.

¹ No additional macros have been defined.

¹ The same compiler options are in effect.

Example

Given two compilation units, prog1.c and prog2.c:

prog1.c prog2.c
----------------------- -------------------------
#undef X #define X 1
#include "h1.h" #include "h1.h"
#include "h2.h" #include "h2.h"
func1() {} func2() {}

h1.h

#if TEST
 int h1;
#endif

h2.h

char h2 = M;

242 IBM VisualAge�C++ for OS/2 User's Guide

Using Precompiled Headers

The file prog2.c can use the precompiled header object from prog1.c when:

¹ TEST has the same definition in both prog1.c and prog2.c, or is not defined in
both.

¹ M has the same definition in both prog1.c and prog2.c, or is not defined in
both.

¹ No additional macros have been defined in prog2.c (whether they are used or
not).

The different definitions of X in prog1.c and prog2.c do not matter, since X is
never tested or expanded.

Using Multiple Initial Sequences
Because of the restrictions on reusing precompiled headers (same sequence of
headers, same context in terms of macro names and options), you may want to use
more than one precompiled header object.

You can specify the name of an alternate precompiled header file to use, or an
alternate directory to search, with either of two methods:

¹ With the options /Fi+ and /Si+ on the command line. If the options specify
different file names, the compiler uses the last one specified for both options.

¹ With #pragma hdrfile in the source file, before the first #include directive.
The pragma only takes effect if you specify at least one of /Fi or /Si.

If you specify a file name with both the options and the#pragma, the #pragma file
name is used.

The default file names are:

¹ csetc.pch for C compiles
¹ csetcpp.pch for C++ compiles

The default directory is the current working directory.

 Chapter 14. Controlling Compiler Output243

Using Precompiled Headers

Examples The following examples show the interaction of options and #pragma hdrfile
directives:

 Example 1

 #pragma hdrfile "fred.pch"
 #include "h1.h"
 #include "h2.h"
 main () {}

Options Specified Behavior

/Fi+ /Si+ The headers "h1.h" and "h2.h" are precompiled using
the file "fred.pch"

/Fidave.pch The compiler ignores the name specified with the
option, because it is in conflict with the #pragma
hdrfile directive. The compiler generates new
headers in "fred.pch", but does not use them.

 Example 2

 #pragma hdrfile "fred.pch"
 #include "h1.h"
 #pragma hdrstop
 #include "h2.h"
 main () {}

Options Specified Behavior

/Fi+ /Si+ Only the header "h1.h" is precompiled, using the file
"fred.pch"

/Sidave.pch The compiler ignores the name specified with the
option, because it is in conflict with the #pragma
hdrfile directive. The compiler looks for the
precompiled headers in "fred.pch", but does not
generate new headers.

244 IBM VisualAge�C++ for OS/2 User's Guide

Using Precompiled Headers

 Example 3

 #include "h1.h"
 #pragma hdrstop
 #include "h2.h"
 main () {}

Options Specified Behavior

/Fi+ /Si+ Only the header "h1.h" is precompiled, using the file
"csetc.pch" (for a C file) or "csetcpp.pch" (for a C++
file)

/Sidave.pch /Fijohn.pch The compiler ignores the name specified with /Si, and
uses the file "john.pch", which is specified later. The
compiler looks for precompiled headers in "john.pch"
and regenerates them if they are not found or are out of
date.

 Example 4

 #pragma hdrstop
 #include "h1.h"
 main () {}

Options Specified Behavior

Any options No headers are precompiled, because there is no initial
sequence: #pragma hdrstop occurrs before the first
#include directive.

Organizing Your Source Files
To take full advantage of the precompiled header improvements, you may need to
reorganize your source files. Using precompiled headers without organizing your
source files can actually slow your compile.

There are several strategies you can use to organize your files:

A precompiled header for each compilation unit

Use #pragma hdrfile in each primary source file to specify a distinct
precompiled header object for each compilation unit.

Benefits
Each compilation unit has its own precompiled headers, so you can create the
longest possible initial sequence for each compilation unit. You do not need to
match the initial sequences in other compilation units, because you are not
sharing the precompiled header object.

 Chapter 14. Controlling Compiler Output245

Using Precompiled Headers

Drawbacks
If you change one header file, the compiler regenerates every precompiled
header object that includes that header. This method can also require large
amounts of disk space, since many precompiled headers are generated: a
common header is precompiled separately for every compilation unit that
includes it.

Single header file

Create a single header file which has #include directives for every header in
your application, and include it in each primary source file.

Benefits
You get the maximum possible benefit from using precompiled header files,
and the maximum possible improvement in compile time. You have an exact
match of the initial sequence for every compilation unit.

Drawbacks
If you are using a program maintenance utility such as NMAKE, you will end
up recompiling the entire application every time you change even a single
header file. For larger applications, this is probably unacceptable.

Global header file

Create a single header file which has #include directives for those header files
that are shared by many different compilation units.#include this global
header file as the first step of the initial sequence in each primary source file,
followed immediately by #pragma hdrstop.

Benefits
You get the benefit from precompiling common and shared headers, without
having to recompile when you change less common headers.

Drawbacks
There is only one group of precompiled headers. Any headers outside of that
group are compiled normally, and the precompiled header object must be
regenerated every time you change even one of the common headers.

 Grouping headers

Do the following:

1. Identify headers that are common throughout your source, and divide them
into smaller groups of associated headers. A header can be included in
more than one group.

2. For each group, create a header that contains #include directives for each
header in the group.

246 IBM VisualAge�C++ for OS/2 User's Guide

Controlling Stack Allocation and Stack Probes

3. In each primary source file, identify the precompiled header file name with
#pragma hdrfile, #include the appropriate group header, and end the
initial sequence with #pragma hdrstop. If a source file does not use any
of the precompiled header groups, put #pragma hdrstop as the first
directive in the file.

Benefits
Common headers are precompiled. Changing a header only affects the groups
it belongs to, rather than requiring all precompiled headers to be regenerated.
This method does not use as much disk space as having a precompiled header
object for each compilation unit, and is more maintainable than a single global
header file.

Drawbacks
Requires additional work to organize headers into groups.

Controlling the Logo Display on Compiler Invocation
By default, the VisualAge C++ logo appears on stderr when the compiler is invoked.
You can stop the logo from appearing on icc invocation by specifying the /Q+
option. To request explicitly that the logo appear, specify the/Q- option.

Controlling Stack Allocation and Stack Probes
Under the OS/2 operating system, the stack is fully allocated for the first thread of a
process. For all threads other than the first, the operating system allocates the stack
as a sparse object. The total stack size is rounded up to the nearest multiple of 4K
from the size you specified. The page with the largest address is committed, and the
page below it is set up as a guard page. No other pages are committed.

When the guard page is accessed, anout of stack exception
(XCPT_GUARD_PAGE_VIOLATION) is generated. The system responds by attempting to
get another guard page below the one previously allocated:1

1 For the purposes of this discussion, the stack grows down.

 Chapter 14. Controlling Compiler Output247

Controlling Stack Allocation and Stack Probes

 ┌────────────────┐
│ allocated page │

 ├────────────────┤
│ allocated page │

 ├────────────────┤
attempt to access │ guard page │

 here ────────────5 │
 ├────────────────┤
 │ unallocated │
 │ stack space │
 │ │
 │ │
 │ │

If this attempt is successful, the original guard page becomes a normal stack page and
the next uncommitted page becomes the new guard page.

 ┌────────────────┐
│ allocated page │

 ├────────────────┤
│ allocated page │

 ├────────────────┤
│ allocated page │

 ├────────────────┤
│ new guard page │

 ├────────────────┤
 │ unallocated │
 │ stack space │
 │ │

This process continues until a new guard page can no longer be allocated.

If the system cannot set a new guard page because it has reached the size limit of the
stack (see “Setting the Stack Size” on page 250), a guard page allocation failure
exception (XCPT_UNABLE_TO_GROW_STACK) is generated. (The same exception is
generated when the _alloca function runs out of memory.)

Note: The last 4K of the stack (the final guard page) is reserved to allow handling
of exception conditions. If a guard page exception occurs and not enough stack
remains to handle the exception, the program is terminated. For more information
about exceptions and error handling, see the Programming Guide.

248 IBM VisualAge�C++ for OS/2 User's Guide

Controlling Stack Allocation and Stack Probes

Using Stack Probes
For the stack growth mechanism to work correctly, each 4K page must be accessed in
the correct order. To ensure the correct access, VisualAge C++ compiler generates
one or more stack probes in the prolog of each procedure that has automatic storage
greater than 2K. (Stack probes start after 2K because exception handling may require
up to 2K of stack storage.)

When a guard-page exception occurs, the stack probe instructions allow the exception
mechanism to enlarge the stack if necessary. If an attempt is made to access the
stack below the guard page:

 ┌────────────────┐
│ allocated page │

 ├────────────────┤
│ allocated page │

 ├────────────────┤
 │ guard page │
 ├────────────────┤
 │ unallocated │
 │ stack space │

attempt to access │ │
 here ─────────────5 │
 │ │
 │ │

stack probes cause the operating system to allocate each page of the stack up to that
access point and to create a new guard page:

 ┌────────────────┐
│ allocated page │

 ├────────────────┤
│ allocated page │

 ├────────────────┤
│ allocated page │

 ├────────────────┤
│ allocated page │

 ├────────────────┤
│ new guard page │

 │ │
 │ │

Without stack probes, accessing the stack below the guard page is an access violation
(you cannot access uncommitted pages). The process terminates. The compiler
ensures that structures greater than 4K that are passed by value are placed on the
stack to allow this mechanism to work.

Support for automatic stack growth is provided by default as needed.

 Chapter 14. Controlling Compiler Output249

Setting Stack Size

Note: The _alloca function allocates storage on the stack. Unless you specify the
/Gs+ option, the compiler generates stack probes to allocate the required
memory.

You do not need to use stack probes if:

¹ Your program has only one thread. The stack is fully allocated for the first
thread.

¹ You can guarantee that the stack will always be allocated. For example, you
could write a guard routine to run once at the beginning of each thread and
serially access each page up to the last page, leaving that page as a guard page.

¹ Your local variables require less than 2K of storage on the stack.

To turn off stack-probe generation, specify the /Gs+ compiler option. (See page
305 for the option description.) Because stack probes go into the prolog of every
function with more than 2K of stack storage, your program will run faster with the
stack probes turned off. However, it is only safe to turn off stack probes if you can
meet one or more of the above criteria.

Setting the Stack Size
You can set the stack size in one of three ways:

1. Specify the /B"/STACK:size" compiler option.

2. Specify the /STACK:size linker option on the linker command line.

3. Specify the STACKSIZE statement in a module definition (.DEF) file for the first
thread of an application; use the _beginthread function call for threads created
later.

 See Chapter 21, “Creating Module Definition Files” on page 369 for more
information on .DEF files. See the C Library Reference for a description of the
_beginthread function.

The default stack size is 32K for the first thread. Setting the stack size using one of
the options listed above overrides the default value. For example, specifying the
linker option

 /STACK:65536

sets the stack size to be 64K.

250 IBM VisualAge�C++ for OS/2 User's Guide

Setting Stack Size

If your program calls 16-bit code, you can set the stack for the 16-bit code using the
#pragma stack16 directive, described in the Language Reference. Because the
16-bit stack is allocated from the 32-bit stack, you must ensure that the 32-bit stack is
large enough for both your 32-bit and 16-bit code.

 Chapter 14. Controlling Compiler Output251

Setting Stack Size

252 IBM VisualAge�C++ for OS/2 User's Guide

Specifying Compiler Options

15 Setting Compiler Options

You can use compiler options to alter the compilation and linking of your program.
This chapter describes these options and tells you how to use them.

Specifying Compiler Options
Compiler options are not case-sensitive, so you can specify them in lower-, upper-, or
mixed case. You can also substitute a dash (-) for the slash (/) preceding the option.
For example,-Rn is equivalent to /Rn. Lower- and uppercase, dashes, and slashes
can all be used on one command line, as in:

icc /ls -RN -gD /Li prog.c

Some options have parameters. See “Using Parameters with Compiler Options”
on page 255 for information.

You can specify compiler options in the following ways:

¹ On the command line
¹ In the ICC environment variable
¹ In the WorkFrame environment

Options specified on the command line override the options in the ICC variable.

Setting Options on the Command Line
Compiler options specified on the command line override any previously specified in
the ICC environment variable (as described below and in “OS/2 Environment
Variables for Compiling” on page 207).

For example, to compile a source file with the multithread option, enter:

icc /Gm myprog.c

Setting Options in ICC
Frequently used command-line options can be stored in the ICC environment variable.
This method is useful if you find yourself repeating the same command-line options
every time you compile. You can also specify source file names in ICC.

 Copyright IBM Corp. 1992, 1995 253

Specifying Compiler Options

The ICC environment variable can be set either from the command line, in a
command (.CMD) file, or in the CONFIG.SYS file. If it is set on the command line
or by running a command file, the options will only be in effect for the current
session. If it is set in the CONFIG.SYS file, the options will be in effect every time
you use icc unless you override them using a .CMD file or by specifying options on
the command line.

For example, to specify that a source listing be generated for all compilations and that
the macro DEBUG be defined to be 1, use the following command at the OS/2 prompt
(or in your CONFIG.SYS file if you want these options every time you use the
compiler):

 SET ICC=/Ls+ /DDEBUG::1

Use a double colon (::) instead of the "=" sign, because the "=" sign is not allowed
in OS/2 environment variables.

Now, type icc prog1.C to compile prog1.C. The macro DEBUG is defined as 1, and
a source listing is produced.

Options you specify on the command line override options in the ICC variable. For
example, the following compiler invocation voids the effect of the ICC setting in the
last example:

icc /Ls- /UDEBUG fred.c

 See “OS/2 Environment Variables for Compiling” on page 207 for more
information about using ICC and other environment variables.

Setting Options in the WorkFrame Environment
If you have installed the WorkFrame product, you can set options as follows:

1. Double-click on your project icon to open the Project window.

2. From the Options menu, select Build Smarts. The Build Smarts window
appears, in which you can select a standard task you want to build for. The
options appropriate for that task are set automatically when you select OK .

If you want to set options on an individual basis, as well as by general task, then
do the following:

a. Select Compiler from the Options menu to display the Compiler Options
notebook.

b. Select options in the notebook. Turn the pages to see all the options (there
can be several pages under one tab).

254 IBM VisualAge�C++ for OS/2 User's Guide

Compiler Option Parameters

If you prefer to set options in the command-line form, turn to the User tab
of the notebook, and use the entry field there to enter options as you would
on the command line.

See the online version of the User's Guide, and the online help for the
notebook, for a mapping of command-line options to WorkFrame options.

c. Select OK when you are done.

The next time you build your project, the options you selected are used.

For more information on compiling with WorkFrame, see “Compiling within
WorkFrame” on page 201.

Using Parameters with Compiler Options
For all compiler options that take parameters, the following rules apply:

¹ If a parameter is required, you can put zero or more spaces between the option
and the parameter.
For example, both /FeMyexe.exe and /Fe Myexe.exe are valid.

¹ If a parameter is optional, do not put spaces between the option and parameter.
For example, /FlMylist.lst is valid, but /Fl Mylist.lst is not.

The syntax of the compiler options varies according to the type of parameter that is
used with the option. There are four types of parameters:

 ¹ Strings
 ¹ File names
 ¹ Switches
 ¹ Numbers

 Strings
If the option has a string parameter, and the string contains spaces, enclose the string
with a pair of double quotation marks. For example,/V"Version 1.0" is correct. If
there are no spaces in the string, the quotation marks are not necessary. For example,
both /VNew and /V"New" are valid.

If the string itself contains double quotation marks, precede these with the backslash
(\) character. For example, if the string is abc"def, specify it on the command line
as "abc\"def". This combination is the only escape sequence allowed within string
options. Do not end a string with a backslash, as in "abc\".

If the string is optional, do not put a space between the option and the string.

 Chapter 15. Setting Compiler Options255

Compiler Option Parameters

 File Names
If you want to use a file that is in the current directory, specify only the file name. If
the file you want to use is not in the current directory, specify the path and file name.
For example, if your current directory is E:\, your source file is E:\myprog.c, and
you compile using the defaults, your executable file will be called myprog.exe. If
you want to put your executable file into the F:\ directory and call it newprog.exe,
use the following command:

icc /FeF:\newprog.exe myprog.c

If you do not specify an extension for the executable file,.EXE is assumed.

If your file name contains spaces (as permitted by the High Performance File System
(HPFS)) or any elements of the HPFS extended character set, it must be enclosed in
double quotation marks. In such a case, do not put a space between the option and a
file name or directory.

 Switches
Some options are used with plus (+) or minus (-) signs. If you do not use a sign, the
compiler processes the option as if you had used the + sign. When you use an option
that uses switches, you can combine the switches. For example, the following two
option specifications have the same result:

/La+ /Le+ /Ls+ /Lx-
 /Laesx-

Note that the - sign applies only to the switch immediately preceding it.

 Numbers
When an option uses a number as a parameter, do not put a space between the option
and the number. When an option uses two numbers as parameters, separate the
numbers with a comma. Do not leave a space between the numbers and the comma.
For example:

 /Sg10,132

is correct.

256 IBM VisualAge�C++ for OS/2 User's Guide

Scope of Compiler Options

Scope of Compiler Options
Options apply only to the source files that follow the option. The last, or rightmost,
occurrence of these options is the one that is in effect for the source file or files that
follow it.

In the following example, the file module1.c is compiled with the option /Fa-
because this option follows /Fa+:

icc /Fa+ /Fa- module1.c

In the next example, the file module1.c is compiled with the /Fa+ option, while
module2.c is compiled with /Fa-:

icc /Fa+ module1.c /Fa- module2.c

Exceptions The following options behave differently:

/D Defines a preprocessor macro./D is different from other options in that
the first definition of a macro is the one that is used. If a preprocessor
macro is defined more than once, a warning appears.

/I Sets search paths for #include files. This option is cumulative. If you
specify the option more than once, the parameters you specify are
appended to the parameters previously stated. For example, the command

icc /Ia: /Ib:\cde /Ic:\fgh prog.c

causes the following search path to be built:

 a:;b:\cde;c:\fgh

/B Passes options to the linker. Like /I, this option is cumulative. If you
specify the option more than once, the parameters you specify are
appended to the parameters previously stated. All options on the
command line, and in environment variables, are accumulated before the
object files are linked. The options apply to all object files linked.

Specifying Options with Multiple Source Files
When you compile programs with multiple source files, an option applies to all the
source files that follow it. For example, if you enter the following command:

icc /Oi+ main.c /Fa sub1.c /Lx /Oi- sub2.c

¹ The file main.c will be compiled with the option/Oi+
¹ The file sub1.c will be compiled with the options/Oi+ and /Fa+
¹ The file sub2.c will be compiled with the options/Oi-, /Fa+ and /Lx

 Chapter 15. Setting Compiler Options257

Scope of Compiler Options

The name of the executable module will be the same as the name of the first source
file (main) but with the extension.EXE.

ICC Combined with Options Entered on the Command Line
When you specify compiler options both in the ICC environment variable and on the
command line, the compiler evaluates both sets of options. When the compiler is
invoked:

1. The string associated with ICC is retrieved.
2. The command line is retrieved.
3. The command line is appended to the ICC string, combining the two into a single

command line.
4. This combined command line is read from left to right, and the compiler option

precedence rules are applied.
5. The files are compiled and linked using the options as interpreted in the previous

step.

As a result, values in ICC are processed before the command line, and options on the
command line override any conflicting options in ICC.

 Related Options
Some options are required with other options:

¹ If you specify the listing file option /Le (expand macros), or one of /Li or /Lj
(expand #include files), you must also specify the /Ls option to include the
source code.

¹ If you specify the /Gr option to generate code to run at ring zero, you must also
specify the /Rn (no runtime environment) option.

¹ If you specify any of the listing options/Lp (set page length), /Lt (set title), or
/Lu (set subtitle), you must also specify /L (produce listing file).

¹ If you specify /Xs (exclude specified files), you must also specify /Ga (turn on
implicit SOM mode).

To use Performance Analyzer, you must specify both the /Gh and /Ti options.

258 IBM VisualAge�C++ for OS/2 User's Guide

Scope of Compiler Options

 Conflicting Options
Some options are incompatible with other options. If options specified on the
command line are in conflict, the following rules apply:

¹ The syntax check option (/Fc) takes precedence over the output file generation
(/Fa, /Fb, /Fe, /Fm, /Fo, and/Ft), intermediate code linker (/Fw and /Ol),
and preprocessor (/P, /Pc, /Pd, and /Pe) options.

¹ The preprocessor options (/P, /Pc, /Pd, and /Pe) take precedence over the
output file generation (/Fa, /Fb, /Fe, /Fl, /Fm, /Fo, and /Ft), intermediate
code linker (/Fw, /Gu, and /Ol) precompiled header file (/Fi and /Si), and all
listing file (/L) options.

¹ The option for no runtime environment (/Rn) takes precedence over the
multithreading (/Gm), enable variables for 16-bit (/Gt), ddnames (/Sh), memory
file (/Sv), and machine-state dump (/Tx) options.

¹ The option to not create an object file (/Fo-) takes precedence over the option to
include debug information in the object (/Ti).

¹ The compile-only option (/C) takes precedence over the name executable module
(/Fe) and generate linker map (/Fm) options.

¹ The no-optimization option (/O-) takes precedence over the instruction scheduler
option (/Os+).

¹ The options to expand #include files in the listing (/Li and /Lj) take precedence
over the precompiled header file options (/Fi and /Si).

¹ The option to expand user and system #include files (/Lj+) takes precedence
over the option to expand user #include files only (/Li).

¹ The option to use the intermediate code linker (/Ol) requires some options to be
consistently defined for all input files. The following options must have the
same setting for all source files when you specify /Ol:

 See “Using the Intermediate Code Linker” on page 225 for more
information.

/G3 /Gr /O
/G4 /Gs /Oc
/G5 /Gt /Oi
/Ge /Gv /Om
/Gf /Gw /Op
/Gh /Re /Os
/Gi /Rn /Ti
/Gp /Nd /Tn

 Chapter 15. Setting Compiler Options259

Scope of Compiler Options

 Language-Dependent Options
Some VisualAge C++ options are only valid when compiling C programs, while
others only apply to C++ programs.

C C Programs Only

/Gv Control handling of DS and ES registers for virtual device driver development.
VDD support is provided for C only.

/Sg Set margins for input files. This option is provided primarily for compatibility
with IBM C/370. C++ does not require any such compatibility.

/Sq Set sequence numbers for input files. This option is provided primarily for
compatibility with IBM C/370. C++ does not require any such compatibility.

/Sr Set type conversion rules. The C++ language only supports the new type
conversion rules defined by the ANSI standard.

/Ss Allow use of double slashes for comments. C++ allows double slashes to
indicate comments as part of the language.

/S2 Allow only SAA Level 2 C constructs. There is no SAA definition of the
C++ language.

C++ C++ Programs Only

/Fb Control generation of browser files.
/Fr Give release order of class (SOM)
/Fs Create and direct IDL file (SOM)
/Ft Control generation of files for template resolution. The C language does not

support templates.
/Ga Turn on implicit SOM mode.
/Gk Resolve templates in old C++ object files
/Gx Control inclusion of C++ exception handling information. The C language

does not include specific constructs for exception handling.
/Gz Initialize SOM classes during static initialization
/Sc Allows constructs compatible with earlier versions of the C++ language.

These constructs are not allowed in C.
/Nx Set names of exception-handling segments
/Xs Exclude files in specific directory when implicit SOM mode on.

260 IBM VisualAge�C++ for OS/2 User's Guide

Examples of Compiler Options

Compiler Options for Presentation Manager Programming
If you are using the VisualAge C++ product to develop PM applications, you may
need the following options:

Option Description

/Se Allow all VisualAge C++ language extensions. (This is the default.)

/Gm Use the multithread libraries.

/Gs- Do not remove stack probes. (This is the default.)

/Wpro Produce diagnostic messages about unprototyped functions. (These are
generated by default).

Examples of Compiler Options for Choosing Libraries
Figure 68 on page 262 shows the combinations of compiler options you use to create
a particular type of module, according to:

¹ Static or dynamic linking

 ¹ Threading level:

 – Single-thread (/Gm-)
 – Multithread (/Gm+)

¹ Library being used:

 – Standard (/Re)
 – Subsystem (/Rn)

¹ Module being built:

– .EXE file (/Ge+)
– .DLL file (/Ge-)

The defaults used by the compiler are:

¹ /Gd- (Use static linking)

¹ /Gm- (Use the single-thread library)

¹ /Re (Use the standard library)

¹ /Ge+ (Build an .EXE file).

 Chapter 15. Setting Compiler Options261

Examples of Compiler Options

Figure 68. Combinations of Compiler Options for Specifying Libraries

Linking Type Threading Library used Module Type Options required in addition to
defaults

Static Single Standard EXE None

Static Single Standard DLL /Ge-

Static Multi Standard EXE /Gm+

Static Multi Standard DLL /Gm+ /Ge-

Static N/A Subsystem EXE /Rn

Static N/A Subsystem DLL /Rn /Ge-

Dynamic Single Standard EXE /Gd+

Dynamic Single Standard DLL /Gd+ /Ge-

Dynamic Multi Standard EXE /Gd+ /Gm+

Dynamic Multi Standard DLL /Gd+ /Gm+ /Ge-

Dynamic N/A Subsystem EXE /Gd+ /Rn

Dynamic N/A Subsystem DLL /Gd+ /Rn /Ge-

262 IBM VisualAge�C++ for OS/2 User's Guide

Compiler Option Classification

Compiler Option Classification
The compiler options are divided into groups by function. The following list tells
you which options are in each group.

¹ “Output File Management Options” on page 268

/F

¹ “#include File Search Options” on page 274

/I /Xc /Xi

¹ “Listing File Options” on page 276

/L

¹ “Debugging and Diagnostic Information Options” on page 281

/N /W /Ti /Tm /Tn /Tx

¹ “Source Code Options” on page 289

/S /Tc /Td /Tp

¹ “Preprocessor Options” on page 296

/D /P /U

¹ “Code Generation Options” on page 299

/G /M /Nd /Nt /O /R

¹ “System Object Model (SOM) Options” on page 313

/Fr /Fs /Ga /Gb /Xs

¹ “Other Options” on page 316

/B /C /H /J /Q /Tl /V

The table that follows gives all options, in all groups, in alphabetical order. The
options are described in more detail in the sections following the table.

 Chapter 15. Setting Compiler Options263

Compiler Options Summary

Compiler Options Summary

Figure 69 (Page 1 of 4). Compiler Options Summary

Option Description Default Page

/? Display list of compiler options with descriptions. None. 316

/B"options" Pass options to linker, in addtion to default options. /B"" 316

/C[+|-] Perform compile without linking, instead of compiling and
linking.

/C- 317

/Dname[::n]
/Dname[=n]

Define preprocessor macros. None. 296

/Fa[+|-][dir][name] Produce, name, and direct assembler listing file. /Fa- 269

/Fb[+|-|*] Produce a browser file. /Fb- 269

/Fc[+|-] Perform syntax check only, instead of a full compile. /Fc- 270

/Fename Specify name of executable output file. Name of first
source file

270

/Fi[+|-][dir][name] Produce, name, and direct precompiled header file. /Fi- 271

/Fl[+|-][dir][name] Produce, name, and direct listing file. /Fl- 271

/Fm[+|-]
/Fmname

Produce and name linker map file. /Fm- 272

/Fo[+|-][dir][name] Control and name object file. /Fo[+] 272

/Fr<classname> Give release order of class None 315

/Fs[+|-][name][dir] Create and direct IDL file /Fs- 315

/Ft[+|-]
/Ftdir

Control and direct files for template resolution. /Ft[+] 273

/Fw[+|-][dir][name] Create intermediate code files only, instead of a full compilation.
Specify name and directory for files.

/Fw- 273

/G[3|4|5] Specify type of processor. /G3 299

/Ga[+|-] Turn on implicit SOM mode. /Ga- 313

/Gb[+|-] Disable direct access to attributes for DSOM. /Gb- 314

/Gd[+|-] Dynamically link to the runtime library, instead of linking
statically.

/Gd- 300

/Ge[+|-] Build .EXE or .DLL file. /Ge[+] 300

/Gf[+|-] Use fast floating-point execution. /Gf- 301

/Gh[+|-] Enable code for performance analysis. /Gh- 301

/Gi[+|-] Use fast integer execution. /Gi- 302

/Gk[+|-] Link with old C++ libraries /Gk- 302

/Gl[+|-] Remove unreferenced functions. /Gl- 303

264 IBM VisualAge�C++ for OS/2 User's Guide

Compiler Options Summary

Figure 69 (Page 2 of 4). Compiler Options Summary

Option Description Default Page

/Gm[+|-] Link with the multithread library, instead of the single-thread
library.

/Gm- 303

/Gn[+|-] Hide default library information from linker. /Gn- 304

/Gp[+|-] Support _parmdwords in _System linkage. /Gp- 304

/Gr[+|-] Allow object code to run at ring 0. /Gr- 304

/Gs[+|-] Remove stack probes. /Gs- 305

/Gt[+|-] Enable variables for passing to 16-bit functions. /Gt- 305

/Gu[+|-] Stop external functions from using data defined in intermediate
files.

/Gu- 305

/Gv[+|-] Handle DS and ES registers for virtual device driver
development.

/Gv- 306

/Gw[+|-] Generate FWAIT instruction after each floating-point load
instruction.

/Gw- 306

/Gx[+|-] Remove C++ exception handling information. /Gx- 307

/Gz[+|-] Do not prebuild SOM classes at static initialization time. /Gz- 314

/Hnum Set significant length of external names. /H255 317

/Ipath[;path] Specify #include search paths, in addition to directory of source
file and paths in INCLUDE.

No additional
paths.

275

/J[+|-] Treat unspecified char variables as signed char, instead of
unsigned char.

/J[+] 317

/L[+|-] Produce a minimal listing file. /L- 277

/La[+|-] Include a minimal layout in the listing file. /La- 277

/Lb[+|-] Include a layout in the listing file. /Lb- 278

/Le[+|-] Expand macros in listing file. /Le- 278

/Lf[+|-] Set all listing options on. /Lf- 278

/Li[+|-] Expand user #include files in the listing file. /Li- 279

/Lj[+|-] Expand user and system #include files in the listing file. /Lj- 279

/Lpnum Set page length of listing file. /Lp66 279

/Ls[+|-] Include the source code in the listing file. /Ls- 280

/Lt"string" Set title string for listing file. Name of first
source file.

280

/Lu"string" Set subtitle string in listing file. /Lu"" 280

/Lx[+|-] Generate a minimal cross-reference table in the listing file. /Lx- 281

/Ly[+|-] Generate a cross-reference table in the listing file. /Ly- 281

/M[p|s|c|t] Set default calling convention. /Mp 307

/Nn End compilation when error count reaches n. No limit. 282

 Chapter 15. Setting Compiler Options265

Compiler Options Summary

Figure 69 (Page 3 of 4). Compiler Options Summary

Option Description Default Page

/Ndname Set names of default data, uninitialized data, and constant
segments.

Use DATA32,
BSS32, and
CONST32_RO.

308

/Ntname Set names of default code or text segment. Use CODE32. 308

/Nxname Set names of exception-handling segments EH_CODE and
EH_DATA

309

/O[+|-] Optimize code. /O- 309

/Oc[+|-] Optimize code for size. /Oc- 310

/Oi[+|-]
/Oivalue

Inline specified user functions. /Oi-
/Oi+ when /O+

310

/Ol[+|-] Use intermediate linker. /Ol- 311

/Om[+|-] Limit working set size. /Om- 311

/Op[+|-] Do not perform optimizations that involve the stack pointer. /Op+ 311

/Os[+|-] Invoke the instruction scheduler. /Os-
/Os+ when /O+

312

/P[+|-] Run the preprocessor only, instead of a full compile. /P- 297

/Pc[+|-] Preserve source code comments in preprocessor output. /P- 297

/Pd[+|-] Redirect preprocessor output. /P- 297

/Pe[+|-] Suppress #line directives in preprocessor output. /P- 298

/Q[+|-] Display compiler logo when invoking compiler. /Q- 318

/R[e|n] Generate code that can be used as a subsystem without a runtime
environment.

/Re 312

/S[a|c|e|2] Set language level. /Se 289

/Sd[+|-] Set the default file extension for source files to .c, instead of
.obj.

/Sd- 289

/Sg[l][,<r|*>]
/Sg-

Set left and right margins for the input file, and ignore text
outside these margins.

/Sg- 290

/Sh[+|-] Allow use of ddnames. /Sh- 291

/Si[+|-][dir][name] Use precompiled header files, if they exist and are current. /Si- 291

/Sm[+|-] Ignore unsupported 16-bit keywords, instead of treating them like
any other identifier.

/Sm- 292

/Sn[+|-] Allow use of DBCS. /Sn- 292

/Sp[1|2|4] Specify alignment or packing of data items within structures and
unions.

/Sp4 292

/Sq[l][,<r|*>]
/Sq-

Ignore text in specified columns, instead of processing all the
contents of the input file.

/Sq- 293

266 IBM VisualAge�C++ for OS/2 User's Guide

Compiler Options Summary

Figure 69 (Page 4 of 4). Compiler Options Summary

Option Description Default Page

/Sr[+|-] Use old-style rules for type conversion, instead of new-style
rules.

/Sr- 293

/Ss[+|-] Allow double slashes to indicate comments. /Ss- 293

/Su[+|-|1|2|4] Control size of enum variables, instead of using the SAA rules. /Su- 294

/Sv[+|-] Allow use of memory files. /Sv- 294

/Tc Compile the following file as a C source file, regardless of its
extension.

Compile based on
file extension.

294

/Td[c|p] Specify the default language (C or C++) for files, instead of
compiling according to the file extension.

/Td 295

/Ti[+|-] Generate debugger information. /Ti- 282

/Tl[+|-|value] Control preloading of the compiler. /Tl[+] 318

/Tm[+|-] Enable debug version of memory management functions. /Tm- 283

/Tn[+|-] Generate partial debugger information. /Tn- 283

/Tp Compile the following file as a C++ source file, regardless of its
extension.

Compile based on
file extension.

295

/Tx[+|-] Provide a complete machine-state dump when an exception
occurs, instead of providing only the exception message and
address.

/Tx- 284

/U<name|*> Undefine macros. Retain macros. 298

/V"string" Include a version string in the object and executable files. No string. 318

/W[0|1|2|3] Set severity level of messages the compiler produces and counts. /W3 284

/Wgrp[+|-][grp] Generate or suppress messages in the grp group. /Wall-pro+ret+cnd+ 284

/Xc[+|-] Do not search paths specified using /I. /Xc- 275

/Xi[+|-] Do not search paths specified in INCLUDE. /Xi- 275

/Xs[dir|-] Exclude files in directory dir when /Ga is on (implict SOM
mode).

/Xs- 314

 Chapter 15. Setting Compiler Options267

Output File Management Options
Use these options to control the files that the compiler produces.

Note: You do not need the plus symbol (+) when specifying an option: the forms
/Fa+ and /Fa are equivalent.

File Names
and
Extensions

If you do not specify an extension for the file management options that take a file
name as a parameter, the default extension is used. For example, if you specify
/Flcome, the listing file will be called come.lst. Although you can specify an
extension of your own choosing, you should use the default extensions. See “File
Types” on page 206 for more information on default extensions.

If you use an option without using an optional name parameter, the name of the
following source file and the default extension is used, with the exception of the /Fm
option. If you do not specify a name with /Fm, the name of the first file given on the
command line is used, with the default extension .map.

Note: If you use the /Fe option, you must specify a name or a path for the file. If
you specify only a path, the file will have the same name as the first source
file on the command line, with the path specified.

 See “File Names” on page 256 for more information on using file names as
parameters with options.

Examples

¹ Perform syntax check only:

icc /Fc+ myprog.c

¹ Name the object file:

icc /Fobarney.obj fred.c

This names the object file barney.obj instead of the default,fred.obj.

¹ Name the executable file:

icc /Febarney.exe fred.c

This names the object file barney.exe instead of the default,fred.exe.

¹ Name the listing file:

icc /Floutput.my /L fred.c

This creates a listing output called output.my instead of fred.lst.

268 IBM VisualAge�C++ for OS/2 User's Guide

/Fa Option ¹/Fb Option

¹ Name the linker map file:

icc /Fmoutput.map fred.c

This creates a linker map file called output.map instead of fred.map.

¹ Name the assembler listing file:

icc /Fabarney fred.c

This names the output barney.asm. instead offred.asm.

 /Fa

Syntax: Default:
/Fa[+|-] /Fa-
/Fa[dir][name]

Use /Fa to produce, name, and direct an assembler listing file that has the source
code as comments. The listing file will be name.asm and will be placed in directory
dir.

The compiler produces a listing file for each source file that follows the option on the
command line. The name you provide applies only to the first listing file.

If you do not specify a name or directory, then the listing takes the same name as the
source file, with the extension .asm, and is put in the current directory.

If the directory you specify is not valid, the compiler does not generate a listing file:
it generates a warning message and the option does not take effect.

Note: The listing is not guaranteed to compile.

By default, the compiler does not create an assembler listing file.

 /Fb

Syntax: Default:
/Fb[+|-|*] /Fb-

C++ Use /Fb to produce a browser file, for use by the VisualAge C++ Browser. The file
has the same name as the next source file with the extension .pdb. You can include
maximum information in the browser file by specifying/Fb*. You do not need to
specify /Fb* unless the compiler issues a message that tells you to use the option.

 Chapter 15. Setting Compiler Options269

/Fc Option ¹/Fe Option

 See “Creating Files to Use with the Browser” on page 559 for more information
on the differences between /Fb and /Fb*.

If you are compiling and linking in one step, the compiler passes the /BROWSE option
to the linker. If you are compiling only, you must specify the /BROWSE option
directly, when you link, to preserve the browse information.

The browser file allows the VisualAge C++ browser to browse your program.
See Part 8, “Browsing Programs and Libraries” on page 551 for more information on
the browser.

Note: This option is valid for C++ files only.

By default, the compiler does not produce a browser file.

 /Fc

Syntax: Default:
/Fc[+|-] /Fc-

Use /Fc to perform only a syntax check. The only output files you can produce
when this option is in effect are listing (.lst) files.

By default, the compiler compiles and produces output files according to any other
options in effect.

 /Fe

Syntax: Default:
/Fename Use name of first source file, and add the

.EXE or .DLL extension.

Use /Fe to specify the name of the .EXE or .DLL file you are producing. The
executable output file will be name.exe or name.dll.

If you do not provide a name, the file takes the same name as the first source file,
with the extension .exe or .dll.

270 IBM VisualAge�C++ for OS/2 User's Guide

/Fi Option ¹/Fl Option

 /Fi

Syntax: Default:
/Fi[+|-] /Fi-
/Fi[dir][name]

Use /Fi to control creation of precompiled header files. The compiler creates a
precompiled header file if none exists or if the existing one is out-of-date.

If you specify a name or directory with the option, then the precompiled headers are
placed in a file with the name and in the directory you specify.

You can also use the #pragma hdrfile directive to tell the compiler what file to
generate. You must still specify /Fi.

If you do not specify a name or directory, the file is named csetc.pch (if the next
source file is a C file) or csetcpp.pch (if the next source file is a C++ file), and
placed in the current working directory.

Use the /Si option to use the precompiled header files. Use /Fi and /Si in
combination to ensure that your precompiled header files are always up to date.

Note: The file you generate (/Fi) must be the same file you use (/Si). If you
specify different file names or directories with the two options, the name or directory
specified last is used with both options. If you specify a file name or directory with
#pragma hdrfile, it overrides the name or directory specified with the options.

 See “Using Precompiled Headers” on page 239 for more information.

By default, the compiler does not create a precompiled header file.

 /Fl

Syntax: Default:
/Fl[+|-] /Fl-
/Fl[dir][name]

Use /Fl to produce, name, and direct a listing file. The listing file will be name.lst,
and will be placed in directorydir.

The compiler produces a separate listing file for each source file that follows the
option on the command line. The name you provide applies only to the first listing
file.

 Chapter 15. Setting Compiler Options271

/Fm Option ¹/Fo Option

 See “Compiler Listings” on page 222 for more information.

If you do not specify a name or directory, the listing takes the same file name as the
source file, with the extension .lst, and is put in the current directory.

If the directory you specify is not valid, the compiler does not generate a listing file:
it generates a warning message and the option does not take effect.

By default, the compiler does not produce a listing file.

 /Fm

Syntax: Default:
/Fm[+|-] /Fm-
/Fmname

Use /Fm to produce and name a linker map file. The map file will be name.map.

If you do not provide a name, the map file takes the same file name as the source
file, with the extension .map.

 See “Generating a Map File” on page 341 for more information.

By default, the compiler does not produce a map file.

Note: Specify /B"/MAP:full" for a more detailed map file.

 /Fo

Syntax: Default:
/Fo[+|-] /Fo[+]
/Fo[dir][name]

Use /Fo to produce, name, and direct an object file. The object file will be
name.obj, and will be placed in directorydir.

The compiler produces a separate object file for each source file that follows the
option on the command line. The name you provide applies only to the first object
file.

 See “Object Files” on page 220 for more information.

272 IBM VisualAge�C++ for OS/2 User's Guide

/Ft Option ¹/Fw Option

If you do not specify a name or a directory, the object file takes the same file name
as the source file, with the extension .obj, and is put in the current directory.

If the directory you specify is not valid, the compiler generates a warning message,
and places the object file in the current directory, with its default name.

By default, the compiler produces an object file with the same name as the source file
and the extension .obj.

Specify /Fo- if you do not want the compiler to create an object file.

 /Ft

Syntax: Default:
/Ft[+|-] /Ft[+]
/Ftdir

C++ Use /Ft to control generation of files for template resolution.

Note: This option is valid for C++ files only. The C language does not support the
use of templates.

Specify /Ft- to suppress generation of files for template resolution.

Specify /Ftdir to generate the files for template resolution and place them in the dir
directory.

By default, files for template resolution are generated and stored in the TEMPINC
subdirectory under the current directory.

 /Fw

Syntax: Default:
/Fw[+|-] /Fw-
/Fw[dir][name]

Use /Fw to produce, name, and direct intermediate code files, without completing
compilation. The intermediate code files will be name.w, name.wh, name.wi, and
name.ws, and will be placed in directory dir.

The compiler produces a separate set of intermediate code files for each source file
that follows the option on the command line. The name you provide applies only to
the first set of intermediate code files.

 Chapter 15. Setting Compiler Options273

Intermediate code files are used by the intermediate code linker. For more
information, see “Using the Intermediate Code Linker” on page 225.

If you do not specify a name, the intermediate code files take the same file name as
the source file, with the extensions .w, .wh, .wi, and .ws.

If the directory you specify is not valid, the compiler does not save the intermediate
code files: it generates a warning message and the option does not take effect.

By default, the compiler performs regular compilation, without saving intermediate
code files.

#include File Search Options
Use these options to control which paths are searched when the compiler looks for
#include files. The paths that are searched are the result of the information in the
INCLUDE and ICC environment variables, combined with how you use the following
compiler options.

Using the #include File Search Options

The /I option must be followed by one or more directory names. A space may be
included between /I and the directory name. If you specify more than one directory,
separate the directory names with a semicolon.

If you use the /I option more than once, the directories you specify are appended to
the directories you previously specified. For example:

 /Id:\hdr;e:\ /I f:\

is equivalent to

 /Id:\hdr\;e:\;f:\;

If you specify search paths using /I in both the ICC environment variable and on the
command line, all the paths are searched. The paths specified in ICC are searched
before those specified on the command line.

Once you use the /Xc option, the paths previously specified by using /I cannot be
recovered. You have to use the /I option again if you want to reuse the paths
canceled by /Xc.

The /Xi option has no effect on the /Xc and /I options. For further information on
#include files and search paths, see “Controlling #include Search Paths” on
page 211.

274 IBM VisualAge�C++ for OS/2 User's Guide

/I Option ¹/Xi Option

 /I

Syntax: Default:
/Ipath[;path] Directory of source file, paths in

INCLUDE environment variable

Use /I to specify #include search path(s). The compiler will search path[;path].
Note that for user include files, the directory of the source file is always searched
first.

By default, the compiler searches the directory of the source file (for user files only),
and then search paths given in the INCLUDE environment variable.

 /Xc

Syntax: Default:
/Xc[+|-] /Xc-

Use /Xc to stop the compiler from searching paths specified using /I.

By default, the compiler searches paths specified using /I.

 /Xi

Syntax: Default:
/Xi[+|-] /Xi-

Use /Xi to stop the compiler from searching paths specified by the INCLUDE
environment variable.

By default, the compiler searches paths specified in the INCLUDE environment
variable.

 Chapter 15. Setting Compiler Options275

Listing File Options
Use these options to control whether or not a listing file is produced, the type of
information in the listing, and the appearance of the file.

Note: The following options only modify the appearance of a listing; they do not
cause a listing to be produced. Use them with one of the other listing file options, or
the /Fl option, to produce a listing:

/Le /Li /Lj /Lp /Lt /Lu

If you specify any of the/Le, /Li, or /Lj options, you must also specify the/L,
/Lf, or /Ls option.

Including Information about Your Source Program

You can use three options to include information about your source program in the
listing file:

/Ls[+] Includes your source program in the listing file.

/Li[+] Shows the included text after the user #include directives.

/Lj[+] Shows the included text after both user and system #include
directives.

See the option descriptions for additional information.

Note: If you specify the /Lj option, /Li[+] and /Li- have no effect.

Including Information about Variables

The options that produce information about the variables used in your program
provide the following amount of detail:

/La[+] Includes a table of all the referenced struct and union variables in
the source program.

/Lb[+] Includes a table of all struct and union variables in the program.

/Le[+] Includes all expanded macros in the listing file.

/Lx[+] Includes a cross-reference table that contains a list of the referenced
identifiers in the source file together with the numbers of the lines in
which they appear.

276 IBM VisualAge�C++ for OS/2 User's Guide

/L Option ¹/La Option

/Ly[+] Includes a cross-reference table that contains a list of all identifiers
referenced by the user and all external identifiers, together with the
numbers of the lines in which they appear.

See the option descriptions for additional information.

 /L

Syntax: Default:
/L[+|-] /L-

Use /L to produce a listing file. The listing file contains only a prolog and error
messages. You can modify the contents of the listing using other listing file options.

 See “Compiler Listings” on page 222 for more information.

By default, the compiler does not produce a listing file.

 /La

Syntax: Default:
/La[+|-] /La-

Use /La to include a table in the listing file that shows the referenced struct and
union variables in the source program. The table shows how each structure and
union in the program is mapped. It contains the following information:

¹ The name of the structure or union and the elements within each.
¹ The byte offset of each element from the beginning of the structure or union. The

bit offset for unaligned bit data is also given.
¹ The length of each element.
¹ The total length of each structure, union, and substructure in both packed and

unpacked formats.

By default, the listing file does not include a layout.

 Chapter 15. Setting Compiler Options277

/Lb Option ¹/Lf Option

 /Lb

Syntax: Default:
/Lb[+|-] /Lb-

Use /Lb to include a table in the listing file that shows all the struct and union
variables in the source program. The table shows how each structure and union in
the program is mapped. It contains the following information:

¹ The name of the structure or union and the elements within each.
¹ The byte offset of each element from the beginning of the structure or union. The

bit offset for unaligned bit data is also given.
¹ The length of each element.
¹ The total length of each structure, union, and substructure in both packed and

unpacked formats.

By default, the listing file does not include a layout.

 /Le

Syntax: Default:
/Le[+|-] /Le-

Use /Le to expand all macros in the listing file.

Note: To use /Le, you must also specify either /L or /Ls.

By default, the listing file does not show macros expanded.

 /Lf

Syntax: Default:
/Lf[+|-] /Lf-

Use /Lf to set all listing options on, and generate a listing file.

By default, all listing options are off.

278 IBM VisualAge�C++ for OS/2 User's Guide

/Li Option ¹/Lp Option

 /Li

Syntax: Default:
/Li[+|-] /Li-

Use /Li to expand user #include files in the listing file.

Note: To use /Li, you must also specify either /L or /Ls.

By default, the listing file does not show user #include files expanded.

 /Lj

Syntax: Default:
/Lj[+|-] /Lj-

Use /Lj to expand user and system #include files in the listing file.

If you use HPFS and have very long file names, there may not be enough room for
the file names on the lines showing the included code. Counters are used in the
INCLUDE column of the listing output, and the file name corresponding to each
number is given at the bottom of the source listing.

Note: To use /Lj, you must also specify either /L or /Ls.

By default, the listing file does not show user and system #include files expanded.

 /Lp

Syntax: Default:
/Lpnum /Lp66

Use /Lp to set the page length in the listing file. Each page will be num lines long.
You can set num to any number from 15 to 65535.

By default, the listing file has 66 lines per page.

 Chapter 15. Setting Compiler Options279

/Ls Option ¹/Lu Option

 /Ls

Syntax: Default:
/Ls[+|-] /Ls-

Use /Ls to include the source code in the listing file.

By default, the listing file does not include the source code.

 /Lt

Syntax: Default:
/Lt"string" Use name of source file

Use /Lt to set the title string of the listing file to string. Maximum string length is
256 characters.

By default, the title string is set to the name of the source file.

Note: You can also specify a title using the#pragma title directive, but this title
does not appear on the first page of the listing output.

 /Lu

Syntax: Default:
/Lu"string" /Lu""

Use /Lu to set the subtitle string in the listing file to string. Maximum string length
is 256 characters.

By default, no subtitle is set (null string).

Note: You can also specify a subtitle using thesubtitle directive, but this subtitle
does not appear on the first page of the listing output.

280 IBM VisualAge�C++ for OS/2 User's Guide

/Lx Option ¹/Ly Option

 /Lx

Syntax: Default:
/Lx[+|-] /Lx-

Use /Lx to generate a cross-reference table in the listing file for referenced variable,
structure, and function names, that shows line numbers where names are declared.

By default, the listing file does not include the cross-reference table.

 /Ly

Syntax: Default:
/Ly[+|-] /Ly-

Use /Ly to generate a cross-reference table in the listing file of all variable, structure,
and function names, plus all local variables referenced by the user.

By default, the listing file does not include the cross-reference table.

Debugging and Diagnostic Information Options
Use these options to help debug your programs.

Use /Ti to prepare your output for debugging with the VisualAge C++ debugger.

Use /Wgrp to control what types of diagnostic messages are produced.

Changed with this version: The /Kn options are no longer valid. See
Figure 70 on page 286 for a list of equivalent Wgrp options you can use intead.

Note: The information generated by the VisualAge C++ Debugger and /Wgrp
options is provided to help you diagnose problems in your code. Do not use
the diagnostic information as a programming interface.

 Chapter 15. Setting Compiler Options281

/N Option ¹/Ti Option

 /N

Syntax: Default:
/Nn No limit

Use /N to set the maximum number of errors before compilation aborts. Compilation
ends when the error count reaches n.

By default, the compiler sets no limit on the number of errors.

 /Ti

Syntax: Default:
/Ti[+|-] /Ti-

Use /Ti to generate information for the VisualAge C++ Debugger and for
Performance Analyzer.

By default, the compiler does not generate debug information. When you use /Ti+,
do not turn on optimization (/O+, /Oc+, /Oi+, or /Os+), unless you are using the
information with the performance analyzer, and not with the debugger. Because the
compiler produces debugging information as if the code were not optimized, the
information may not accurately describe an optimized program being debugged,
which makes debugging difficult. Accurate symbol and type information is not
always available.

If you cannot avoid debugging an optimized program, turn the scheduler off (/Os-),
and step through the program at the assembly level, using the Register and Storage
windows for information.

To make full use of the VisualAge C++ Debugger, set optimization off and use the
/G3 option. (Note that these are the defaults.)

For more information on the VisualAge C++ Debugger, see Part 6, “IBM VisualAge
C ++ Debugger” on page 393.

For more information on Performance Analyzer, see Part 7, “Performance Execution
Trace Analyzer” on page 475.

282 IBM VisualAge�C++ for OS/2 User's Guide

/Tm Option ¹/Tn Option

 /Tm

Syntax: Default:
/Tm[+|-] /Tm-

Use /Tm to enable debug versions of memory management functions. The debug
memory management functions (_debug_calloc, _debug_malloc, new, and so on)
are then used in place of the regular memory management functions. This option
defines the __DEBUG_ALLOC__ macro. See the C Library Reference for
information on the C debug memory management functions and the Language
Reference for information on the debug versions of new and delete.

When you specify /Tm, the compiler generates additional code at the beginning of
every function, that pre-initializes the local variables for the function. This makes it
easier to find uninitialized local variables.

By default, the compiler uses the regular memory management functions (calloc,
malloc, new, and so on), and does not pre-initialize their local storage.

 /Tn

Syntax: Default:
/Tn[+|-] /Tn-

Use /Tn to generate abbreviated information for the debugger. You can then use the
debugger to single-step through the source view of the files, but cannot view
variables.

Specify /Ti to generate more complete debugger information.

If you specify both /Tn and /Ti, the compiler will generate the more complete
debugging information indicated by /Ti.

By default, the compiler does not generate line number information.

 Chapter 15. Setting Compiler Options283

/Tx Option ¹/Wgrp Option

 /Tx

Syntax: Default:
/Tx[+|-] /Tx-

Use /Tx to provide a complete machine-state dump when an exception occurs.

By default, the compiler provides only the exception message and address when an
exception occurs, and does not provide a complete machine-state dump.

 /W

Syntax: Default:
/W[0|1|2|3] /W3

Use /W to set the severity level of messages the compiler produces and that causes the
error count to increment. See the online User's Guide for a description of error
messages and severity levels.

By default (/W3)), the compiler produces and counts all message types (severe error,
error, warning, and informational).

You can set the following severity levels:

/W0 Produce and count only severe errors.

/W1 Produce and count severe errors and errors.

/W2 Produce and count severe errors, errors, and warnings.

/W3 Produce and count all message types (severe error, error, warning, and
informational).

 /Wgrp

Syntax: Default:
/Wgrp[+|-] [grp] /Wall-pro+ret+cnd+

Use /Wgrp to generate messages in the grp group. You can specify more than one
group.

The /Wgrp options control informational messages that warn of possible programming
errors, weak programming style, and other information about the structure of your
programs. Similar messages are in groups, or suboptions, to give you greater control

284 IBM VisualAge�C++ for OS/2 User's Guide

/Wgrp Option

over which types of messages you want to generate. You can also specify these
groups in your source code, with#pragma info.

By default, the compiler generates diagnostic messages in the pro, ret, and cnd
groups.

When you specify/Wall[+], all suboptions are turned on and all possible diagnostic
messages are reported. Because even a simple program that contains no errors can
produce many informational messages, you may not want to use /Wall very often.
You can use the suboptions alone or in combination to specify the type of messages
that you want the compiler to report. Suboptions can be separated by an optional +
sign. To turn off a suboption, you must place a - sign after it.

You can also combine the /W[0|1|2|3] options with the /Wgrp options.

 Chapter 15. Setting Compiler Options285

/Wgrp Option

The following table lists the message groups and the message numbers that each
controls, as well as the/Kn option that formerly controlled each message. Messages
generated for C files begin with EDC0, while messages for C++ files begin with
EDC3.

Figure 70 (Page 1 of 2). /Wgrp Options

grp /Kn
Option

Controls Messages About Messages

/Wall /Kf All diagnostics. All message numbers listed in this table.

/Wcls (none) Use of classes. EDC3110, EDC3253, EDC3266

/Wcmp (none) Possible redundancies in unsigned
comparisons.

EDC3138

/Wcnd /Kb Possible redundancies or problems in
conditional expressions.

EDC0424, EDC0425, EDC0426,
EDC0427, EDC0420, EDC0421,
EDC0422, EDC0423, EDC3107,
EDC3130, EDC3388, EDC3389,
EDC3390, EDC3391, EDC3392,
EDC3393

/Wcns /Kb Operations involving constants. EDC0475, EDC0476, EDC0477,
EDC3131, EDC3219, EDC3220

/Wcnv /Kb Conversions. EDC3313, EDC3528

/Wcpy (none) Problems generating copy
constructors.

EDC3199, EDC3200

/Weff /Kb Statements with no effect. EDC0509, EDC0435, EDC0436,
EDC0437, EDC0473, EDC0474,
EDC0478, EDC0479, EDC0483,
EDC3165, EDC3215

/Wenu /Ke Consistency of enum variables. EDC0439, EDC0440, EDC0471,
EDC3137, EDC3366

/Wext /Kb and
/Kx

Unused external definitions. EDC0415, EDC0493, EDC0494,
EDC3127

/Wgen /Kb General diagnostics. EDC0438, EDC0448, EDC0466,
EDC0480, EDC0489, EDC0492,
EDC3101

/Wgnr (none) Generation of temporary variables. EDC3151

/Wgot /Kg Usage of goto statements. EDC0413

/Wini /Ki Possible problems with initialization. EDC0444, EDC0445, EDC0446,
EDC0447, EDC0482

/Winl (none) Functions not inlined. EDC3542

286 IBM VisualAge�C++ for OS/2 User's Guide

/Wgrp Option

Figure 70 (Page 2 of 2). /Wgrp Options

grp /Kn
Option

Controls Messages About Messages

/Wlan (none) Effects of the language level. EDC3116

/Wobs /Kb Features that are obsolete. EDC0450, EDC0470

/Word /Kb Unspecified order of evaluation. EDC0428, EDC0429, EDC0430,
EDC0431, EDC0432

/Wpar /Kp Unused parameters. EDC0414, EDC3126

/Wpor /Ko, /Kb Nonportable language constructs. EDC0433, EDC0434 EDC3108,
EDC3133, EDC3135, EDC3136,
EDC3307

/Wppc /Kc Possible problems with using the
preprocessor.

EDC0076, EDC0290, EDC0293,
EDC0311, EDC0312, EDC0313,
EDC0389, EDC0441, EDC0442,
EDC0443, EDC0457, EDC0468

/Wppt /Kt Trace of preprocessor actions. EDC0467

/Wpro /Kb Missing function prototypes. EDC0304

/Wrea /Kb Code that cannot be reached. EDC0472, EDC0520, EDC3119

/Wret /Kb Consistency of return statements. EDC0449, EDC0481

/Wtrd /Ka Possible truncation or loss of data or
precision.

EDC0374, EDC0416, EDC0418,
EDC0419, EDC0451, EDC0452,
EDC0453, EDC0495, EDC3108,
EDC3135, EDC3136

/Wtru /Kr Variable names truncated by the
compiler.

EDC0484

/Wund (none) Casting of pointers to or from an
undefined class.

EDC3098, EDC3397, EDC3405,
EDC3406

/Wuni /Ki Uninitialized variables. EDC0412

/Wuse /Kb, /Kx Unused auto and static variables. EDC0409, EDC0410, EDC0469,
EDC0490, EDC0491, EDC3002,
EDC3099, EDC3100, EDC3101

/Wvft (none) Generation of virtual function tables. EDC3280, EDC3281, EDC3282

More information about the messages generated by the/Wgrp options is available
in the online version of the User's Guide.

 Chapter 15. Setting Compiler Options287

/Wgrp Option

Examples

¹ Produce all diagnostic messages:

icc /Wall blue.c
icc /Wall+ blue.c

¹ Produce diagnostic messages about:

 – Unreferenced parameters
– Missing function prototypes

 – Uninitialized variables

by turning on the appropriate suboptions:

icc /Wpar+pro+uni blue.c
icc /Wparprouni blue.c

¹ Produce all diagnostic messages except:

– Warnings about assignments that can cause a loss of precision
– Preprocessor trace messages
– External variable warnings

by turning on all options, and then turning off the ones you do not want:

icc /Wall+trd-ppt-ext- blue.c

¹ Produce only basic diagnostics, with all other suboptions turned off:

icc /Wgen+ blue.c

¹ Produce only basic diagnostics and messages about severe errors, errors, or
warnings (/W2):

icc /Wgen2 blue.c

288 IBM VisualAge�C++ for OS/2 User's Guide

/S Option ¹/Sd Option

Source Code Options
Use these options to control how the VisualAge C++ compiler interprets your source
file. This control is especially useful, for example, if you are migrating code or
ensuring consistency with a particular language standard.

 /S

Syntax: Default:
/S[a|c|e|2] /Se

Use /S to set the language level.

You can set the following language levels:

/Sa Conform to ANSI standards.

C++ /Sc Allow constructs compatible with older levels of the C++ language.

Note: This option is valid only for C++ files.

/Se Allow all VisualAge C++ language constructs. This is the default.

C /S2 Conform to SAA Level 2 standards.

Note: This option is valid only for C files.

 See “Setting the Source Code Language Level” on page 214 for more
information.

By default, the compiler allows all VisualAge C++ language extensions.

 /Sd

Syntax: Default:
/Sd[+|-] /Sd-

C Use /Sd to set the default file extension to .c. Any file without an extension is then
assumed to be a C source file, and will be compiled and linked.

By default, you must specify the extension for a source file:

 icc anthony.c
 icc efrem.cpp

If you omit the extension, VisualAge C++ compiler assumes that the file is an object
file (.obj) and does not compile it, but only invokes the linker. The following

 Chapter 15. Setting Compiler Options289

/Sg Option

commands are equivalent (assuming that /Sd+ has not been specified elsewhere, such
as in ICC):

 icc dale
 icc dale.obj

icc /Sd- dale

If you want the default file extension to be the default source file extension, use the
/Sd+ option. For example, the following two commands are equivalent:

 icc alistair.c
icc /Sd+ alistair

Note: The /Tc and /Tp options override the setting of /Sd. If you specify either
/Tc or /Tp followed by a file name without an extension, the compiler looks
for the name specified, without an extension, and treats the file as a C file (if
/Tc was specified) or a C++ file (if /Tp was specified). For example, given
the following command:

icc /Tp xiaohu

the compiler searches for the file xiaohu and compiles it as a C++ file.

 /Sg

Syntax: Default:
/Sg[l] [,<r|*>] /Sg-
/Sg-

C Use /Sg to set left and right margins of the input file and ignore text outside these
margins. This option is useful when you use source files that contain columns of
characters you want to ignore.

Note: This option is only valid for C files.

The left margin is set to l. The right margin can be the valuer, or you can use an
asterisk to denote no right margin.l and r must be from 1 to 65535, and r must be
greater than or equal to l.

By default, no margins are set, and the compiler uses the entire input file.

290 IBM VisualAge�C++ for OS/2 User's Guide

/Sh Option ¹/Si Option

 /Sh

Syntax: Default:
/Sh[+|-] /Sh-

Use /Sh to allow the use of data definition names (ddnames).

A ddname is the part of the data definition before the equal sign. Use a ddname in a
call to fopen or freopen to refer to the data definition stored in the environment.

For more information on using ddnames, see the Programming Guide.

By default, the compiler does not allow ddnames.

 /Si

Syntax: Default:
/Si[+|-] /Si-
/Si[dir][name]

Use /Si to use precompiled header files, if they exist and are current.

If you specify a name or directory with the option, then the compiler looks for a
precompiled header file with the name and in the directory you specify.

You can also use the #pragma hdrfile directive to tell the compiler what file to
look for. You must still specify /Si.

If you do not specify a name or directory, the compiler looks for a file named
csetc.pch (if the next source file is a C file) or csetcpp.pch (if the next source file
is a C++ file), in the current working directory.

Use the /Fi option to create or update the precompiled header files. Use /Si and
/Fi in combination to ensure that your precompiled header files are always up to
date.

Note: The file you generate (/Fi) must be the same file you use (/Si). If you
specify different file names or directories with the two options, the name or directory
specified last is used with both options. If you specify a file name or directory with
#pragma hdrfile, it overrides the name or directory specified with the options.

 See “Using Precompiled Headers” on page 239 for more information.

 Chapter 15. Setting Compiler Options291

/Sm Option ¹/Sp Option

By default, the compiler does not use precompiled header files.

 /Sm

Syntax: Default:
/Sm[+|-] /Sm-

Use /Sm to ignore unsupported 16-bit keywords, such as near and far.

By default, the compiler treats unsupported 16-bit keywords like any other identifier.

 /Sn

Syntax: Default:
/Sn[+|-] /Sn-

Use /Sn to allow use of double-byte character set (DBCS). Compile with this option
if your source files contain DBCS characters. Using /Sn increases your compile
time.

By default, the compiler does not perform the checking needed to handle DBCS
characters correctly.

 /Sp

Syntax: Default:
/Sp[1|2|4] /Sp4

Use /Sp to specify alignment or packing of data items within structures and unions.

By default, structures and unions are aligned along 4-byte boundaries (normal
alignment).

You can align structures and unions along 1-byte, 2-byte, or 4-byte boundaries./Sp
is equivalent to /Sp1.

292 IBM VisualAge�C++ for OS/2 User's Guide

/Sq Option ¹/Ss Option

 /Sq

Syntax: Default:
/Sq[l] [,<r|*>] /Sq-
/Sq-

C Use /Sq to specify columns in which sequence numbers appear, and ignore text in
those columns. This option can be used when importing source files from other
systems, and is provided primarily for compatibility with IBM C/370.

Note: This option is only valid for C files.

Sequence numbers appear between columnsl and r of each line in the input source
code. l and r must be from 1 to 65535, and r must be greater than or equal to l.
If you do not want to specify a right column, use an asterisk for r.

By default, the compiler does not use sequence numbers.

 /Sr

Syntax: Default:
/Sr[+|-] /Sr-

C Use /Sr to use old-style rules for type conversion. Old-style rules preserve the sign.
They do not conform to ANSI standards.

By default, the compiler uses ANSI standard rules for type conversion. These rules
preserve accuracy.

Note: This option is valid for C files only. C++ files must use the ANSI standard
type conversion rules.

 /Ss

Syntax: Default:
/Ss[+|-] /Ss-

C Use /Ss to allow the use of double slashes (//) for comments.

By default, the compiler does not allow double slashes to indicate comments in a C
file.

Note: This option is only valid for C files. C++ allows double slashes to indicate
comments as part of the language.

 Chapter 15. Setting Compiler Options293

/Su Option ¹/Tc Option

 /Su

Syntax: Default:
/Su[+|-|1|2|4] /Su-

Use /Su to control the size of enum variables. If you do not provide a size, all enum
variables are made 4 bytes.

By default, the compilers uses the SAA rules: make all enum variables the size of the
smallest integral type that can contain all variables.

You can specify the following sizes:

/Su[+] Make all enum variables 4 bytes.

/Su1 Make all enum variables 1 byte.

/Su2 Make all enum variables 2 bytes.

/Su4 Make all enum variables 4 bytes.

 /Sv

Syntax: Default:
/Sv[+|-] /Sv-

Use /Sv to allow the use of memory files.

For more information on using memory files, see the Programming Guide.

By default, the compiler does not allow memory files.

 /Tc

Syntax: Default:
/Tc filename Compile *.cpp and *.cxx as C++,

compile *.c and unrecognized files as C.

C Use /Tc to specify that the following file is a C file, regardless of its extension.

Important: The /Tc option must be immediately followed by a file name, and
applies only to that file.

By default, the compiler compiles.cpp and .cxx files as C++ files, and .c and all
other unrecognized files as C files.

294 IBM VisualAge�C++ for OS/2 User's Guide

/Td Option ¹/Tp Option

 /Td

Syntax: Default:
/Td[c|p] /Td

Use /Td to specify a default language (C or C++) for files.

By default, the compiler compiles.cpp and .cxx files as C++ files, and .c and all
other unrecognized files as C files.

You can change the default as follows:

/Tdc Compile all source and unrecognized files that follow on the command line as
C files.

/Tdp Compile all source and unrecognized files that follow on the command line as
C++ files.

 See “File Types” on page 206 for a list of file types the compiler recognizes.

Note: You can specify /Td anywhere on the command line to return to the default
rules for the files that follow it.

 /Tp

Syntax: Default:
/Tp filename Compile *.cpp and *.cxx as C++,

compile *.c and unrecognized files as C.

C++ Use /Tp to specify that the following file is a C++ file, regardless of its extension.

Important: The /Tp option must be immediately followed by a file name, and
applies only to that file.

By default, the compiler compiles.cpp and .cxx files as C++ files, and .c and all
other unrecognized files as C files.

 Chapter 15. Setting Compiler Options295

/D Option

 Preprocessor Options
Use these options to control the use of the preprocessor.

Note that the /Pc, /Pd, and /Pe options are actually suboptions of /P. Specifying
/Pc- is the same as specifying /P+c- and causes only the preprocessor to be run.

Using the Preprocessor
Preprocessor directives, such as #include, allow you to include C or C++ code from
another source file into yours, to define macros, and to expand macros. See the
Language Reference for a list of preprocessor directives and information on how to
use them.

If you run only the preprocessor, you can use the preprocessor output (which has all
the preprocessor directives executed, but no code compiled) to debug your program.
For example, all macros are expanded, and the code for all files included by #include
directives appears in your program.

By default, comments in the source code are not included in the preprocessor output.
To preserve the comments, use the /Pc option. For C programs, if you use // to
begin your comments, you must also specify the /Ss option to include those
comments in the preprocessor output.

The /P, /Pc, /Pd, and /Pe options can be used in combination with each other. For
example, specify /Pcde to preserve comments, suppress #line directives, and redirect
the preprocessor output to stdout.

 /D

Syntax: Default:
/Dname[::n] Define no macros on the command line.
/Dname[=n]

Use /D to define preprocessor macro name to the value n. If n is omitted, the macro
is set to a null string. Macros defined on the command line override macros defined
in the source code.

If the value n is more than one word, delimit it with double quotes:

/Dname="a b c"

To define n to a string literal, delimit the string literal with /" at either end, and
enclose the whole in double quotes:

/Dname=" /"Some text/" "

296 IBM VisualAge�C++ for OS/2 User's Guide

/P Option ¹/Pd Option

Use the /U option to undefine macros on the command line.

By default, no macros are defined on the command line.

 /P

Syntax: Default:
/P[+|-] /P-

Use /P to run the preprocessor only, and create a preprocessor output file that has the
same name as the source file, with the extension .i.

By default, both the preprocessor and the compiler run, and no preprocessor output is
generated.

 /Pc

Syntax: Default:
/Pc[+|-] /P-

Use /Pc to run the preprocessor only, and create a preprocessor output file that
includes the comments from the source code. The output file has the same name as
the source file, with the extension .i.

Specify /Pc- to run the preprocessor only, and create a preprocessor output file with
the comments stripped out. The output file has the same name as the source file,
with the extension .i. /Pc- is equivalent to /P[+].

By default, both the compiler and preprocessor run, and no preprocessor output is
generated.

 /Pd

Syntax: Default:
/Pd[+|-] /P-

Use /Pd to run the preprocessor only, and send the preprocessor output to stdout.

Specify /Pd- to run the preprocessor only, and not redirect preprocessor output.
Preprocessor output is written to a file that has the same name as the source file, with
the extension .i. /Pd- is equivalent to /P[+].

 Chapter 15. Setting Compiler Options297

/Pe Option ¹/U Option

By default, both the compiler and preprocessor run, and no preprocessor output is
generated.

 /Pe

Syntax: Default:
/Pe[+|-] /P-

Use /Pe to run the preprocessor only, and suppress generation of#line directives in
the preprocessor output. The output file has the same name as the source file, with
the extension .i.

Specify /Pe- to run the preprocessor only, and generate#line directives in the
preprocessor output. The output file has the same name as the source file, with the
extension .i. /Pe- is equivalent to /P[+].

By default, both the compiler and preprocessor run, and no preprocessor output is
generated.

 /U

Syntax: Default:
/U<name|*> Retain macros.

Use /U to undefine macros.

Specify /Uname to undefine macro name.

Specify /U* to undefine all macros.

Note: /U does not affect some macros, such as __DATE__, __TIME__,
__TIMESTAMP__, __FILE__, and __FUNCTION__, nor does it undefine macros defined
in source code.

Use the /D option to define or redefine macros on the command line. Macros defined
on the command line override macros defined in the source code.

By default, the preprocessor retains all macros.

298 IBM VisualAge�C++ for OS/2 User's Guide

/G Option

Code Generation Options
Use these options to specify the type of code that the compiler will produce. The
types of code include:

¹ Dynamically linked runtime libraries
¹ Statically linked runtime libraries

 ¹ Single-thread programs
 ¹ Multithread programs
 ¹ Subsystems

 See the Programming Guide for more information.

Notes:

1. The /Oi[+] option is more effective when/O[+] is also specified.

2. Using optimization (/O[+]) limits your use of the VisualAge C++ Debugger to
debug your code. The /Ti option is not recommended for use with optimization,
when you are debugging. You can still use the /Ti option for analysis with
Performance Analyzer.

 /G

Syntax: Default:
/G[3|4|5] /G3

Use /G to specify the type of processor your code will run on.

By default, the compiler optimizes the code for a 386 processor (/G3).

You can specify the following processors:

/G3 Optimize code for use with a 386 processor. The code will run on a 486 or
Pentium microprocessor. The compiler includes any 486 or Pentium
microprocessor optimizations that do not detract from the performance on the
386 processor. If you do not know what processor your application will be run
on, use this option.

/G4 Optimize code for use with a 486 processor. The code will run on a 386 or
Pentium microprocessor. The compiler includes any Pentium microprocessor
optimizations that do not detract from the performance on the 486 processor.

/G5 Optimize code for use with a Pentium Microprocessor. The code will run on a
386 or 486 processor.

 Chapter 15. Setting Compiler Options299

/Gd Option ¹/Ge Option

 /Gd

Syntax: Default:
/Gd[+|-] /Gd-

Use /Gd to dynamically link to the runtime library. Your .EXE or .DLL file will call
functions from VisualAge C++ DLLs, and must have access to these DLLs to run.

 See “Static and Dynamic Linking” on page 237 for more information.

By default, the runtime library is statically linked. VisualAge C++ functions are
copied into your .EXE or .DLL file from VisualAge C++ .LIB files, and does not
need access to the VisualAge C++ DLLs. When you use the default, all external
names beginning with the letters Dos, Kbd, and Vio are reserved. This restriction
does not apply when compiling with /Gd[+].

 /Ge

Syntax: Default:
/Ge[+|-] /Ge[+]

Use /Ge- to build a .DLL file.

By default (/Ge[+]), the compiler builds an.EXE file.

The VisualAge C++ libraries provide two initialization routines, one for executable
modules and one for DLLs. For each object file, the compiler must include a
reference to the appropriate initialization routine. The name of this routine is then
passed to the linker when the file is linked. Use the /Ge option at compile time to
tell the compiler which routine to reference.

The /Ge- option causes the compiler to generate a reference to _dllentry for every
module compiled. The /Ge+ option generates a reference to _exeentry only if a
main function is found in the source. If no main function is included, no linking
reference is generated.

If you want to create a library of objects that can be linked into either an executable
file or a DLL, use the /Ge+ option when you compile. Typically, none of these
objects would contain a definition of to main.

300 IBM VisualAge�C++ for OS/2 User's Guide

/Gf Option ¹/Gh Option

If one of the objects does contain a definition of main, you can override the /Ge
option when you link your files, as follows:

1. Create a source file that defines_exeentry

2. Compile it into an .OBJ file, with the options/C+ (create .OBJ file only, no
linking) and /Ge- (compile for DLL)

3. Link the resulting object file with your other object files

When you link, the definition of _exeentry resolves any references in your other
object files. Because you compiled the file with /Ge-, it contains a reference to
_dllentry, and the linker links in the correct initialization routines.

 /Gf

Syntax: Default:
/Gf[+|-] /Gf-

Use /Gf to specify fast floating-point execution.

If your program does not need to abide by ANSI rules regarding the processing of
double and float types, you can use this option to increase your program's
performance. Because the fast floating-point method does not perform all the
conversions specified by the ANSI standards, the results obtained may differ from
results obtained using ANSI methods, but are often more precise.

By default, the compiler does not use fast floating-point execution.

 /Gh

Syntax: Default:
/Gh[+|-] /Gh-

Use /Gh to enable code to be run by Performance Analyzer and other profiling tools
by generated profiler hooks in function prologs.

For more information on Performance Analyzer, see Part 7, “Performance
Execution Trace Analyzer” on page 475.

Note: To enable code for Performance Analyzer, you must also specify /Ti.

By default, code is not enabled for Performance Analyzer.

 Chapter 15. Setting Compiler Options301

/Gi Option ¹/Gk Option

 /Gi

Syntax: Default:
/Gi[+|-] /Gi-

Use /Gi to specify fast integer execution.

If you are shifting bits by a variable amount, you can use fast integer execution to
ensure that for values greater than 31, the bits are shifted by the result of a modulo
32 of the value. Otherwise, the result of the shift is 0.

Note: If your shift value is a constant greater than 32, the result will always be 0.

By default, the compiler does not use fast integer execution.

 /Gk

Syntax: Default:
/Gk[+|-] /Gk-

C++ Use /Gk when you are linking object files created by versions of the compiler before
version 3.0 that contain C++ templates. You must compile and link in one step (
/C-, which is the default).

Note: This option is only valid for C++ files.

If you compile and link old object files without the /Gk compiler option, the linker
cannot resolve the templates in the old files, and stops linking.

When you specify /Gk, the compiler invokes the prelinker from version 2.1 to resolve
the templates in old object files, and passes the/OLDCPP option to the linker, so that
it continues linking when it encounters old object files that contain templates. For
more information on this linker option, see “/OLDCPP, /NOOLDCPP” on
page 360.

By default, the compiler lets the linker handle template resolution in C++ files.

302 IBM VisualAge�C++ for OS/2 User's Guide

/Gl Option ¹/Gm Option

 /Gl

Syntax: Default:
/Gl[+|-] /Gl-

Use /Gl to remove unreachable functions. The compiler passes the /FUNCTIONOPT
option to the linker. The linker removes functions that are:

¹ Not referenced anywhere in the object code
¹ Referenced, but unreachable
¹ Not exported for use in other files

 See “EXPORTS” on page 379 for more information on exporting functions.

When the function is removed, any additional functions that were required only by
that function are also removed. Removing the functions and code reduces the size of
your .EXE or .DLL output file.

Since the functions are removed during the linking stage,/Gl only takes effect if you
compile and link in one step (/C-, which is the default). If you want to link
separately from the compiler (/C+), you can invoke this optimization with the linker
option /FUNCTIONOPT.

By default, the linker does not remove unreachable functions.

Performance Consideration: Optimized linking generally takes longer than regular
linking, because of the extra processing that the linker performs. However, if the
optimization is effective enough, it can actually speed up the linking process, because
there is less information to write to file. Generally, you may want to compile without
the /Gl option, until your code is tested and stable.

 /Gm

Syntax: Default:
/Gm[+|-] /Gm-

Use /Gm to link with the multithread version of the library.

 See “Choosing Your Runtime Libraries” on page 236 and “Using the Multithread
Library” on page 238 for more information.

By default, object files are linked with the single-thread version of the library.

 Chapter 15. Setting Compiler Options303

/Gn Option ¹/Gr Option

 /Gn

Syntax: Default:
/Gn[+|-] /Gn-

Use /Gn to suppress linker information about the default libraries defined by the /Gd,
Gm, /Ge, and /Rn options. All libraries must then be explicitly identified at link time.

By default, the compiler embeds the names of the default libraries in the object files,
for use by the linker.

 /Gp

Syntax: Default:
/Gp[+|-] /Gp-

Use the /Gp option to support the _parmdwords function with the _System linkage
convention.

Previously, _parmdwords was always supported for _System linkage.

By default, _parmdwords is now not supported.

 /Gr

Syntax: Default:
/Gr[+|-] /Gr-

Use /Gr to generate object code that runs at ring 0. Use this option if you are
writing code, such as device drivers or operating systems, that will run at ring 0
instead of ring 3.

Note: To use /Gr, you must also specify /Rn.

By default, object code is not allowed to run at ring 0.

304 IBM VisualAge�C++ for OS/2 User's Guide

/Gs Option ¹/Gu Option

 /Gs

Syntax: Default:
/Gs[+|-] /Gs-

Use /Gs to remove stack probes from the generated code.

For more information on stack probes, see “Controlling Stack Allocation and Stack
Probes” on page 247.

By default, stack probes are not removed.

 /Gt

Syntax: Default:
/Gt[+|-] /Gt-

Use /Gt to enable tiled memory and store all variables such that they may be passed
to 16-bit functions. Static and external variables are mapped into 16-bit segments.
Variables larger than 64K will be aligned on, but will still cross, 64K boundaries.
When this option is specified, the memory management functionscalloc, free,
malloc, and realloc are mapped to the tiled versions_tcalloc, _tfree,
_tmalloc, and _trealloc.

By default, variables are not enabled to be passed to 16-bit functions.

 /Gu

Syntax: Default:
/Gu[+|-] /Gu-

Use /Gu to tell the intermediate linker that data defined in the intermediate link is not
used by external functions. The data is used only within the intermediate files being
linked, with the exception of data that is exported using _Export, #pragma export,
or a .DEF file.

When you specify /Gu, the intermediate code linker can optimize code more
effectively. See “Using the Intermediate Code Linker” on page 225 for more
information about the intermediate code linker.

By default, external functions may use data defined in the intermediate files being
linked.

 Chapter 15. Setting Compiler Options305

/Gv Option ¹/Gw Option

 /Gv

Syntax: Default:
/Gv[+|-] /Gv-

C Use /Gv to perform special handling of the DS and ES registers, for virtual device
driver development. The DS and ES registers are:

1. Saved, on entry to an external function
2. Set to the selector for DGROUP
3. Restored, on exit from the function

Note: This option is valid for C files only. Virtual device driver development is not
supported for C++ programs.

For more information on developing virtual device drivers, see the Programming
Guide.

By default, the DS and ES registers are handled in a normal manner.

 /Gw

Syntax: Default:
/Gw[+|-] /Gw-

Use /Gw to generate an FWAIT instruction after each floating-point load instruction.
This allows the program to take a floating-point stack overflow exception
immediately after the load instruction that caused it.

Note: This option is not recommended because it increases the size of your
executable file and greatly decreases its performance. You do not need this option
unless you call assembler code that leaves a different number of values on the
floating point stack.

By default, FWAIT instructions are not generated after each floating-point load
instruction.

306 IBM VisualAge�C++ for OS/2 User's Guide

/Gx Option ¹/M Option

 /Gx

Syntax: Default:
/Gx[+|-] /Gx-

C++ Use /Gx to remove C++ exception-handling information.

For more information on C++ exception handling see the Programming Guide and
the Language Reference.

By default, C++ exception-handling information is not removed.

Note: This option is valid for C++ files only.

 /M

Syntax: Default:
/M[p|s|c|t] /Mp

Use /M to set the calling convention, as follows:

Option Calling Convention
/Ms _System calling convention
/Mc __cdecl calling convention
/Mt __stdcall calling convention
/Mp _Optlink calling convention

The default is the _Optlink calling convention (/Mp).

You must include the header files for libraries that use a different calling convention
from the one you specify. The libraries using the following calling conventions:

VisualAge C++ libraries
Functions use _Optlink calling convention. Include the VisualAge C++ library
header files to call VisualAge C++ functions when you set /Ms, /Mc, or /Mt.

Toolkit libraries
APIs use _System calling convention. Include the Toolkit library header files
to call OS/2 APIs when you set /Mp (the default), /Mc, or /Mt.

If you do not include the header files, then your code will attempt to call functions
with the calling convention you set, rather than with the calling convention the
function requires.

 Chapter 15. Setting Compiler Options307

/Nd Option ¹/Nt Option

 See “Setting the Calling Convention” on page 235 for more information on
calling conventions.

 /Nd

Syntax: Default:
/Ndname Use DATA32, BSS32, and

CONST32_RO

Use /Nd to specify the names of default data, uninitialized data, and constant
segments as nameDATA32, nameBSS32, and nameCONST32_RO. You can then
give the segments special attributes, with the linker option /SECTION, or the module
statementSEGMENTS. The renamed segments are not placed in the default data group
(DGROUP)

You can also use #pragma dataseg to name these segments.

Notes:

1. CONST32_RO is never in the default data group. It replaces CONST32, which
in previous versions was part of the default data group. While the /Nd option
allows you to rename CONST32_RO, you do not need to rename it in order to
assign it special attributes.

2. CONST32_RO is READONLY and SHARED by default.

If you do not use the /Nd option, the default names are DATA32, BSS32, and
CONST32_RO.

 /Nt

Syntax: Default:
/Ntname Use CODE32

Use /Nt to specify the name of default code or text segments asnameCODE32. You
can then give the segments special attributes, with the linker option /SECTION, or the
module statementSEGMENTS. You can also use #pragma alloc_text to name these
segments.

If you do not use the /Nt option, the default name is CODE32.

308 IBM VisualAge�C++ for OS/2 User's Guide

/Nx Option ¹/O Option

 /Nx

Syntax: Default:
/Nxname EH_CODE and EH_DATA

C++ Use /Nx to specify the names of one code and one data segment, that contain
information relating to C++ exception handling. This information is only used during
the processing of a throw statement. Separating the segments from the default code
and data segments improves the paging behavior of your program.

The code segment is named name_CODE of class CODE. The data segment is named
name_DATA of class DATA.

Note: This option is valid for C++ files only.

By default, the segments are named EH_CODE and EH_DATA.

 /O

Syntax: Default:
/O[+|-] /O-

Use /O to optimize code for speed.

Note: Do not optimize code if you want to use debugging or diagnostic options.
The debugger may operate unpredictably with optimized code. See “Generating
Debugger Information” on page 220 for more information.

When you specify /O, the following optimization options are turned on by default:

/Oi Turn on inlining.
/Os Invoke the instruction scheduler.

By default, the code is not optimized.

 Chapter 15. Setting Compiler Options309

/Oc Option ¹/Oi Option

 /Oc

Syntax: Default:
/Oc[+|-] /Oc-

Use /Oc to optimize code for size as well as speed. You must also specify /O.

/Oc performs the same set of optimizations as /O, except for those that increase the
size of the code. Code optimized with /Oc is not slower than unoptimized code, and
is likely to be faster, though not as fast as code optimized with /O on its own.

For example, /Oc stops loops from being unrolled, and stops most inlining (unless
you specified a conflicting /Oi value).

Note: Do not optimize code if you want to use debugging or diagnostic options.
The debugger may operate unpredictably with optimized code. See “Generating
Debugger Information” on page 220 for more information.

By default, the code is not optimized.

 /Oi

Syntax: Default:
/Oi[+|-] /Oi-
/Oivalue /Oi+ when /O+

Use /Oi to control inlining of user code.

By default, the compiler does not inline user code, unless you specify /O[+]. When
you specify /O[+], /Oi[+] becomes the default.

You can specify the following types of inlining:

/Oi+ Inline all user functions that are qualified with the_Inline or inline
keyword.

/Oi- Do not inline any user code.

/Oivalue Inline all user functions qualified with the _Inline or inline keyword
or that are smaller than value in abstract code units.

 See “Inlining User Code” on page 229 for more information.

310 IBM VisualAge�C++ for OS/2 User's Guide

/Ol ¹/Op Option

 /Ol

Syntax: Default:
/Ol[+|-] /Ol-

Use /Ol to pass code through the intermediate linker before generating an object file.
 See “Using the Intermediate Code Linker” on page 225 for more information.

By default, code is not passed through the intermediate linker.

 /Om

Syntax: Default:
/Om[+|-] /Om-

Use /Om to limit the working set size for the compiler to approximately 35M.

The compiler may use a large amount of memory when inlining user code, especially
when performing automatic inlining at large thresholds (/Oi50 and higher).

By default, there is no limit to the compiler's working set size.

Note: Because /Om[+] can cause the compiler to disregard some inlining
opportunities, code generated with /Om- (the default) may be more efficient.

 /Op

Syntax: Default:
/Op[+|-] /Op+

Use /Op to perform optimizations involving the stack pointer. To use this option, you
must also specify /O[+].

By default, optimizations involving the stack pointer are always performed.

Specify /Op- when you optimize code that directly manipulates the stack pointer.
Using /Op- decreases the performance of your .EXE or .DLL file.

 Chapter 15. Setting Compiler Options311

/Os Option ¹/R Option

 /Os

Syntax: Default:
/Os[+|-] /Os-

/Os+ when /O+

Use /Os to invoke the instruction scheduler. To use this option, you must also
specify /O[+].

By default, the instruction scheduler is invoked when you have specified /O[+].
Otherwise, the instruction scheduler cannot be invoked.

 /R

Syntax: Default:
/R[e|n] /Re

Use /R to control the executable runtime environment.

Specify /Rn to generate executable code that can be used as a subsystem without a
runtime environment.

For more information on developing subsystems, see “Enabling Subsystem
Development” on page 239.

By default (/Re), the compiler generates executable code that runs in a
VisualAge C++ environment.

312 IBM VisualAge�C++ for OS/2 User's Guide

SOM Options

System Object Model (SOM) Options
This section describes the compiler options available for SOM support in
VisualAge C++. See the Programming Guide for background information on the
reasons for these options and on their uses.

SOM options that affect the same settings as SOM pragmas are effective except when
overridden by those pragmas. For example, the/Ga compiler option, which causes
all classes to implicitly derive fromSOMObject, turns the SOMAsDefault pragma on
at the start of the translation unit. This pragma remains in effect until a #pragma
SOMAsDefault(off|pop) is encountered in the translation unit. See the
Programming Guide for more information on the relationship between SOM pragma
settings and SOM options.

In addition to the compiler options, the compiler defines a macro, __SOM_ENABLED__,
whose value corresponds to the level of SOM support provided by the compiler. If
SOM support is not provided for a particular release of the compiler,
__SOM_ENABLED__ is not predefined.

The macro's value is a positive integer constant. For the first SOM-supporting release
of VisualAge C++, the level of SOM supported is SOM 2.1, so the macro has the
value 210.

 /Ga

Syntax: Default:
/Ga[+|-] /Ga-

This option turns on implicit SOM mode, and also causes the file som.hh to be
included. It is equivalent to placing #pragma SOMAsDefault(on) at the start of the
translation unit.

All classes are implicitly derived from SOMObject until a #pragma
SOMAsDefault(off) is encountered.

For further details, see the Programming Guide.

 Chapter 15. Setting Compiler Options313

SOM Options

 /Gb

Syntax: Default:
/Gb[+|-] /Gb-

This option instructs the compiler to disable direct access to attributes. Instead, the
get and set methods are used. This is equivalent to specifying #pragma
SOMNoDataDirect(on) as the first line of the translation unit.

For further details, see the Programming Guide.

 /Gz

Syntax: Default:
/Gz[+|-] /Gz-

Use this option to initialize SOM classes at their point of first use during the
execution of your program.

By default, all SOM classes statically used in your program are initialized at static
initialization time. This makes your program smaller, but may result in the
initialization of classes that are not dynamically used.

With any setting of this option, any reference to a static member of a SOM class will
cause the class to be initialized.

For further details, see the Programming Guide.

 /Xs

Syntax: Default:
/Xs<directory|-> /Xs-

Use this option to exclude files in the specified directories when implicit SOM mode
is turned on (when classes are implicitly derived from SOM). The syntax of this
option is:

 ┌ ┐─────────────
55──/Xs─ ───6 ┴─directory─ ──5%

314 IBM VisualAge�C++ for OS/2 User's Guide

SOM Options

where directory is the name of the directory or directories you want to exclude.
Directory names are separated with a semicolon (;).

This option is useful for mixing implicit SOM mode with existing include files that
include declarations of classes you do not want to be implicit SOM classes.

 /Fr

Syntax: Default:
/Fr<classname> None

Use this option to have the compiler write the release order of the specified class to
standard output. The release order is written in the form of a SOMReleaseOrder
pragma. You can capture the output from this option when developing new SOM
classes, and include the pragma in the class definition. The syntax of the option is:

55──/Fr──C++ClassName──5%

For further details, see the Programming Guide.

 /Fs

Syntax: Default:
/Fs[+|-|file| directory] /Fs-

Use this option to have the compiler generate an IDL file if a file with an .hh
extension is explicitly specified on the command line. The syntax of the option is:

55──/Fs─ ──┬ ┬─────────── ──5%
 ├ ┤─+─────────
 ├ ┤─-─────────
 ├ ┤─filename──
 └ ┘─directory─

where:

/Fs<+> specifies that an IDL file will be created for every .hh file that is
specified on the command line and is in the current directory. This is the default.

/Fs filename.ext is like /Fs +, but the IDL file that is created will have the
specified filename. If you do not specify an ext, the extension will beidl.

 Chapter 15. Setting Compiler Options315

/? Option ¹/B Option

/Fs directory_name is like /Fs +, but the IDL file that is created will be put in
the directorydirectory_name rather than the current directory.
directory_name must end with a backslash "\".

/Fs- specifies that no IDL file should be created.

 Other Options
Use these options to control linker parameters, logo display, default char type, and
other VisualAge C++ settings.

Examples

¹ Passing a parameter to the linker:

icc /B"/NOI" fred.c

The /NOI option tells the linker to preserve the case of external names in
fred.obj.

¹ Imbedding a version string or copyright:

icc /V"Version 1.0" fred.c

This imbeds the version notice in fred.obj.

 /?

Syntax: Default:
/? None

Use /? to display a list of compiler options with descriptions.

 /B

Syntax: Default:
/B"options" /B""

Use /B to pass the options string to the linker as parameters. The icc default
parameters are also passed. See “Summary of Linker Options” on page 350 for
information about the options you can pass to the VisualAge C++ linker.

By default, only the icc default parameters are passed to the linker. See
“Linking through the Compiler” on page 329 for a description of the options passed
to the linker by default.

316 IBM VisualAge�C++ for OS/2 User's Guide

/C Option ¹/J Option

 /C

Syntax: Default:
/C[+|-] /C-

Use /C to peform a compile only, without linking.

When you link separately, you need to specify options that the compiler normally
passes to the linker. See “Linking through the Compiler” on page 329 for a
description of these options.

By default, code is both compiled and linked.

 /H

Syntax: Default:
/Hnum /H255

Use /H to set the significant length of external names. The first num characters of an
external name are set as significant. The value of num must be between 6 and 255
inclusive.

By default, the first 255 characters of external names are significant.

 /J

Syntax: Default:
/J[+|-] /J+

Use /J- to treat unspecified char variables as signed char, for arithmetic and
compare operations.

This option does not change the definition of the variable. In C++, char, signed
char, and unsigned char are three distinct types. Unspecified char variables are
considered signed char or unsigned char for arithmetic and compare operations
only. You cannot convert one type to another type without casting.

By default (/J[+]), unspecified char variables are treated as unsigned char.

 Chapter 15. Setting Compiler Options317

/Q Option ¹/V Option

 /Q

Syntax: Default:
/Q[+|-] /Q-

Use /Q to stop the compiler logo from appearing when you invoke the compiler.

By default, the compiler logo appears on stderr.

 /Tl

Syntax: Default:
/Tl[+|-|value] /Tl[+]

Use /Tl to control preloading of the compiler.

By default, each compiler component is preloaded as required, and kept in memory
for ten minutes from the time it was last referenced.

You can set the following preloading options:

/Tl[+] Preload the compiler components as required. A component remains in
memory for 10 minutes. If it is referenced in that time, the timer starts
again. Each compiler component has its own timer.

Note: This option is not available if you are using the OS/2 2.0
operating system without the Service Pack.

/Tl- Do not preload the compiler. You can specify this option without a file
name to unload any components that are loaded.

/Tlvalue Preload the compiler components as required and keep the files in
memory for value minutes.

 /V

Syntax: Default:
/V"string" No string.

Use /V to include a version string in the object and executable output files. The
version string is set to string. The length of the string can be from 1 to 256
characters.

By default, no version string is set.

318 IBM VisualAge�C++ for OS/2 User's Guide

Part 5. Linking Your Program

This part of the User's Guide describes the VisualAge C++ linker, which links the
object files produced by the compiler into executable files, for example .EXE files or
.DLL files. By default, the compiler invokes the linker for you.

Chapter 16. Starting the Linker . 321
Linking within WorkFrame . 322
Linking from the Command Line . 323
Linking through the Compiler . 329
Linking from a Make File . 331

Chapter 17. Optimized Linking .333

Chapter 18. Input and Output . 335
Specifying Object Files . 337
Specifying Executable Output Type. 338
Generating a Map File . 341
Linker Return Codes . 342

Chapter 19. Linking with Library Files . 343
Linking with .LIB Files . 344
Linking to Dynamic Link Libraries . 345

Chapter 20. Setting Linker Options . 347
Specifying Numeric Arguments . 349
Summary of Linker Options . 350
Linker Options .351

Chapter 21. Creating Module Definition Files 369
Reserved Words .370
Summary of Module Statements. 372
Linker Module Statements . 373

 Copyright IBM Corp. 1992, 1995 319

320 IBM VisualAge�C++ for OS/2 User's Guide

Starting the Linker

16 Starting the Linker

Once the compiler has created object modules out of your source files, use the linker
to link them together with the VisualAge C++ runtime libraries to create an .EXE
file, .DLL file, or device driver. By default, icc invokes the linker for you.

There is a new linker with VisualAge C++ version 3.0. Earlier versions of C Set++
used LINK386 as the linker. LINK386 is still available with OS/2, but the
VisualAge C++ compiler is designed to work with the new linker. LINK386 cannot
link object files created by the VisualAge C++ compiler. The VisualAge C++ linker
is now faster, and has improved linking strategies that can significantly reduce the
size of your code. See Chapter 17, “Optimized Linking” on page 333 for a
description of these linking strategies.

The linker also handles C++ template resolution independently. In earlier versions of
C Set ++, you had to link through the compiler using the/Tdp option to ensure
templates resolved correctly. With VisualAge C++ Version 3.0, you can invoke the
linker as a separate step.

Note: The object files must be created by the Version 3.0 compiler. The linker does
not resolve template functions in object code created by old versions of the compiler.
If you are linking old object files that contain template functions, invoke the linker
through the compiler and specify the/Gk compiler option.

For a complete list of the differences between the VisualAge C++ linker and
LINK386, see “Linker Changes” on page xxxix.

There are several ways you can start the linker:

¹ From the popup menu of an object file in a WorkFrame project, or from the
project popup menu as part of the make or build process.

¹ From the command line.

¹ Through the compiler, which automatically invokes the linker.

¹ Through a make file, which invokes both the compiler and the linker.

 Copyright IBM Corp. 1992, 1995 321

Starting the Linker

Linking within WorkFrame
To use the linker through WorkFrame, do the following:

1. Open the VisualAge C++ folder.

2. Double click on the Project Smarts icon to open the Project Smarts Catalog.

3. In the Project Smarts - Catalog window, select the type of project you want to
build.

If you want to build a type of project that is not listed, you can either pick a
similar project type and then customise its settings, or create one from the
Project template without project-specific defaults, and customise its settings
extensively.

4. Select Create. WorkFrame begins creating the project. The Console window
shows the status of the process. Other windows may appear, for you to provide
additional information about your project.

5. In these other windows, provide specific information in fields where the default
information is unacceptable.

6. Select OK when you are done, in each window.

7. Your project becomes an icon on the desktop, or in a folder if you specified a
different destination. Find your project.

8. Double click on your project icon. The Project Window appears.

At this point you can customise settings for the project, if the default settings for
the project type are unacceptable. The Options menu contains choices that allow
you to specify the actions available to the project, and compiler and linker
options. Use Build Smarts to set options for a standard task. Use the Compiler
and Linker Options dialogs to set options on an individual basis.

9. Select Build from the Actions menu. Your project is created, with the compiler
and linker invoked as required.

322 IBM VisualAge�C++ for OS/2 User's Guide

Starting the Linker

Linking from the Command Line
Specify the ilink command followed by any sequence of options, file names, or
directories, separated by space or tab characters.

55──ILINK─ ──┬ ┬──/option ─── ──┬ ┬──────────────────────────── ─5%
 ├ ┤─filename─── └ ┘──┬ ┬───────── ──@responsefile

└ ┘──directory\ ├ ┤─/LOGO───
 └ ┘─/NOLOGO─

The linker recognizes the input as follows:

Options Start with a / or - character.

Directories End with a / or \ character.

Response files Start with the @ character.

Definition files End with the .def extension.

Library files End with one of these extensions:

 ¹ .a
 ¹ .imp
 ¹ .lib

Object files Any other input. You must enter at least one object file.

You can specify the name of the output file with the /OUT option. You can specify
the name of a map file with the/MAP option.

In addition to the libraries you specify, by default the linker searches the
VisualAge C++ runtime libraries defined in your object files at compile time.
See “Choosing Your Runtime Libraries” on page 236 for more information on setting
the default libraries.

The directories you specify become part of the linker's search path, before any
directories set in the LIB environment variable. See “Search Rules” on page 335
and “Specifying Directories” on page 336 for more information.

You can specify a definition file to describe the characteristics of an application or
library, including imports and exports. See Chapter 21, “Creating Module
Definition Files” on page 369 for more information.

Note: If the linker cannot find a file, it stops linking. The linker does not assume
the .OBJ extension for a file: if you specify a file with no extension, then the linker
looks for that file with no extension.

 Chapter 16. Starting the Linker 323

Starting the Linker

You can still use the use the LINK386 command-line syntax, if you prefer. To use
the old-style syntax, specify the /NOFREE option at the start of the command line, or
in the ILINK environment variable. See “Using LINK386 Syntax” on page 325
for more information on using the old syntax.

Examples

The following command links the object files fun.obj, text.obj, table.obj, and
care.obj. The linker searches for unresolved external references in the library file
xlib.lib and in the default libraries. Since there is no name provided for the
executable file, it is namedfun.exe, taking the file name of the first object file and
the default extension.exe. The linker also produces a map file, funlist.map.

ILINK /MAP:funlist fun.obj text.obj table.obj care.obj xlib.lib

The following command links the object file fun.obj and produces the executable
file fun.exe, as well as the map file fun.map.

ILINK /MAP fun.obj

The following command links the files main.obj, getdata.obj, and printit.obj
into an executable file named main.exe, and produces a map file named main.map.

ILINK /MAP main.obj getdata.obj printit.obj

The following command links getdata.obj and printit.obj into a DLL named
getdata.dll. (This example assumes that exports are declared in the source files,
using #pragma export or the_Export keyword; otherwise there would have to be a
module definition file, to define the exports.)

ILINK getdata.obj printit.obj /OUT:getdata.dll /DLL

324 IBM VisualAge�C++ for OS/2 User's Guide

Starting the Linker

Using LINK386 Syntax
If you specify /NOFREE at the start of the command line (or in the ILINK
environment variable), then you can use the LINK386-style syntax to specify input to
the linker. The syntax for the ilink command then becomes:

55──ILINK──/NOFREE──5

 ┌ ┐──┬ ┬─── ─
 │ │└ ┘─+─
5─ ──┬ ┬──┬ ┬───────── ───6 ┴─object─ ─── ────────────5
 │ │└ ┘──/option
 └ ┘──┬ ┬──
 └ ┘ ─,─ ──┬ ┬──────── ──┬ ┬───
 └ ┘─target─ └ ┘ ─,─ ──┬ ┬───── ──┬ ┬───
 └ ┘─map─ │ │┌ ┐──┬ ┬─── ──────
 │ ││ │└ ┘─+─
 └ ┘ ─,─ ───6 ┴──┬ ┬───────── ──┬ ┬─────────────────
 └ ┘─library─ └ ┘ ─,─ ──┬ ┬──────────
 └ ┘─def_file─

5─ ──┬ ┬──────────────────────────── ──┬ ┬─── ─5%
 └ ┘──┬ ┬───────── ──@responsefile └ ┘ ─;─
 ├ ┤─/LOGO───
 └ ┘─/NOLOGO─

You must specify at least one object file. Leave any other parameter blank to accept
the default entry for it. You can end the command line at any point with a semicolon
(;), to accept the default for all remaining parameters. If you do not specify the
semicolon, the linker prompts you for any remaining parameters.

If you specify a response file, anything after the response file is ignored.

You can specify the following parameters:

option Options that modify the behavior of the linker. Each option must
begin with a forward slash (/) or dash (-). You can specify linker
options anywhere on the command line, except for/LOGO or
/NOLOGO, which must appear before any response file, and
/FREEFORMAT or /NOFREEFORMAT, which must appear before any
other input. Separate options with a space or tab character.
See Chapter 20, “Setting Linker Options” on page 347 and “Linker
Options” on page 351 for more information.

object Object files to be linked. Separate multiple file names with a plus
sign (+), space, or tab character. You must specify at least one
object file. If you don't include an extension, the linker assumes
.obj. Instead of entering a list of object files, you can enter a
library file. The linker then links all the objects in the library into
the target file. See “Entering Library Files As Object Files”
on page 338 for more information.

 Chapter 16. Starting the Linker 325

Starting the Linker

target The file you want to create. The linker can produce either an
executable file (extension .exe), a dynamic link library (extension
.dll), or a device driver (extension .sys or .vdd). By default, the
linker produces a .EXE file.

map Map file. Specify /MAP to generate a map file that lists the object
files included in target. Specify /LINENUMBERS to include
linenumber information in the map file. By default, the linker does
not generate a map file. See “Generating a Map File” on
page 341 for more information.

library Static or import libraries (.LIB files) that the linker searches for
functions referenced by your object files.

Do not enter DLLs in this field (use import libraries, that represent
the DLLs, instead).

Separate multiple file names with a plus sign (+), space, or tab
character. By default, the linker searches the VisualAge C++
runtime libraries defined in your object files at compile time.
See “Choosing Your Runtime Libraries” on page 236 for more
information on setting the default libraries.

You can also specify a directory path without a file name to add
that directory to the linker's search path, before any directories set
in the LIB environment variable. See “Search Rules” on
page 335 for more information on specifying directories.

 See “Linking with .LIB Files” on page 344 and “Linking to
Dynamic Link Libraries” on page 345 for more information on
linking with libraries.

def_file The module definition file that describes the characteristics of an
application or library, including imports and exports. By default,
the linker does not use a .DEF file. See Chapter 21, “Creating
Module Definition Files” on page 369 for more information.

Note: If the linker cannot find a file, it stops linking.

For information on the default entries for these fields, see “File Name Defaults”
on page 337 .

Examples

The following command links the object files fun.obj, text.obj, table.obj, and
care.obj. The linker searches for unresolved external references in the library file
xlib.lib and in the default libraries. Since there is no name provided for the

326 IBM VisualAge�C++ for OS/2 User's Guide

Starting the Linker

executable file, it is namedfun.exe, taking the file name of the first object file and
the default extension.exe. The linker also produces a map file, funlist.map.

ILINK /NOFREE /MAP fun+text+table+care, ,funlist, xlib.lib;

The following command links the object file fun.obj and produces the executable file
fun.exe, as well as the map file fun.map.

ILINK /NOFREE /MAP fun;

The following command links the files main.obj, getdata.obj, and printit.obj
into an executable file named main.exe, and produces a map file named main.map.

ILINK /NOFREE /MAP main+getdata+printit, , main;

The following command links getdata.obj and printit.obj into a DLL named
getdata.dll. The module definition file moddef.def contains a LIBRARY
statement, which tells the linker to produce a DLL.

ILINK /NOFREE getdata+printit,getdata.dll, , moddef

Responding to Linker Prompts
If you do not end the command line or response file with a semicolon (;), and not all
parameters are filled in, the linker prompts you for the missing information. For each
prompt, simply enter the same input that you would enter on the command line, and
press Enter. These are the linker prompts:

Object Modules [.obj]:

Run File [basename.*]:

List File [targetname.map]:

Libraries [.lib]:

Definitions File [nul.def]:

basename defaults to the name of the first object file you specify.targetname
defaults to the name of the run file. The prompt displays the default response in
square brackets ([]). Press Enter to accept the default response to a prompt and
continue to the next prompt. To accept default responses for all remaining prompts,
enter a semicolon (;).

 Chapter 16. Starting the Linker 327

Starting the Linker

Notes:

1. To extend input to a new line, type a plus sign (+) as the last character on the
current line. When the same prompt appears on a new line, you can continue.
You cannot split a file name across lines.

2. You must enter at least one object file.

3. You can specify options anywhere on any response line. Each option must begin
with a forward slash (/), or a dash (-).

4. At any prompt, you can specify responses both for that prompt and for
subsequent prompts, by separating the responses with commas (,).

Using Response Files
Instead of specifying linker input on the command line, you can put options and file
name parameters in a response file. You can combine the response file with options
and parameters on the command line, but the command line options and parameters
must appear before the response file; the linker ignores anything on the command
line after the response file.

In the response file, separate responses with commas, or put each response on a
separate line. Then, when you invoke the linker, use the following syntax:

ILINK @responsefile

where responsefile is the name of the response file. The @ symbol indicates that
the file is a response file. If the file is not in the working directory, specify the path
for the file as well as the file name. If the linker cannot find a file, it stops linking.

&Keyconcept.You can begin using a response file at any point on the linker
command line or at any linker prompt. You can only specify one response file.
Anything on the command line after the response file is ignored.

Options can appear anywhere in the response file. If an option is not valid, the linker
generates an error message and stops linking.

To keep the linker from echoing the responses from the response file, specify the
/NOLOGO option before the response file (or in the ILINK environment variable).
You cannot turn /NOLOGO on or off within or after the response file.

If the file does not contain responses for all the prompts, the linker displays the
appropriate prompt and waits for you to supply a response. If you end the response
file with a semicolon, the linker provides default responses for the remaining prompts.
However, you must provide the file name for at least one object file.

328 IBM VisualAge�C++ for OS/2 User's Guide

Starting the Linker

You can use special characters in the response file the same way you would use them
in responses entered at the keyboard. For example, you can extend input to a new line
by using the plus sign (+) and choose default responses for all remaining prompts by
using a semicolon (;).

Example

Given a response file named fun.lnk containing the following:

/DEBUG /MAP +
fun text table care
fun
funlist
graf.lib;

When you enter:

ILINK /NOFREE @fun.lnk

the linker does the following:

¹ Links the four object modules fun.obj, text.obj, table.obj, and care.obj
into an .EXE file named fun.exe.

The linker takes the second line to specify object files (the first line clearly
contains options). Because no output type is specified, the linker defaults to
.EXE.

¹ Generates the map file funlist.map (assuming the extension .map).

¹ Preserves debugging information (because of the /DEBUG option).

¹ Links any needed routines from the library file graf.lib, and from the default
VisualAge C++ libraries specified in the object files.

¹ Assumes the default for any remaining prompts (because of the semicolon after
graf.lib), and so does not look for a module definition file.

Linking through the Compiler
When you invoke the VisualAge C++ compiler, it compiles the object files from your
source code and then automatically starts the linker, to link the object files into an
.EXE or .DLL file. Use the /B compiler option to pass options to the linker. By
default, the compiler invokes the linker with the following options:

/NOFREEFORMAT Use the LINK386-compatible syntax, instead of the free-format
syntax. See “Linking from the Command Line” on page 323
for more information on the free-format syntax. See “Using

 Chapter 16. Starting the Linker 329

Starting the Linker

LINK386 Syntax” on page 325 for more information on the
LINK386-compatible syntax.

/BASE:65536 Specify the starting address of the program. For .DLL files, this
results in a smaller and potentially faster executable, if the specified
address is free when the .DLL is loaded. For .EXE files, the OS/2
operating system always loads executable programs at 64K. You
can give the linker the address 65536 (or 0x10000) to let the linker
know where the program will be loaded, so it can resolve relocation
information at link time, resulting in a smaller .EXE file.

/PMTYPE:VIO Create program that is compatible with Presentation Manager.

In addition, some compiler options generate equivalent linker options:

/Fb Generate browser information. Passes /BROWSE to the linker.

/Fm Generate linker map file. Passes /MAP to the linker.

/Gk Resolve template functions in old object files. Passes /OLDCPP to
the linker.

/Gl Remove unreferenced functions. Passes /OPTFUNC to the linker.

/Gn Hide default library information from the linker. Passes
/NODEFAULTLIBRARYSEARCH to the linker.

/Q Suppress product information at start of compile. Passes /NOLOGO
to the linker.

/Ti Generate debugger information. Passes /DEBUG to the linker.

 See “Linker Options” on page 351 for more information on these linker options.

Passing Additional Options to the Linker
You can override these options, and pass additional options to the linker, using the
/B compiler option. For example, to generate a map file and override the default
alignment, specify

icc /B"/AL:256 /MAP"

 See Chapter 15, “Setting Compiler Options” on page 253 for more information.

If you do not want the compiler to start the linker, specify the /C compiler option.
You can then invoke the linker in a separate step.

330 IBM VisualAge�C++ for OS/2 User's Guide

Starting the Linker

Linking from a Make File
Use a make file to organize the sequence of actions (such as compiling and linking)
required to build your project. You can then invoke all the actions in one step. The
NMAKE utility saves you time by performing actions on only the files that have
changed, and on the files that incorporate or depend on the changed files. See
Chapter 58, “Program Maintenance Utility (NMAKE)” on page 815 for more
information.

You can write the make file yourself, or you can use WorkFrame to manage the make
file. When you build through WorkFrame, a make file is created and maintained
automatically.

 Chapter 16. Starting the Linker 331

Starting the Linker

332 IBM VisualAge�C++ for OS/2 User's Guide

Optimized Linking

17 Optimized Linking

Removing
Unreachable
Functions

Just as the compiler can optimize your source code by removing or replacing
instructions, the linker can optimize your object code, including code in libraries you
are linking in, by removing unreferenced functions. When the function is removed,
any code that was required only by that function is also removed, including any other
functions that were referenced only by that function. This reduces the size of your
output file.

Link with the option /OPTFUNC to remove functions that are:

¹ Not referenced in any input file
¹ Rendered unreferenced by the removal of other functions
¹ Not exported for use in other files

 See “EXPORTS” on page 379 for more information on exporting functions and
data.

If you are compiling and linking in one step, you can use the/Gl compiler option to
invoke this optimisation.

 Performance Consideration
Optimized linking generally takes longer than regular linking, because of the extra
processing that the linker performs. However, if the optimization is effective enough,
it can actually speed up the linking process, because there is less information to write
to file. Generally, you may want to link without the/OPTFUNC option, until your
code is tested and stable.

Packing
Executables

Specify /EXEPACK to reduce the size of the executable by compressing pages in the
file. The operating system automatically decompresses the pages when the program
is loaded. If your program is intended to run only on OS/2 version 3.0 or later, then
specify /EXEPACK:2 for best results. If your program is also intended to run on older
versions of OS/2, specify /EXEPACK:1.

Specify /PACKCODE to produce slightly faster and more compact code by grouping
neighboring code segments that have similar attributes.

Specify /PACKDATA to produce more compact files by grouping neighboring data
segments that have similar attributes.

 Copyright IBM Corp. 1992, 1995 333

Optimized Linking

Specify /DBGPACK when you are debugging, to reduce the size of the executable file
and potentially improve debugger performance.

 See “Linker Options” on page 351 for more information on these and other linker
options.

334 IBM VisualAge�C++ for OS/2 User's Guide

Linker Input and Output

18 Input and Output

The linker takes object files, links them with each other and with any library files you
specify, and produces an executable output file. The executable output can be either
an executable program (extension.exe) file, a dynamic link library (extension .dll),
or a device driver (extension.sys or .vdd).

The linker optionally produces a map file, which provides information about the
contents of the executable output.

Input Output
options executable file (.EXE, .DLL, .SYS, or

.VDD)
object files (*.OBJ) map file (.MAP)
library files (*.LIB) return code
import libraries (*.LIB)
module definition file (.DEF)

 Search Rules
When searching for an object (.OBJ), library (.LIB), or module definition (.DEF) file,
the linker looks in the following locations in this order:

1. The directory you specified for the file, or the current directory, if you did not
give a path. Default libraries do not include path specifications.

Note: If you specify a path with the file, the linker searches only that path, and
stops linking if the file cannot be found there.

2. Any directories entered by themselves on the command line (they must end with
a slash (/) or backslash (\) character and, if you specified/NOFREE, they must be
in the libraries parameter). See “Specifying Directories” on page 336 for
more information.

3. Any directories listed in the LIB environment variable.

If the linker cannot locate a file, it generates a fatal error message and stops linking.

 Copyright IBM Corp. 1992, 1995 335

Linker Input and Output

Example

If you respond to linker prompts as follows:

ILINK /NOFREE
Object Modules [.obj]: FUN TEXT TABLE CARE
Run File [fun.*]:
List File [fun.map]:
Libraries [.lib]: NEWLIBV3 C:\TESTLIB\
Definitions File [nul.def]:

The linker links four object files to create an executable file named FUN.EXE. The
linker searches NEWLIBV3.LIB before searching the default libraries to resolve
references.

To locate NEWLIBV3.LIB and the default libraries, the linker searches the following
locations in this order:

1. The current directory (because NEWLIBV3.LIB was entered without a path)
2. The C:\TESTLIB\ directory
3. The directories listed in the LIB environment variable

 Specifying Directories
To have the linker search additional directories for input files, specify a drive or
directory by itself on the command line. Specify the drive or directory with a slash
(/) or backslash (\) character at the end for the linker to recognize it as a path.

Note: If you specified /NOFREE, then you can only specify directories in the
library parameter at the command line, or in response to the Libraries [.LIB]:
prompt. You must still end each directory with a slash (/) or or backslash (\)
character.

The paths you specify are searched before the paths in the LIB environment variable.
 See “Search Rules” on page 335 for more information.

336 IBM VisualAge�C++ for OS/2 User's Guide

Linker Input and Output

File Name Defaults
If you do not enter a file name, the linker assumes the defaults shown below. If you
specify /NOFREE, the linker also assumes default file extensions for files without
extensions.

Figure 71. Linker File Name Defaults

File Default File Name Default Extension

Object files None. You must enter at least one object file name. .OBJ

Output file The base name of the first object file. .EXE

Map file The base name of the output file. .MAP

Library files The default libraries defined in the object files. Use
compiler options to define the default libraries. See
“Choosing Your Runtime Libraries” on page 236 for more
information. Any additional libraries you specify are
searched before the default libraries.

.LIB

Module definition
file

None. The linker assumes you accept the default for all
module statements.

.DEF

Specifying Object Files
When you invoke the linker from the command line, the linker assumes that any input
it cannot recognize as other files, options, or directories must be a object file. Use a
space or tab character to separate files. See “Linking from the Command Line”
on page 323 for more information on how the linker interprets input.

If you specified /NOFREE to use the LINK386-compatible syntax, then the first set of
file names you give it are taken as object files, up to the first comma. Use a plus (+),
space, or tab as a separator between the file names. If you do not specify an
extension, the linker assumes the .OBJ extension.

When you invoke the linker through the compiler, the compiler automatically passes
the object files it creates to the linker, as well as passing any object files you specify
on the compiler command line or in the ICC environment variable.

The linker accepts object files compiled or assembled:

¹ In 16- or 32-bit OMF format
¹ For OS/2 version 1.0 or higher
¹ For the 80286 (16-bit only), 80386, 80486, and Pentium microprocessors

You must enter at least one object file.

 Chapter 18. Input and Output 337

Linker Input and Output

Note: If you are linking with the LINK386-compatible syntax (/NOFREE), then you
can also pass the linker a library file, in place of an object file. See “Using
LINK386 Syntax” on page 325 and “Entering Library Files As Object Files” for
more information.

Entering Library Files As Object Files
If you specify /NOFREE to use LINK386-compatible syntax, then you can enter library
files in place of object files in the object parameter on the command line or at the
Object Modules [.OBJ]:. prompt. Be sure to include the .LIB file name extension;
otherwise, the linker assumes a .obj extension.

When you enter a library as an object file, all the modules in the library are added to
your output file, just as if you had entered all of the library's modules as object files
in the object parameter.

In contrast, when you enter a library in the library parameter, The linker links only
to those modules needed to resolve external references.

If you are linking with the /FREEFORMAT option (the default), then you cannot enter
library files as object files.

Specifying Executable Output Type
You can use the linker to produce executable modules (with the extension .EXE),
dynamic link libraries (with the extension .DLL), and device drivers (with the
extension .SYS or .VDD). The linker produces .EXE files by default.

Use options, or statements in the module definition (.DEF) file, to specify what kind
of output you want:

¹ To produce an .EXE, specify the /EXEC option, or include the module statement
NAME.

¹ To produce a .DLL, specify the/DLL option, or include the module statement
LIBRARY.

¹ To produce a device driver, specify the/PDD or /VDD option, or include the
module statement PHYSICAL DEVICE or VIRTUAL DEVICE.

For more information on using .DEF files, see Chapter 21, “Creating Module
Definition Files” on page 369.

338 IBM VisualAge�C++ for OS/2 User's Guide

Linker Input and Output

Producing an .EXE File
The linker produces .EXE files by default. Use the /EXEC option, or theNAME
module statement, to explicitly identify the output file as an .EXE file.

An .EXE file is one that can be executed directly: you can run the program by typing
the name of the file. In contrast, DLL and device driver programs execute when they
are called by other processes, and cannot be run independently.

To reduce the size of the .EXE file and improve its performance, use the following
options:

¹ /ALIGNMENT:value to set the alignment factor in the output file. Set value to
smaller factors to reduce the size of the executable, and to larger factors to
reduce load time for the executable. By default, the alignment is set to 512.

¹ /BASE:0x00010000 to specify the load address for the executable. The load
address must be 0x00010000. Any other value will produce a warning, and will
not be used. Specifying this value explicitly allows the linker to omit relocation
records, which can result in a smaller executable.

¹ /EXEPACK to compress the file.

Note: Set /EXEPACK:2 for executables that will run only on OS/2 v3.0 and later.

¹ /OPTFUNC (once your code is tested and stable) to remove unreachable functions.

If you do not specify an extension for the output file name, the linker automatically
adds the extension.exe to the name you provide. If you do not specify an output
file name at all, the linker generates an .EXE file with the same file name as the first
.OBJ file it linked.

If you are using a module definition (.DEF) file, you can include a NAME statement
to provide a name for the application. The .DEF file should not contain a
LIBRARY, VIRTUAL DEVICE, or PHYSICAL DEVICE statement. For more
information on using .DEF files, see Chapter 21, “Creating Module Definition
Files” on page 369.

Producing a Dynamic Link Library
A dynamic link library (.DLL) file contains executable code for common functions,
just as an ordinary library (.LIB) file does. However, when you link with a DLL
(using an import library), the code in the DLL is not copied into the executable
(.EXE) file. Instead, only the import definitions for DLL functions are copied. At
run time, the dynamic link library is loaded into memory, along with the .EXE file.

 Chapter 18. Input and Output 339

Linker Input and Output

To produce a DLL as output, compile the object files with the /Ge- compiler option,
and link them with the /DLL linker option. If you are using a module definition
(.DEF) file, specify the LIBRARY statement in the .DEF file. For more information
on using .DEF files, see Chapter 21, “Creating Module Definition Files” on
page 369.

To reduce the size of the DLL and improve its performance, use the following
options:

¹ /ALIGNMENT:value to set the alignment factor in the output file. Set value to
smaller factors to reduce the size of the DLL, and to larger factors to reduce load
time for the DLL. By default, the alignment is set to 512.

¹ /EXEPACK to compress the file.

Note: Set /EXEPACK:2 for DLLs that will run only on OS/2 v3.0 and later.

¹ /OPTFUNC (once your code is tested and stable) to remove unreachable functions.

If you use the /BASE option, set /BASE:0x12000000 (or a lesser value), and provide a
separate value for each DLL. For DLLs, setting a /BASE value can save load time
when the given load address is available. If the load address is not available, the
/BASE value is ignored, and there is no load time benefit.

Use the _Export keyword, #pragma export, or the EXPORTS statement in a module
definition file, to specify the functions and data you want to make available to other
executables. See “EXPORTS” on page 379 for more information.

Once you have produced the DLL, you can produce an executable that links to the
DLL. This process can be done in two ways:

Using a .DEF file
Provide a .DEF file when you create the executable. In the .DEF file, use the
IMPORTS statement to specify which of the DLL's functions your object files
need. See “Linking to a DLL Using a .DEF File” on page 346.

Using an import library.
Use the IMPLIB utility to create an import library. When you use an import
library, you no longer need to use the IMPORTS statement. The linker
determines which functions your object files need during the linking process.

 See “Linking to a DLL Using an Import Library” on page 346.

340 IBM VisualAge�C++ for OS/2 User's Guide

Linker Input and Output

Producing a Device Driver
You can produce both physical device drivers and virtual device drivers:

¹ A physical device driver (.SYS) allows the operating system to interact with a
system peripheral, such as a monitor or printer.

¹ A virtual device driver (.VDD) allows the operating system to handle input and
output with multiple DOS or WIN-OS/2 sessions. Each session can then act as if
it has complete control of the input or output device, while actually sharing the
control with other sessions. See OS/2 System help (accessible from the desktop
popup menu) for more information on virtual device drivers.

To produce a device driver (.SYS or .VDD) file as output, specify the /PDD or /VDD
options, or specify the PHYSICAL DEVICE or VIRTUAL DEVICE statement in
your module definition (.DEF) file.

If you are creating a physical device driver, use the SEGMENTS statement in your
.DEF file to specify which segments have I/O privilege.

If you are creating a virtual device driver, compile with the options/Gr+ and Rn+,
and use the subsystem libraries. See the Programming Guide for more information
on creating virtual device drivers.

For more information on using .DEF files, see Chapter 21, “Creating Module
Definition Files” on page 369.

Generating a Map File
Specify /MAP to generate a map file, which lists the object modules in your output
file; segment names, addresses, and sizes; and symbol information. If you do not
specify a name for the map file, the map file takes the name of the executable output
file, with the extension .map.

Note: If you are linking with the /NOFREE option, you can specify a name for the
map file in the map parameter. Any name you specify with /MAP option, is ignored.

 See “Using LINK386 Syntax” on page 325 for more information on using
/NOFREE.

To prevent the map file from being generated, specify the /NOMAP option.

Specify /LINENUMBERS to include source file line numbers and associated addresses in
the map file.

 See “Linker Options” on page 351 for more information on these and other
options.

 Chapter 18. Input and Output 341

Linker Input and Output

Linker Return Codes
The linker has the following return codes:

Code Meaning

0 The link was completed successfully. The linker detected no errors, and
issued no warnings.

4 Warnings issued. There may be problems with the output file.

8 Errors detected. The linking might have completed, but the output file cannot
be run successfully.

12 Both warnings issued and errors detected (see return codes 4 and 8)

16 Severe errors detected. Linking ended abnormally, and the output file cannot
be run successfully.

20 Both warnings issued and severe errors detected (see return codes 4 and 16)

24 Both errors and severe errors issued (see return codes 8 and 16)

28 The linker issued warnings, detected errors, and detected severe errors (see
return codes 4, 8, and 16)

If you invoke the linker through the compiler, then no return code is issued for
warnings. If you invoke the linker through a make file, you can force NMAKE to
ignore warnings by putting -7 before the ILINK command.

342 IBM VisualAge�C++ for OS/2 User's Guide

Linking with Library Files

19 Linking with Library Files

The linker searches library files to resolve references in your object files to functions
outside the object files. The library files contain object modules, which contain the
code for functions your object files can reference. Some libraries are searched by
default: the compiler embeds the names of default libraries into object files. See
“Choosing Your Runtime Libraries” on page 236 for more information on choosing
your default libraries.

There are two kinds of library files: static libraries, and dynamic link libraries (DLLs)
(which you link to through import libraries). The default libraries are static library
files, unless you specify the compiler option/Gd so you can link to the DLL versions
of the default libraries. In static linking, you link to .LIB files that contain the object
modules you need. In dynamic linking, you link to import libraries (also .LIB files)
that contain import definitions for functions in the object modules; the object modules
themselves are in .DLL files.

Static linking means that code for all the VisualAge C++ runtime functions called in
your program is copied from a .LIB file into your output .EXE or .DLL file. The
.EXE or .DLL files will be larger because there is a copy of the runtime functions in
each file. These programs will take up more storage, and if you run them at the same
time, there will also be a copy of the library functions in memory for each program.
Statically linked programs, however, are easier to distribute because the library
functions are part of your executable file.

Dynamic linking means that code for the VisualAge C++ runtime functions called in
your program is not copied into your output .EXE or .DLL file. Instead, the function
code stays in a separate VisualAge C++ DLL file, and your calls to the function are
resolved at load time. The amount of disk space required by your .EXE or .DLL file
is reduced, and there is only one copy of the library functions in memory for all
programs that use them. Dynamically linked programs can be harder to distribute,
since the separate DLL file must be distributed along with your executable file. They
can also be easier to maintain, because you do not necessarily need to relink
whenever there is a change in one of the DLLs you use.

Use the /Gd compiler option to control whether your executable file links to the
runtime library statically or dynamically.

The default is /Gd-, which statically links with the .LIB version of the runtime
library.

 Copyright IBM Corp. 1992, 1995 343

Linking with .LIB Files

Specify /Gd+ to dynamically link with the DLL version of the runtime library.

The compiler option you choose causes the corresponding library to be linked in by
default. If you override the default libraries with the /NOD linker option, you must
explicitly give the name of all libraries you are using on the linker command line.

If you are linking with libraries other than the default libraries, you can specify the
libraries when you link. The libraries you specify at the linking step are searched
before the default libraries.

Linking with .LIB Files
The linker uses library (.LIB) files to resolve external references from code in the
object (.OBJ) files. When the linker finds a function or data reference in a .OBJ file
that requires a module from a library, the linker links the module from the library to
the output file.

The compiler embeds the names of needed libraries (called default libraries) in object
files. You do not need to specify these libraries: the linker searches them
automatically.

Specify library files only when:

¹ You want to use libraries other than the default libraries. Libraries you specify
are searched ahead of the default libraries.

¹ You want to specify the default library with its full path, because the default
library is not in the current directory, and not in a directory specified in the LIB
environment variable (see “Search Rules” on page 335 for more information).
You can also specify a path to a directory, without specifying a file name, to
have the linker search that directory before the directories in the LIB environment
variable (see “Specifying Directories” on page 336 for more information).

To ignore the default libraries, use the /NODEFAULTLIBRARYSEARCH option. Use the
option with care, because most compilers expect their object files to be linked with
default libraries.

If you want to include all of a library's objects in the output file, instead of only the
required ones, you must link with the /NOFREE option, to use the
LINK386-compatible syntax. You can then enter the library name as an object file.

 See “Entering Library Files As Object Files” on page 338 for more information.

344 IBM VisualAge�C++ for OS/2 User's Guide

Linking to DLLs

Linking to Dynamic Link Libraries
A dynamic link library (DLL) file contains executable code for common functions,
just as an ordinary library (.LIB) file does. However, when you link with a DLL, the
code in the DLL is not copied into the executable (.EXE) file. Instead, only the
import definitions for DLL functions are copied. At run time, the dynamic link
library that contains the functions is loaded into memory, along with the .EXE file
that references them.

There are two ways to link with a DLL:

¹ Using a .DEF file to define functions your object files import from the DLL.
 See “Linking to a DLL Using a .DEF File” on page 346.

¹ Using an import library , created with the IMPLIB utility, that allows the linker
to determine which functions your object files need to import from the DLL.
See “Linking to a DLL Using an Import Library” on page 346.

Advantages of Using DLLs

Size
Applications require less disk space. With dynamic linking, applications that
use the same function can share a single copy of the function, rather than each
application having its own copy of the function.

Independence
Dynamic link libraries and applications stay independent. You can update
dynamic link libraries without relinking the applications that use them (as long
as the function names and parameters are preserved). If you use third-party
DLLs, this is particularly convenient, because you can update the third-party
DLL without recompiling or relinking your programs. At run time, your
applications automatically call the updated function code from the new DLL.

Sharing
When appropriate, code and data segments loaded from a dynamic link library
can be shared by the different applications that access the DLL. Without
dynamic linking, such sharing is not possible because each file has its own
copy of all the code and data it uses. By sharing segments with dynamic
linking, applications can use memory more efficiently.

Linking Speed
Your applications link more quickly, because the linker does not have to copy
code from the library into your program.

 Chapter 19. Linking with Library Files 345

Linking to DLLs

Linking to a DLL Using a .DEF File
To use functions and data from a DLL, complete the following steps:

1. Create a module definition (.DEF) file for your executable output file.

2. In the .DEF file, use the IMPORTS statement to specify the DLL your executable
will link to, and what functions and data in the DLL your executable references.

Linking using a .DEF file requires you to define the functions and data you want to
import.

If you link using an import library, the linker determines the functions and data you
need to import. The linker imports only the functions and data necessary to resolve
references.

Linking to a DLL Using an Import Library
An import library contains information on all the functions and data exported by a
given DLL. Use the IMPLIB utility to create an import library, as follows:

¹ Use IMPLIB directly on the DLL.

¹ Use IMPLIB on the .DEF file for the DLL. If the DLL exports were defined in
a .DEF file (with the EXPORTS statement), IMPLIB can create an import library
from the .DEF file.

Once you have created the import library, convert the library to the new library
format:

ILIB /CONV /NOE /NOBR mylib.lib

This improves linking performance.

You can then use the import library with the linker, when you generate executables
that reference functions in the DLL. Enter the import library in the library
parameter on the command line.

The advantage of using an import library is that you do not need to define which
functions are imported from the DLL. The linker imports only those functions your
application needs. See the IMPLIB User's Guide for more information on creating
import libraries.

346 IBM VisualAge�C++ for OS/2 User's Guide

Setting Linker Options

20 Setting Linker Options

Linker options are not case sensitive, so you can specify them in lower-, upper-, or
mixed case. You can also substitute a dash (-) for the slash (/) preceding the option.
For example,-DEBUG is equivalent to /DEBUG. You can specify options in either a
short or long form. For example, /DE, /DEB, and /DEBU are all equivalent to
/DEBUG. See “Summary of Linker Options” on page 350 for the shortest
acceptable form for each option. Lower- and uppercase, short and long forms,
dashes, and slashes can all be used on one command line, as in:

ilink /de -DBGPACK -Map /NOI prog.obj

Separate options with a space or tab character. You can specify compiler options in
the following ways:

¹ On the command line
¹ In the ILINK environment variable

 ¹ In WorkFrame

Options specified on the command line override the options in the ILINK
environment variable.

Some linker options take numeric arguments. You can enter numbers in decimal,
octal, or hexadecimal format using standard C-language syntax. See “Specifying
Numeric Arguments” on page 349 for more information.

Setting Options on the Command Line
Linker options specified on the command line override any previously specified in the
ILINK environment variable (as described in “Setting Options in the ILINK
Environment Variable” on page 348).

You can specify options anywhere on the command line. Separate options with a
space or tab character.

For example, to link an object file with the /MAP option, enter:

ilink /M myprog.obj

 Copyright IBM Corp. 1992, 1995 347

Setting Linker Options

Setting Options in the ILINK Environment Variable
Store frequently used options in the ILINK environment variable. This method is
useful if you find yourself repeating the same command-line options every time you
link. You cannot specify file names in the environment variable, only linker options.

The ILINK environment variable can be set either from the command line, in a
command (.CMD) file, or in the CONFIG.SYS file. If it is set on the command line or
by running a command file, the options will only be in effect for the current session
(until you reboot your computer). If it is set in the CONFIG.SYS file, the options are
set when you boot your computer, and are in effect every time you use the linker
unless you override them using a .CMD file or by specifying options on the command
line.

 See “OS/2 Environment Variables for Compiling” on page 207 for more
information about using ILINK and other environment variables.

Example

In the following example, options on the command line override options in the
environment variable. If you enter the following commands:

SET ILINK=/NOI /AL:256 /DE
ILINK test
ILINK /NODEF /NODEB prog

The first command sets the environment variable to the options /NOIGNORECASE,
/ALIGNMENT:256, and /DEBUG

The second command links the file test.obj, using the options specified in the
environment variable, to produce test.exe

The last command links the file prog.obj to produce prog.exe, using the option
/NODEFAULTLIBRARYSEARCH, in addition to the options /NOIGNORECASE
and /ALIGNMENT:256. The /NODEBUG option on the command line overrides the
/DEBUG option in the environment variable, and the linker links without the
/DEBUG option.

Setting Options in the WorkFrame Environment
If you have installed the WorkFrame product, you can set linker options using the
options dialogs. You can use the dialogs when you create or modify a project.

Options you select while creating or changing a project are saved with that project.

For more information on setting options and linking with WorkFrame, see
“Linking within WorkFrame” on page 322.

348 IBM VisualAge�C++ for OS/2 User's Guide

Setting Linker Options

Specifying Numeric Arguments
Some linker options and module statements take numeric arguments. The linker
accepts numeric arguments in C-language syntax. You can specify numbers in any of
the following forms:

Decimal Any number not prefixed with 0 or 0x is a decimal number. For
example, 1234 is a decimal number.

Octal Any number prefixed with 0 (but not 0x) is an octal number. For
example, 01234 is an octal number.

Hexadecimal Any number prefixed with 0x is a hexadecimal number. For
example, 0x1234 is a hexadecimal number.

 Chapter 20. Setting Linker Options349

Linker Options Summary

Summary of Linker Options

Figure 72 (Page 1 of 2). Linker Options Summary

Syntax Description Default Page

/? Display help None 351

/A[LIGNMENT]: factor Set alignment factor /A:512 351

/BAS[E]:address
/NOBAS[E]

Set preferred loading address /BAS:0x00010000 352

/BR[OWSE]
/NOBR[OWSE]

Add browse information /NOBR 352

/C[ODEVIEW]
/NOC[ODEVIEW]

Include debugging information /NOC 353

/DB[GPACK]
/NODB[GPACK]

Pack debugging information /NODB 353

/DE[BUG]
/NODEB[UG]

Include debugging information /NODEB 354

/DEF[AULTLIBRARYSEARCH]
/NOD[EFAULTLIBRARYSEARCH][:lib]

Search default libraries /DEF 354

/DLL Generate DLL /EXEC 355

/EXEC Generate .EXE file /EXEC 355

/E[XEPACK][:1|:2]
/NOEXE[PACK]

Compress data /NOEXE 356

/EXT[DICTIONARY]
/NOE[XTDICTIONARY]

Use extended dictionary to search
libraries

/EXT 357

/Fo[RCE]
/NOFO[RCE]

Create executable output file even if
errors

/NOFO 357

/FR[EEFORMAT]
/NOFR[EEFORMAT]

Use free format command line syntax /FR 357

/H[ELP] Display help None 358

/IG[NORECASE]
/NOI[GNORECASE]

Ignore capitalization in identifiers /NOI 358

/I[NFORMATION]
/NOIN[FORMATION]

Display status of linking process /NOIN 358

/L[INENUMBERS]
/NOLI[NENUMBERS]

Include line numbers in map file /NOLI 359

/LO[GO]
/NOL[OGO]

Display logo, echo response file /LO 359

/M[AP][:[dir][name]]
/NOM[AP]

Generate map file /NOM 360

/OLD[CPP]
/NOOLD[CPP]

Ignore template resolution directives in
old object files

/NOOLD 360

350 IBM VisualAge�C++ for OS/2 User's Guide

/? Option ¹/A Option

Figure 72 (Page 2 of 2). Linker Options Summary

Syntax Description Default Page

/OPTF[UNC]
/NOOPTF[UNC]

Remove unreferenced functions /NOOPTF 361

/O[UT][:[dir]name Name output file Name of first
.OBJ file

361

/PACKC[ODE][:number]
/NOP[ACKCODE]

Pack neighboring code segments with
similar attributes

/PACKC:0xFfffFfff 362

/PACKD[ATA][: number]
/NOPACKD[ATA]

Pack neighboring data segments with
similar attributes

/PACKD:0xFfffFfff 363

/PDD Generate physical device driver /EXEC 363

/PM[TYPE]:type Specify application type None 363

/SEC[TION]:name,attribs Set attributes for segment Accept default
attributes

364

/SE[GMENTS]:number Set maximum number of segments /SE:128 365

/ST[ACK]:size Set stack size of application None 366

/VDD Generate virtual device driver /EXEC 367

 Linker Options

 /?

Syntax: Default:
/? None

Use /? to display a list of valid linker options. This option is equivalent to /HELP.

 /ALIGNMENT

Syntax: Default:
/A[LIGNMENT]:factor /ALIGNMENT:512

Use /ALIGNMENT to set the alignment factor in the .EXE or .DLL file.

The alignment factor determines where pages in the .EXE or .DLL file start. From
the beginning of the file, the start of each page is aligned at a multiple (in bytes) of
the alignment factor. The alignment factor must be a power of 2, from 1 to 4096.

The default alignment is 512 bytes.

 Chapter 20. Setting Linker Options351

/BAS, /NOBAS Options ¹/BR, /NOBR Options

 /BASE, /NOBASE

Syntax: Default:
/BAS[E]:address /BASE:0x00010000
/NOBASE

Use /BASE to specify the preferred load address for the first load segment of a .DLL
file. The number you specify in address is rounded up to the nearest multiple of
64K. The second load segment is then loaded at the next available multiple of 64K,
and so on.

If the file's load segments cannot be loaded beginning at this preferred address, then
the preferred address is ignored and the objects are loaded according to the internal
relocation records retained in the file data.

For .EXE files, use the default base address of 64K (/BASE:0x00010000). Specifying
this address explicitly can slightly reduce the size of the executable. Any other
address will result in a warning, and 64K will be used anyway.

This option has the same effect as the BASE module definition file statement. If you
specify both the BASE statement and the /BASE option, the statement value overrides
the option value.

Specify /NOBASE to retain relocation records and emit internal fixups, when you
generate an .EXE file. This does not affect the actual base address, or interfere with
any value you specified with/BASE. You can specify both options.

 /BROWSE, NOBROWSE

Syntax: Default:
/BR[OWSE] /NOBROWSE
/NOBR[OWSE]

Use /BROWSE to add browse information to the load module the linker generates.
/BROWSE is automatically turned on when you specify /DEBUG. This option is only
effective if the object files are compiled with the /Fb or /Fb* compiler option.

The browse information is used by the VisualAge C++ Browser when you browse
your program.

See “Creating Files to Use with the Browser” on page 559 for more information.

352 IBM VisualAge�C++ for OS/2 User's Guide

/C, /NOC Options ¹/DB, /NODB Options

If you are compiling and linking in one step, specifying /Fb automatically passes
/BROWSE to the linker.

 /CODEVIEW, NOCODEVIEW

Syntax: Default:
/C[ODEVIEW] /NOCODEVIEW
/NOC[ODEVIEW]

Obsolete: These options will not be available in future releases of the linker. Use
/DEBUG, /NODEBUG instead.

Use /CODEVIEW to include debug information in the output file, so you can debug the
file with the debugger, or trace its execution with the Performance Analyzer. The
linker will embed symbolic data and line number information in the output file.

For debugging, compile the object files with /Ti.

For Performance Analyzer, compile the object files with /Ti and /Gh.

When you specify /CODEVIEW, /BROWSE is turned on by default.

/CODEVIEW provides the same functionality as /DEBUG, and is provided only for
purposes of compatibility.

Note: Linking with /CODEVIEW or /DEBUG increases the size of the executable output
file.

 See Part 6, “IBM VisualAge C ++ Debugger” on page 393 for more information.

 /DBGPACK, /NODBGPACK

Syntax: Default:
/DB[GPACK] /NODBGPACK
/NODB[GPACK]

Use /DBGPACK to eliminate redundant debug type information. The linker takes the
debug type information from all object files and needed library components, and
reduces the information to one entry per type. This results in a smaller executable
output file, and can improve debugger performance.

Performance Consideration: Generally, linking with/DBGPACK slows the linking
process, because it takes time to pack the information. However, if there is enough

 Chapter 20. Setting Linker Options353

/DE, /NODEB Options ¹/DEF, /NOD Options

redundant debug type information,/DBGPACK can actually speed up your linking,
because there is less information to write to file.

You can only pack debug information in objects created with version 3.0 of the
compiler or later. If you use /DBGPACK with older object files, the linker generates a
warning and does not pack the debug information.

When you specify /DBGPACK, /DEBUG and /BROWSE are turned on by default.

 /DEBUG, /NODEBUG

Syntax: Default:
/DE[BUG] /NODEBUG
/NODEB[UG]

Use /DEBUG to include debug information in the output file, so you can debug the file
with the debugger, or analyze its performance with the performance analyzer. The
linker will embed symbolic data and line number information in the output file.

For debugging, compile the object files with /Ti.

For Performance Analyzer, compile the object files with /Ti and /Gh.

When you specify /DEBUG, /BROWSE is turned on by default.

Note: Linking with /DEBUG increases the size of the executable output file.

 See Part 6, “IBM VisualAge C ++ Debugger” on page 393 for more information.

 /DEFAULTLIBRARYSEARCH, /NODEFAULTLIBRARYSEARCH

Syntax: Default:
/DEF[AULTLIBRARYSEARCH /DEFAULTLIBRARYSEARCH
/NOD[EFAULTLIBRARYSEARCH][:library]

Use /DEFAULTLIBRARYSEARCH to have the linker search the default libraries of object
files when resolving references. The default libraries for an object file are defined at
compile time, and embedded in the object file. The linker searches the default
libraries by default.

Use /NODEFAULTLIBRARYSEARCH to tell the linker to ignore default libraries when it
resolves external references. If you specify a library with the option, the linker
ignores that default library, but searches any others that are defined in the object files.

354 IBM VisualAge�C++ for OS/2 User's Guide

/DLL Option ¹/EXEC Option

If you specify /NODEFAULTLIBRARYSEARCH, then you must explicitly specify all the
libraries you want to use, including VisualAge C++ runtime libraries and any OS/2
libraries you need.

 See “Choosing Your Runtime Libraries” on page 236 for more information on
defining the default libraries when you compile, and see “Linking with .LIB Files”
on page 344 for more information on explicitly specifying libraries when you link.

If you are compiling and linking in one step, specifying /Gn automatically passes
/NODEFAULTLIBRARYSEARCH to the linker.

 /DLL

Syntax: Default:
/DLL /EXEC

Use /DLL to identify the output file as a dynamic link library (.DLL file). You can
also identify the output file as a DLL with theLIBRARY statement in a module
definition file. For more information on generating a DLL, see “Producing a
Dynamic Link Library” on page 339 . The object files should be compiled with
/Ge-

If you specify /DLL with any of /EXEC, /PDD, or /VDD, then only the last specified of
the options takes effect.

If you do not specify /DLL, or any of the other options above, then by default the
linker produces an .EXE file (/EXEC).

 /EXEC

Syntax: Default:
/EXEC /EXEC

Use /EXEC to identify the output file as an executable program (.EXE file). The
linker generates .EXE files by default. You can also identify the output as an .EXE
file with the NAME statement in a module definition file. For more information on
generating an .EXE file, see “Producing an .EXE File” on page 339. The object
files should be compiled with /Ge+.

If you specify /EXEC with any of /DLL, /PDD, or /VDD, then only the last specified of
the options takes effect.

 Chapter 20. Setting Linker Options355

/E, /NOEXE Options

If you do not specify /EXEC, or any of the other options above, then the linker
produces an .EXE file by default.

 /EXEPACK, /NOEXEPACK

Syntax: Default:
/E[XEPACK][:1|:2] /NOEXEPACK
/NOEXE[PACK]

Use /EXEPACK to reduce the size of the executable by compressing pages in the file.
The operating system automatically decompresses the pages when the program runs.

Specify /EXEPACK[:1] to compress data segments in your output file, using
run-length encoding compression. If compression does not reduce the size of the
segment, the linker does not compress that segment.

Specify /EXEPACK:2 to compress both data and code segments, as follows:

¹ For data segments, the linker tries both LZW compression and run-length
encoding compression, and uses the method with the more efficient result.

¹ For code segments, the linker uses LZW compression.

Segments are evaluated one page at a time. If compression does not reduce the size
of the page, the page is not compressed.

OS/2 v3.0 only!: Only set /EXEPACK:2 if you are developing for OS/2 version 3.0
or later. OS/2 version 2.1 or earlier cannot run programs that have been compressed
with /EXEPACK:2.

Linking and compressing generally takes longer than linking alone, because of the
extra time spent compressing. However, if the compression is effective enough, it
can actually speed up the linking process, because there is less information to write to
file.

By default, the linker does not compress the output file.

356 IBM VisualAge�C++ for OS/2 User's Guide

/EXT, /NOE Options ¹/FR, /NOFR Options

 /EXTDICTIONARY, /NOEXTDICTIONARY

Syntax: Default:
/EXT[DICTIONARY] /EXTDICTIONARY
/NOE[XTDICTIONARY]

Use /EXTDICTIONARY to have the linker search the extended dictionaries of libraries
when it resolves external references. The extended dictionary is an internal list of
symbol locations included with libraries. The linker searches this list by default, to
speed up the linking process.

Use /NOEXTDICTIONARY if you are linking to an import library, or if you have
redefined a symbol used in the extended dictionary. Otherwise the linker issues error
L2044 because you have defined the same symbol in two different places. When you
link with /NOEXTDICTIONARY, the linker searches the dictionary directly, instead of
searching the extended dictionary. This results in slower linking, because references
must be resolved individually.

 /FORCE

Syntax: Default:
/FO[RCE] /NOFO
/NOFO[RCE]

Use /FORCE to produce an executable output file even if there are errors during the
linking process.

By default, the linker does not produce an executable output file if it encounters an
error.

 /FREEFORMAT, /NOFREEFORMAT

Syntax: Default:
/FR[EEFORMAT] /FR
/NOFR[EEFORMAT]

Use /FREEFORMAT to allow free placement of files, options, and directories on the
command line, separated by space or tab characters. Use the /OUT option to name the
executable output file. Use the /MAP option to name the map file. Library and
definition files are identified by their extension.

 Chapter 20. Setting Linker Options357

/H Option ¹/I, /NOIN Options

/FREEFORMAT is in effect by default. For more information on the /FREEFORMAT
syntax, see “Linking from the Command Line” on page 323.

Use /NOFREEFORMAT to allow a LINK386-compatible command line syntax, in which
different types of file are grouped and separated by commas. If you specify
/NOFREEFORMAT, then you cannot specify/OUT. Instead, specify a name for the
executable output file in the appropriate place in the command line syntax. See
“Using LINK386 Syntax” on page 325 for more information.

 /HELP

Syntax: Default:
/H[ELP] None

Use /HELP to display a list of valid linker options. This option is equivalent to /?.

 /IGNORECASE, /NOIGNORECASE

Syntax: Default:
/IG[NORECASE] /NOIGNORECASE
/NOI[GNORECASE]

Use /IGNORECASE to turn off case sensitivity, ignoring capitalization in identifiers.
For example, with this option on, the linker treats ABC, abc, and Abc as equivalent.

By default, the linker is case sensitive, and would treat ABC, abc, and Abc as unique
names.

 /INFORMATION, /NOINFORMATION

Syntax: Default:
/I[NFORMATION] /NOINFORMATION
/NOIN[FORMATION]

Use /INFORMATION to have the linker display information about the linking process as
it occurs, including the phase of linking and the names and paths of the object files
being linked.

If you are having trouble linking because the linker is finding the wrong files or
finding them in the wrong order, use /INFORMATION to determine the locations of the
object files being linked and the order in which they are linked.

358 IBM VisualAge�C++ for OS/2 User's Guide

/L, /NOLI Options ¹/LO, /NOL Options

The output from this option is sent to stdout. You can redirect the output to a file
using OS/2 redirection symbols.

 /LINENUMBERS, /NOLINENUMBERS

Syntax: Default:
/L[INENUMBERS] /NOLINENUMBERS
/NOLI[NENUMBERS]

Use /LINENUMBERS to include source file line numbers and associated addresses in the
map file. For this option to take effect, there must already be line number
information in the object files you are linking. When you compile, use the /Tn
option to include line numbers in the object file (or the /Ti option, to include all
debugging information). If you give the linker an object file without line number
information, the /LINENUMBERS option has no effect.

The /LINENUMBERS option forces the linker to create a map file, even if you
specified /NOMAP.

For more information on map files, see “Generating a Map File” on page 341.

By default, the map file is given the same name as the output file, plus the extension
.map. You can override the default name by specifying a map file name.

 /LOGO, /NOLOGO

Syntax: Default:
/LO[GO] /LOGO
/NOL[OGO]

Use /NOLOGO to suppress the product information that appears when the linker starts.
/NOLOGO also stops the contents of the response file from being echoed to the screen.

Specify /NOLOGO before the response file on the command line, or in the ILINK
environment variable. If the option appears in or after the response file, it is ignored.

If you are compiling and linking in one step, you can use the /Q compiler option to
suppress the product information, and stop the contents of the response file from
being echoed to the screen.

By default, the linker displays product information at the start of the linking process,
and displays the contents of the response file as it reads the file.

 Chapter 20. Setting Linker Options359

/M, /NOM Options ¹/OLD, /NOOLD Options

 /MAP, /NOMAP

Syntax: Default:
/M[AP][:[dir][name]] /NOM
/NOM[AP]

Use /MAP to generate a map file with the name name, and in the directorydir, that
lists the composition of each segment, and the public (global) symbols defined in the
object files. The symbols are listed twice: in order of name, and in order of address.

If you do not specify dir, the map file is generated into the current working
directory. If you do not specify name, the map file has the same name as the
executable output file, with the extension .map.

For compatibility with LINK386, you can specify /MAP:full. With the
VisualAge C++ linker, this is the same as specifying /MAP.

Note: If you are linking with the /NOFREE option, you can specify a name for the
map file in the map parameter. Any name you specify with the /MAP option is
ignored. See “Using LINK386 Syntax” on page 325 for more information on
using /NOFREE.

For more information on map files, see “Generating a Map File” on page 341.

If you are compiling and linking in one step, you can use the /Fm compiler option to
generate a linker map file.

By default, the linker does not produce a map file.

 /OLDCPP, /NOOLDCPP

Syntax: Default:
/OLD[CPP] /NOOLDCPP
/NOOLD[CPP]

The compiler passes the /OLDCPP option to the linker when you compile and link in
one step with the /Gk option.

Compile and link with /Gk when you are linking old object files or libraries, created
with version 2.1 of the compiler or earlier, that use templates.

The linker resolves templates for object files created by version 3.0 of the compiler.
Since the linker cannot resolve templates in old object files, it normally generates an

360 IBM VisualAge�C++ for OS/2 User's Guide

/OPTFUNC, NOOPTFUNC Options ¹/OUT Option

error message and stops linking when it encounters old object files that require
template resolution. The /OLDCPP option informs the linker that the compiler has
handled the template resolution already, by calling the muncher from the previous
version of the compiler.

 /OPTFUNC, /NOOPTFUNC

Syntax: Default:
/OPTF[UNC] /NOOPTF
/NOOPTF[UNC]

Use /OPTFUNC to remove unreachable functions. The linker removes functions that
are:

¹ Not referenced anywhere in the object code
¹ Rendered unreferenced by the removal of other functions
¹ Not exported for use in other files

 See “EXPORTS” on page 379 for more information on exporting functions.

When the function is removed, any additional functions that were required only by
that function are also removed. Removing the functions and code reduces the size of
your .EXE or .DLL output file.

By default, the linker does not remove unreachable functions.

If you are compiling and linking in one step, you can use the /Gl compiler option to
invoke this optimisation.

Performance Consideration: Optimized linking generally takes longer than regular
linking, because of the extra processing that the linker performs. However, if the
optimization is effective enough, it can actually speed up the linking process, because
there is less information to write to file. Generally, you may want to link without the
/OPTFUNC option, until your code is tested and stable.

 /OUT

Syntax: Default:
/O[UT]:name Name of first .OBJ file with appropriate

extension

Use /OUT to specify a name for the executable output file. To use /OUT, you must be
using the default command line syntax (/FREEFORMAT). If you are using the /NOFREE
(LINK386-compatible) format, then you cannot use the /OUT option. See “Using

 Chapter 20. Setting Linker Options361

/PACKC, /NOP Options

LINK386 Syntax” on page 325 for information on naming the output file when
/NOFREE is specified.

If you do not provide an extension with name, then the linker provides an extension
based on the type of file you are producing:

File produced Default extension
Executable program .exe
Dynamic link library .dll
Physical device driver .sys
Virtual device driver .vdd

If you do not use the /OUT option, then the linker uses the file name of the first
object file you specified, with the appropriate extension.

 /PACKCODE, /NOPACKCODE
packing code

Syntax: Default:
/PACKC[ODE][:number] /PACKCODE:0xFfffFfff
/NOP[ACKCODE]

Use /PACKCODE to produce slightly faster and more compact code. The linker groups
neighboring code segments that have similar attributes, and assigns them to the same
load segment. The linker adjusts offsets to each routine upward as required.

Specify number to set the maximum size for a load segment. The linker will start
new load segments as necessary to avoid exceeding the maximum.

For 16-bit segments, number is ignored, and 65500 is used instead.

By default, the linker sets a maximum of 0xFfffFfff.

Use /NOPACKCODE to turn off code segment packing.

Note: If you are compiling old object files that contain #pragma alloc_text
directives, or were compiled with the/Nt option, then use /NOPACKCODE for
debugging. This restriction does not apply to object files created with
VisualAge C++ v3.0 and later.

Use the /OPTFUNC option to reduce the size of your output files even further.

362 IBM VisualAge�C++ for OS/2 User's Guide

/PACKD, /NOPACKD Options ¹/PM Option

 /PACKDATA, /NOPACKDATA

Syntax: Default:
/PACKD[ATA][:number] /NOPACKDATA
/NOPACKD[ATA]

Use /PACKDATA to produce more compact files by grouping neighboring data
segments that have similar attributes, and assigning them to the same load segment.

Specify number to set the maximum size for a load segment. The linker will start
new load segments as necessary to avoid exceeding the maximum. By default, the
linker sets a maximum of 0xFfffFfff.

By default, the linker does not pack data segments.

 /PDD

Syntax: Default:
/PDD /EXEC

Use /PDD to identify the output file as a physical device driver (.SYS file). You can
also identify the output file as a .SYS file with thePHYSICAL DEVICE statement in a
module definition file. For more information on generating a device driver, see

“Producing a Device Driver” on page 341 .

If you specify /PDD with any of /EXEC, /DLL, or /VDD, then only the last specified of
the options takes effect.

If you do not specify /PDD, or any of the other options above, then by default the
linker produces an .EXE file (/EXEC).

 /PMTYPE

Syntax: Default:
/PM[TYPE]:type None

Use /PMTYPE to specify the type of .EXE file that the linker generates. Do not use
this option when generating dynamic link libraries (DLLs) or device drivers. The
option is equivalent to the NAME module statement, but uses different type names.

 Chapter 20. Setting Linker Options363

/SEC Option

Figure 73. /PMTYPE Parameters

Type Description Equivalent NAME
Statement Parameter

PM Presentation Manager application. The
application uses the API provided by the
Presentation Manager, and must run in the
Presentation Manager environment.

WINDOWAPI

VIO Application compatible with Presentation
Manager. The application can run inside the
Presentation Manager, or it can run in a separate
screen group. An application can be of this type
if it uses the proper subset of OS/2 video,
keyboard, and mouse functions supported in the
Presentation Manager applications.

WINDOWCOMPAT

NOVIO Application that is not compatible with the
Presentation Manager and must run in a separate
screen group from the Presentation Manager.

NOTWINDOWCOMPAT

 /SECTION

Syntax: Default:
/SEC[TION]:name,attributes Depends on segment type

Use /SECTION to specify memory-protection attributes for thename segment. You
can specify the following attributes:

Letter Sets Attribute
E EXECUTE
R READ
S SHARED
W WRITE

For example,

/SEC:dseg1,RS

sets the READ and SHARED attributes, but not the EXECUTE, or WRITE attributes,
for the segment dseg1 in an .EXE file.

364 IBM VisualAge�C++ for OS/2 User's Guide

/SE Option

Defaults

Segments are assigned attributes by default, as follows:

Segment Default Attributes

Code segments EXECUTE, READ (ER)
Correspond to the SEGMENTS attribute
EXECUTEREAD.

Data segments (in .EXE file) READ, WRITE (RW)
Correspond to the SEGMENTS attribute
READWRITE.

Data segments (in .DLL file) READ, WRITE, SHARED (RWS)
Correspond to the SEGMENTS attributes
READWRITE and SHARED.

CONST32_RO segment READ, SHARED (RS)
Correspond to the SEGMENTS attributes
READONLY and SHARED.

You can also set these attributes, and other attributes, to segments using statements in
a module definition file:

CODE Sets default attributes for CODE segments
DATA Sets default attributes for DATA segments
SEGMENTS Sets attributes for specific segments

Assignments given in a module definition file override any assignments made with
/SECTION. See Chapter 21, “Creating Module Definition Files” on page 369 and
“Summary of Module Statements” on page 372 for more information on module
definition files.

 /SEGMENTS

Syntax: Default:
/SE[GMENTS]:number /SE:256

Use /SEGMENTS to set the number of logical segments a program can have. You can
set number to any value in the range 1 to 3072. See “Specifying Numeric
Arguments” on page 349.

For each logical segment, the linker must allocate space to keep track of segment
information. By using a relatively low segment limit as a default (256), the linker is
able to link faster and allocate less storage space.

 Chapter 20. Setting Linker Options365

/ST Option

When you set the segment limit higher than 256, the linker allocates more space for
segment information. This results in slower linking, but allows you to link programs
with a large number of segments.

For programs with fewer than 256 segments, you can improve link time and reduce
linker storage requirements by setting number to the actual number of segments in the
program.

 /STACK

Syntax: Default:
/ST[ACK]:size None

Use /STACK to set the stack size (in bytes) of your program. The size must be an
even number from 0 to 0xFfffFffe. If you specify an odd number, it is rounded up
to the next even number.

You cannot specify a stack size in which the second most significant byte is either 02
or 04 (in hex), because of a restriction in OS/2 2.0. The linker issues a warning, and
adds 64k to the specified stack size to avoid this restriction.

For example, if you specify/STACK:0x00020000 the linker adds 64k, which results
in /STACK:0x00030000

Similarly, if you specify/STACK:0x11041111 the linker adds 64k, which results in
/STACK:0x11051111

If your program generates a stack-overflow message, use /STACK to increase the size
of the stack.

If your program uses very little stack space, you can save space by decreasing the
stack size.

 See “Controlling Stack Allocation and Stack Probes” on page 247 for more
information.

Note: Once the executable is produced, you can still change its stack size, using the
EXEHDR utility in the toolkit. See the EXEHDR section for more information.

/STACK is equivalent to the STACKSIZE statement in a module definition (.DEF) file.
If you specify both the statement and the option, the statement value overrides the
option value.

366 IBM VisualAge�C++ for OS/2 User's Guide

/VDD Option

 /VDD

Syntax: Default:
/VDD /EXEC

Use /VDD to identify the output file as a virtual device driver (.VDD file). You can
also identify the output file as a .VDD file with theVIRTUAL DEVICE statement in a
module definition file. For more information on generating a DLL, see
“Producing a Device Driver” on page 341.

If you specify /VDD with any of /EXEC, /DLL, or /PDD, then only the last specified of
the options takes effect.

If you do not specify /VDD, or any of the other options above, then by default the
linker produces an .EXE file (/EXEC).

 Chapter 20. Setting Linker Options367

/VDD Option

368 IBM VisualAge�C++ for OS/2 User's Guide

Module Definition Files

21 Creating Module Definition Files

A module definition file contains one or more module statements. These statements:

¹ Define various attributes of your executable output file
¹ Define attributes of code and data segments in the file
¹ Identify data and functions that are imported into or exported from your file

Use module definition files when:

¹ You are creating a DLL, and did not define exports in your source files (using
#pragma export, or the _Export keyword). You can use theEXPORTS module
statement to define exports, instead of defining exports in the source files.

¹ You are linking with a DLL, and are not using an import library to do so. You
can use theIMPORTS module statement to define imports, instead of linking to an
import library to resolve references to a DLL.

¹ You are creating a device driver.

¹ You need to define attributes of the executable output file more precisely than
you can with options alone (for example, you want to define library initialization
and termination behavior, with the LIBRARY statement).

¹ You need to define segment attributes more precisely than you can with options
alone (for example, you are creating a device driver, and need to give some
segments I/O access with the SEGMENTS statement).

When creating a module definition file, follow these rules:

¹ Use a NAME, LIBRARY, VIRTUAL DEVICE, or PHYSICAL DEVICE
statement to define the type of executable output you want. You can only use
one of these statements, and it must precede all other statements in the module
definition file.

¹ Begin comment lines with a semicolon (;). The linker ignores any line in the file
that begins with a semicolon.

¹ Enter all module definition keywords (for example, NAME, LIBRARY, and
IOPL) in uppercase letters.

¹ Do not use module definition keywords, or reserved words, as a text parameter to
a statement (for example, you cannot use the LIBRARY statement to name a
library SHARED, because SHARED is a keyword). See “Reserved Words” on
page 370 for a list of keywords and reserved words.

 Copyright IBM Corp. 1992, 1995 369

Reserved Words

 See “Linker Module Statements” on page 373 for detailed descriptions of all
statements.

Example

;This is a module definition (.DEF) file for a
;dynamic link library (DLL).

LIBRARY
;Identifies the output as a DLL

DESCRIPTION
 'Sample DLL'
;Embeds a description in the DLL

CODE EXECUTEONLY
;All CODE segments by default can be executed but not read

SEGMENTS
dseg1 CLASS 'DATA' READONLY

;sets data segment dseg1 to be read only

STACKSIZE 1024
;Sets stack size to 1024

EXPORTS
;Makes data and functions defined inside the DLL available
;to other runtime modules
 Init @1
 Begin @2
 Finish @3
 Load @4
 Print @5
;The functions Init, Begin, Finish, Load, and Print can be called either
;by their entry name or by their ordinal positions (1, 2, 3, 4, or 5)

 Reserved Words
The following words cannot be used as text parameters to a module statement. For
example, you cannot use these words as the names of functions defined with the
EXPORTS statement, or to name a stub file with the STUB statement.

The words are either module definition keywords, or reserved by the linker.

370 IBM VisualAge�C++ for OS/2 User's Guide

Reserved Words

Note: Although module definition keywords should always be entered in uppercase
letters, and only the uppercase forms are shown below, the mixed- and lower-case
forms of these words are also reserved. For example, CONTIGUOUS, ContiGuous, and
contiguous are all reserved.

ALIAS NOIOPL
BASE NONAME
CODE NONCONFORMING
CONFORMING NONDISCARDABLE
CONTIGUOUS NONE
DATA NONPERMANENT
DESCRIPTION NONSHARED
DEV386 NOTWINDOWCOMPAT
DISCARDABLE OBJECTS
DOS4 OLD
DYNAMIC ORDER
EXECUTEONLY OS2
EXECUTEREAD PERMANENT
EXETYPE PHYSICAL DEVICE
EXPANDDOWN PRELOAD
EXPORTS PRIVATE
FIXED PROTECT
HEAPSIZE PURE
HUGE READONLY
IOPL READWRITE
IMPORTS REALMODE
IMPURE RESIDENT
INCLUDE RESIDENTNAME
INITGLOBAL ROBASE
INITINSTANCE SEGMENTS
INVALID SHARED
LIBRARY SINGLE
LOADONCALL STACKSIZE
LONGNAMES STUB
MAXVAL SWAPPABLE
MIXED1632 SYSBASE
MOVABLE TERMGLOBAL
MOVEABLE TERMINSTANCE
MULTIPLES UNKNOWN
NAME VIRTUAL DEVICE
NEWFILES WINDOWAPI
NODATA WINDOWCOMPAT
NOEXPANDDOWN WINDOWS

 Chapter 21. Creating Module Definition Files371

Module Statements Summary

Summary of Module Statements

Figure 74 (Page 1 of 2). Linker Module Statements Summary. Default parameters are underlined. The defaults for
NONE|SINGLE|MULTIPLE, SHARED|NONSHARED, INITGLOBAL|INITINSTANCE, and TERMGLOBAL|TERMINSTANCE are
described in the detailed description of the option.

Statement Description Parameters Page

BASE=address Set preferred loading
address.

Loading address 373

CODE attributes Give default attributes for
code segments.

CONFORMING|NONCONFORMING
EXECUTEONLY|EXECUTEREAD
IOPL|NOIOPL
PRELOAD|LOADONCALL

374

DATA attributes Give default attributes for
data segments. See
detailed description for
defaults of
NONE|SINGLE|MULTIPLE,
SHARED|NONSHARED.

IOPL|NOIOPL
NONE|SINGLE|MULTIPLES
PRELOAD|LOADONCALL
READONLY|READWRITE
SHARED|NONSHARED

376

DESCRIPTION 'text' Describe the executable. Descriptive text 378

EXETYPE opsystem Identify operating system. OS2|WINDOWS|UNKNOWN 378

EXPORTS
e[=i] [@o[keywrd]] [p]

Define exported functions
and data.

Entry name
Internal name
Ordinal position
RESIDENTNAME|NONAME
Parameter size

379

HEAPSIZE size Specify local heap size. bytes|MAXVAL 381

IMPORTS
 [intname=]dllname.entry

Define imported functions. Internal name
Name of exporting module
Entry name or ordinal
 value

381

LIBRARY [lib] [init] [term] Identify output as dynamic
link library (DLL). See
detailed description for
defaults of parameters.

Library name
INITGLOBAL|INITINSTANCE
TERMGLOBAL|TERMINSTANCE

383

NAME [appname] [apptype] Identify output as
executable (EXE).

Application name
WINDOWAPI|WINDOWCOMPAT
 |NOTWINDOWCOMPAT

384

OLD '[dir]name' Preserve ordinal values
from old DLL.

Name of old DLL 386

PHYSICAL DEVICE [drivername] Identify output as physical
device driver.

Name of driver 386

372 IBM VisualAge�C++ for OS/2 User's Guide

BASE

Figure 74 (Page 2 of 2). Linker Module Statements Summary. Default parameters are underlined. The defaults for
NONE|SINGLE|MULTIPLE, SHARED|NONSHARED, INITGLOBAL|INITINSTANCE, and TERMGLOBAL|TERMINSTANCE are
described in the detailed description of the option.

Statement Description Parameters Page

SEGMENTS
[']s['] [CLASS 'c'] [a]

Give attributes for specific
segments. See detailed
description for default of
SHARED|NONSHARED.

Segment name
Class of the segment
ALIAS
CONFORMING|NONCOMFORMING
EXECUTEONLY|EXECUTEREAD
IOPL|NOIOPL
MIXED1632
PRELOAD|LOADONCALL
READONLY|READWRITE
SHARED|NONSHARED

387

STACKSIZE size Specify local stack size. Stack size (in bytes) 390

STUB 'file name' Add DOS executable file
to module.

File name to add 391

VIRTUAL DEVICE [drivername] Identify output as virtual
device driver.

Name of driver 391

Linker Module Statements

 BASE

Syntax: Parameters:
BASE=address Loading address

Use the BASE statement to specify the preferred load address for the first load
segment of the module. The number you give for the option is rounded up to the
nearest multiple of 64K. The second load segment is then loaded at the next
available multiple of 64K, and so on.

If the module's load segments cannot be loaded beginning at this preferred address,
then the preferred address is ignored and the load segments are loaded according to
the internal relocation records retained in the file data.

For .EXE files, accept the default base address of 64K (BASE=0x00010000). Any
other address will result in a warning, and 64K will be used anyway.

This statement has the same effect as the /BASE linker option. If you specify both the
statement and the option, the statement value overrides the option value.

 Chapter 21. Creating Module Definition Files373

CODE

 CODE

Syntax: Parameters:
CODE attributes CONFORMING|NONCONFORMING

EXECUTEONLY|EXECUTEREAD
IOPL|NOIOPL
PRELOAD|LOADONCALL

Use the CODE statement to define default attributes for code segments within the
executable you are creating. You can override the default attributes with the
SEGMENTS statement (described on page 387), or the /SECTION option
(described on page 364), which define attributes for specific segments.

Attribute
Rules

¹ You can only specify one attribute from each pair. If you specify neither
attribute, ILINK uses the default. See the description of the parameter for its
default.

¹ Attributes can appear in any order.

CONFORMING|NONCONFORMING

Use these attributes to specify whether a code segment is a 286-conforming segment.
These attributes are relevant for device drivers, or system-level code. They apply to
code segments only.

¹ CONFORMING specifies that the segment is conforming, and uses a range of
instructions that can be executed by a 286 (16-bit) processor. A CONFORMING
segment can be called from either Ring 2 or Ring 3, and executes at the privilege
level of the caller.

¹ NONCONFORMING specifies that the segment is nonconforming, and uses
instructions that require a 386 processor or higher. The segment is not
guaranteed to be executable by a 286 processor.

The default is NONCONFORMING.

EXECUTEONLY|EXECUTEREAD

Use these attributes to specify whether a code segment can be read as well as
executed. These attributes apply to code segments only.

¹ EXECUTEONLY specifies that the segment can only be executed.
¹ EXECUTEREAD specifies that the segment can be both executed and read.

The default is EXECUTEREAD.

374 IBM VisualAge�C++ for OS/2 User's Guide

CODE

IOPL|NOIOPL

Use these attributes to determine whether a segment has I/O privilege, that is, whether
it can access the hardware directly.

¹ IOPL specifies that the segment has I/O privilege.
¹ NOIOPL specifies that the segment does not have I/O privilege.

The default is NOIOPL.

Note: 32-bit segments must be NOIOPL. You cannot specify a 32-bit segment as
IOPL.

PRELOAD|LOADONCALL

Use these attributes to specify when the segment is loaded.

Note: These attributes are ignored on OS/2 version 2.0 and later.

¹ PRELOAD specifies that the segment will be loaded automatically when the
program starts.

¹ LOADONCALL specifies that the segment will not be loaded until accessed.

The default is LOADONCALL.

Example

Given the following line in a .DEF file,

CODE LOADONCALL IOPL

CODE segments are not loaded until accessed (LOADONCALL), and have I/O
hardware prvilege (IOPL). In addition, the linker assumes the following defaults:

¹ EXECUTEREAD (can be read as well as executed)
¹ NONCONFORMING (not guaranteed to run on a machine based on the 80286

microprocessor)

These attributes apply to all CODE segments, except when you override them with
the SEGMENTS statement

 Chapter 21. Creating Module Definition Files375

DATA

 DATA

Syntax: Parameters:
DATA attributes IOPL|NOIOPL

NONE|SINGLE|MULTIPLE
PRELOAD|LOADONCALL
READONLY|READWRITE
SHARED|NONSHARED

Use the DATA statement to define default attributes for data segments within the
executable you are creating. You can override the default attributes with the
SEGMENTS statement (described on page 387), or the /SECTION option
(described on page 364), which define attributes for specific segments.

Attribute
Rules

¹ You can only specify one attribute from each group. If you specify none of the
attributes in a group, the linker uses the default. See the description of the
parameter for its default.

¹ Attributes can appear in any order.

IOPL|NOIOPL

Use these attributes to determine whether a segment has I/O privilege, that is, whether
it can access the hardware directly.

¹ IOPL specifies that the segment has I/O privilege.
¹ NOIOPL specifies that the segment does not have I/O privilege.

The default is NOIOPL.

Note: 32-bit segments must be NOIOPL. You cannot specify a 32-bit segment as
IOPL.

NONE|SINGLE|MULTIPLE

Use these attributes to specify how the automatic data segment can be shared. The
automatic data segment is the physical segment represented by the group name
DGROUP. This segment group makes up the physical segment that contains the local
stack and heap of the application.

¹ NONE specifies that no automatic data segment is created.
¹ SINGLE specifies that a single automatic data segment is shared by all instances

of the module. In this case, the module is said to have solo data. SINGLE is the
default for .DLL files.

376 IBM VisualAge�C++ for OS/2 User's Guide

DATA

¹ MULTIPLE specifies that the automatic data segment is copied for each instance
of the module. In this case, the module is said to have instance data.
MULTIPLE is the default for .EXE files.

PRELOAD|LOADONCALL

Use these attributes to specify when the segment is loaded.

Note: These attributes are ignored on OS/2 version 2.0 and later.

¹ PRELOAD specifies that the segment will be loaded automatically when the
program starts.

¹ LOADONCALL specifies that the segment will not be loaded until accessed.

The default is LOADONCALL.

READONLY|READWRITE

Use these attributes to set the access rights to a data segment. These attributes apply
to data segments only.

¹ READONLY specifies that the segment can only be read.
¹ READWRITE specifies that the segment can be both read and written to.

The default is READWRITE.

SHARED|NONSHARED

Use these attributes to specify whether the segment can be shared by other processes.
These attributes apply to data segments only.

¹ SHARED specifies that one copy of the segment is loaded and shared among all
processes accessing the module. SHARED is the default for dynamic link library
(.DLL) files.

¹ NONSHARED specifies that the segment cannot be shared, and must be loaded
separately for each process. NONSHARED is the default for executable program
(.EXE) files.

Example

Given the following line in a .DEF file,

DATA LOADONCALL NONSHARED

DATA segments are not loaded until they are accessed (LOADONCALL), and cannot
be shared between multiple copies of the program (NONSHARED). In addition, the
linker assumes the following defaults:

 Chapter 21. Creating Module Definition Files377

DESCRIPTION ¹EXETYPE

¹ READWRITE (DATA segments can be read and written to)
¹ MULTIPLE (the automatic data segment is copied for each instance of the

module)
¹ NOIO (DATA segments have no I/O hardware privilege)

These attributes apply to all DATA segments, except when you override them with
the SEGMENTS statement

 DESCRIPTION

Syntax: Parameters:
DESCRIPTION 'text' Descriptive text

Use the DESCRIPTION statement to insert the specified text into the .EXE or .DLL
file you are creating. The DESCRIPTION statement is useful for embedding source
control or copyright information into your program or DLL.

The inserted text must be a one-line string enclosed in single quotation marks.

Example

Given the following line in a .DEF file,

DESCRIPTION 'Template Program'

the linker inserts the textTemplate Program into the .EXE or .DLL file.

 EXETYPE

Syntax: Parameters:
EXETYPE opsystem OS2|WINDOWS|UNKNOWN

Use the EXETYPE statement to specify the operating system the .EXE or .DLL will
run under. This statement is optional, and can provide an additional degree of
protection against the program being run in an incorrect operating system.

For opsystem, specify one of the following:

OS2 OS/2 .EXE and .DLL files (this is the default)

WINDOWS Microsoft Windows applications

UNKNOWN Other applications

378 IBM VisualAge�C++ for OS/2 User's Guide

EXPORTS

When you use EXETYPE, the linker sets bits in the header that identify
operating-system type. Operating-system loaders can then check these bits before
running the application.

 EXPORTS

Syntax: Parameters:
EXPORTS Entry name
enm [=inm] [@ord[keywrd]] [pwrds] Internal name for function

Ordinal position of function
RESIDENTNAME|NONAME
Size of function's parameters

Use the EXPORT statement when you are creating a dynamic link library (DLL) to
define the names and attributes of data and functions exported from the DLL, and of
functions that run with I/O hardware privilege.

 You can also specify exports in your source code, using the_Export keyword, or
the #pragma export directive.

Note: Exported data and functions are those available to other .EXE or .DLL files.
Data and functions that are not exported can only be accessed within your DLL, and
cannot be accessed by other .EXE or .DLL files.

Give export definitions for functions and data in your DLL that you want to make
available to other .EXE or .DLL files.

The EXPORTS keyword marks the beginning of the export definitions. Enter each
definition on a separate line. You can provide the following information for each
export:

enm The entry name of the data construct or function , which is the name other
files use to access it. Always provide an entry name for each export.

inm The internal name of the data construct or function, which is its actual name
as it appears within the DLL. If you do not specify an internal name, the
linker assumes it is the same as enm.

ord The data construct or function's ordinal position in the module definition
table. If you provide the ordinal position, the data construct or function can
be referenced either by its entry name or by the ordinal. It is faster to
access by ordinal positions, and may save space.

 Chapter 21. Creating Module Definition Files379

EXPORTS

keywrd You can specify one of two values:

RESIDENTNAME Indicates that you want the data construct or function's
name kept resident in memory at all times. You only
need to specify RESIDENTNAME if you gave an
ordinal position in ord. When a data construct or
function does not have an ordinal position defined,
OS/2 keeps the name of the exported data construct or
function resident in memory by default.

NONAME Indicates that you want the data construct or function to
always be referenced by its ordinal number. If you
specify NONAME, the data construct or function
cannot be referenced by name: it can only be
referenced by ordinal number.

You cannot specify both values.

pwrds The total size of the function's parameters, as measured in words (bytes
divided by two). This field is required only if the function executes with I/O
privilege. When a function with I/O privilege is called, OS/2 consults
pwrds to determine how many words to copy from the caller's stack to the
stack of the I/O-privileged function.

Example

The following example defines three exported functions:

 ¹ SampleRead
 ¹ StringIn
 ¹ CharTest

EXPORTS
SampleRead = read2bin @8
StringIn = str1 @4 RESIDENTNAME

 CharTest 6

The first two functions can be accessed either by their exported names or by an
ordinal number. Note that in the module's own source code, these functions are
actually defined as read2bin and str1, respectively. The last function runs with I/O
privilege, and so has pwrds (the total size of the parameters) defined for it: six words.

380 IBM VisualAge�C++ for OS/2 User's Guide

HEAPSIZE ¹IMPORTS

 HEAPSIZE

Syntax: Parameters:
HEAPSIZE size bytes|MAXVAL

Use the HEAPSIZE statement to define the size of the application's local heap in
bytes. This value affects the size of the automatic data segment (DGROUP), which
contains the local stack and heap of the application.

You can enter any positive integer for the heap size. See “Specifying Numeric
Arguments” on page 349.

Instead of entering the number of bytes, you can enter the keyword MAXVAL. This
increases the size of DGROUP to 64K, if it is smaller than 64K. MAXVAL is useful
in bound applications, when you want to force a 64K requirement for DGROUP.
MAXVAL is not generally useful for 32-bit programs.

Example

Given the following line in a .DEF file,

HEAPSIZE 4000

the linker sets the local heap to 4000 bytes.

 IMPORTS

Syntax: Parameters:
IMPORTS Internal name for function
[intname=]dllname.entry Name of exporting module

Function's entry name

Use the IMPORT statement to define the names of the functions imported from a
DLL for your .EXE or .DLL file to use.

If your file references functions that are defined in a DLL, you must import the
functions from the DLL before your file can use them. You can qualify imported
functions with the _Import keyword, but you must still define them in the module
definition file, to give the name of the DLL the functions are defined in. See
“Linking to a DLL Using a .DEF File” on page 346 for more information.

 Chapter 21. Creating Module Definition Files381

IMPORTS

Note: Instead of using the IMPORTS statement, you can use an import library
(created by the IMPLIB utility) to resolve external references to DLL symbols.
See “Linking to a DLL Using an Import Library” on page 346 for more information.

The IMPORTS keyword marks the beginning of the import definitions. Enter each
definition on a separate line. Each import definition corresponds to a particular
function. The only limit on the number of import definitions is that the total amount
of space required for their names must be less than 64K.

You can provide the following information for each import definition:

intname The internal name of the function, that is used within your
module to call the function. This is the name used by the
importing module, although the function can have a different
name in the module where it is defined (the exporting module).
If entry contains a name, then by default, intname uses the
same name.

dllname The name of the DLL that contains the function. You must
provide this information for each import you define.

entry The function to be imported, identified either by entry name or
by ordinal value.

You can only use an ordinal value if one is defined for the
function in its export definition (see “EXPORTS” on
page 379). If you use the ordinal value, then you must also
define an intname for your module to use.

The entry name for the function is always defined in its export
definition.

By default, the exporting module and importing module both call the function by its
entry name. However, each module can provide its own internal name for the
function. It is possible for the function to have up to three distinct names:

¹ The exporting module's internal name for the function (associated with the entry
name by the export statement)

¹ The function's entry name (and an optional ordinal value)

¹ The importing module's internal name for the function (associated with either the
entry name or the ordinal value by the import statement)

Example

The following example defines three functions to be imported:

 ¹ SampleRead

382 IBM VisualAge�C++ for OS/2 User's Guide

LIBRARY

 ¹ SampleWrite
¹ A function that has been assigned an ordinal value of 1

IMPORTS
 Sample.SampleRead
 SampleA.SampleWrite
ReadChar = Read.1

The functions are found in the modules Sample, SampleA, and Read, respectively.
The SampleRead and SampleWrite functions are called by their entry names. The
function from the Read module is called by the internal name ReadChar, which maps
to the ordinal value 1. Its actual entry name is not shown, because it is called by
ordinal value instead of by its entry name.

 LIBRARY

Syntax: Parameters:
LIBRARY [libname] [init] [term] Library name

INITGLOBAL|INITINSTANCE
TERMGLOBAL|TERMINSTANCE

Use the LIBRARY statement to identify the output file as a dynamic link library
(DLL), and optionally define the name, library module initialization, and library
module termination.

You can also identify the output file as a DLL with the /DLLoption.

The following table shows defaults for the fields, depending on whether the DLL has
16-bit entry points, or 32-bit entry points:

Figure 75. LIBRARY Default Values

Field Default for DLLs with 16-bit Entry
Points

Default for DLLs with 32-bit Entry
Points

libname Name of output file with .DLL
extension removed

Name of output file with .DLL
extension removed

init INITGLOBAL Matches term, if termination given.
Otherwise INITGLOBAL.

term None (applies only to DLLs with
32-bit entry points)

Matches init, if initialization given.
Otherwise TERMGLOBAL.

 Chapter 21. Creating Module Definition Files383

NAME

If you use the LIBRARY statement in your module definition (.DEF) file, it must be
the first statement in the .DEF file, and you cannot use the NAME, PHYSICAL
DEVICE, or VIRTUAL DEVICE statements.

If you provide a name in libname, it becomes the name of the library as it is known
by OS/2. The name can be any valid file name.

Use the init field to define the type of library initialization you want:

INITGLOBAL The library initialization routine is called only when the library
module is initially loaded into memory.

INITINSTANCE The library initialization routine is called each time a new
process gains access to the library.

If you are generating a DLL with 32-bit entry points, you can set the type of library
termination you want:

TERMGLOBAL The library termination routine is called only when the library
module is unloaded from memory.

TERMINSTANCE The library termination routine is called each time a process
gives up access to the library.

Example

The following example assigns the name calendar to the dynamic link library
(DLL), and specifies that library initialization be performed each time a new process
gains access. If calendar has 32-bit entry points, the linker will assume
TERMINSTANCE.

LIBRARY calendar INITINSTANCE

 NAME

Syntax: Parameters:
NAME [appname] [apptype] Application name

WINDOWAPI|WINDOWCOMPAT
 |NOTWINDOWCOMPAT

Use the NAME statement to identify the output file as an executable program (.EXE
file), and optionally define the name and type of the .EXE file.

You can also identify the output file as an .EXE file with the /EXEC option.

384 IBM VisualAge�C++ for OS/2 User's Guide

NAME

If you use the NAME statement in your module definition (.DEF) file, it must be the
first statement in the .DEF file, and you cannot use the LIBRARY, PHYSICAL
DEVICE, or VIRTUAL DEVICE statements.

If you specify appname, it becomes the name of the .EXE as it is known by OS/2.
The name can be any valid file name. If you do not provide a name, the name of the
executable program is the same as the name of the output file, with the .EXE
extension removed.

The NAME statement also allows you to define the type of the program:

You can also use the /PMTYPE option to set the type. If conflicting types are defined
by the option and in the NAME statement, the type defined by the NAME statement
overrides the option value.

Example

The following example assigns the name calendar to the executable program, and
specifies it as compatible with PM.

NAME calendar WINDOWCOMPAT

Figure 76. NAME Statement Parameters

Type Description /PMTYPE
option
equivalent

WINDOWAPI Presentation Manager application. The
application uses the API provided by the
Presentation Manager, and must run in the
Presentation Manager environment.

PM

WINDOWCOMPAT Application compatible with Presentation
Manager. The application can run inside the
Presentation Manager, or it can run in a separate
screen group. An application can be of this type
if it uses the proper subset of OS/2 video,
keyboard, and mouse functions supported in the
Presentation Manager applications.

VIO

NOTWINDOWCOMPAT Application that is not compatible with the
Presentation Manager and must run in a separate
screen group from the Presentation Manager.

NOVIO

 Chapter 21. Creating Module Definition Files385

OLD ¹PHYSICAL DEVICE

 OLD

Syntax: Parameters:
OLD '[dir]name' Name of DLL

Use the OLD statement when you create a dynamic link library (DLL) to preserve
compatibility with an older version of the DLL. When you provide the name of the
old DLL, specify the directory it is in as well, unless it is in the current working
directory.

The linker compares exported data constructs or functions in the old DLL with
exported data constructs or functions in the current DLL. If the old data construct or
function has an ordinal value assigned to it, the linker assigns the ordinal value to the
equivalent data construct or function in the new DLL.

If another run-time module called functions or referenced data from the old DLL by
ordinal value, it can continue calling functions and referencing data from the new
DLL using the same ordinal values.

The linker will only assign the old ordinal value to a data construct or function when:

¹ The data construct or function name in the old DLL matches the data construct or
function name in the new DLL exactly

¹ The old data construct or function has an ordinal value assigned to it

¹ The new data construct or function does not already have an ordinal value
assigned to it.

 See “EXPORTS” on page 379 for more information on assigning ordinal values.

 PHYSICAL DEVICE

Syntax: Parameters:
PHYSICAL DEVICE [drivername] Name of driver

Use the PHYSICAL DEVICE statement to identify the output file as a physical
device driver (.SYS), and optionally provide a name for the driver.

You can also identify the output file as a .SYS file with the/PDD option.

If you use the PHYSICAL DEVICE statement in your module definition (.DEF) file,
it must be the first statement in the .DEF file, and you cannot use the LIBRARY,
NAME, or VIRTUAL DEVICE statements.

386 IBM VisualAge�C++ for OS/2 User's Guide

SEGMENTS

If you provide a name in drivername, it becomes the name of the driver as it is
known by OS/2. The name can be any valid file name. If you do not provide a
name, the name of the device driver is the same as the name of the output file, with
the .SYS extension removed.

 SEGMENTS

Syntax: Parameters:
SEGMENTS Segment name
[']segname['] [CLASS 'class'] [attribs] Class of the segment

ALIAS
CONFORMING|NONCOMFORMING
EXECUTEONLY|EXECUTEREAD
IOPL|NOIOPL
MIXED1632
PRELOAD|LOADONCALL
READONLY|READWRITE
SHARED|NONSHARED

Use the SEGMENTS statement to define the attributes of one or more segments in
the .EXE or .DLL file on a segment-by-segment basis. The attributes you specify in
this statement override any defaults set in the CODE and DATA statements.

You can also set some segment attributes with the /SECTION option. See
“/SECTION” on page 364 for more information.

The SEGMENTS keyword marks the beginning of the segment definitions. Enter
each definition on a separate line. You can enter up to 256 separate definitions.

Each segment definition begins with its name (segname). If segname is the same as a
module statement or keyword (such as DATA or IOPL), then you must enclose
segname in single quotation marks (').

You can specify the class of the segment with the CLASS keyword, followed by the
class of the segment, enclosed in single quotation marks ('). If you do not specify a
class for the segment, the linker assumes the segment is of class CODE.

After the name and class, you can set attributes for the segment. If you do not
specify attributes for a segment, the linker assumes a default set of attributes, as
underlined in the parameters list above, or as set by the CODE and DATA
statements. The default for SHARED|NONSHARED varies, depending on the type of
output file.

 Chapter 21. Creating Module Definition Files387

SEGMENTS

Attribute
Rules

¹ You can only specify one attribute from each pair. If you specify neither
attribute, ILINK uses the default. See the description of the parameter for its
default.

¹ Attributes can appear in any order.

ALIAS

Use ALIAS to allow the segment to be addressed using both the 16-bit segmented
method (_far16), and the 32-bit linear method. When you specify ALIAS, the loader
prepares an additional segment selector for the segment that allows for 16-bit
addressing of the segment. The segment can then be called using 16-bit far calls and
32-bit near calls.

By default, segments are addressable only by the 32-bit linear method.

CONFORMING|NONCONFORMING

Use these attributes to specify whether a code segment is a 286-conforming segment.
These attributes are relevant for device drivers, or system-level code. They apply to
code segments only.

¹ CONFORMING specifies that the segment is conforming, and uses a range of
instructions that can be executed by a 286 (16-bit) processor. A CONFORMING
segment can be called from either Ring 2 or Ring 3, and executes at the privilege
level of the caller.

¹ NONCONFORMING specifies that the segment is nonconforming, and uses
instructions that require a 386 processor or higher. The segment is not
guaranteed to be executable by a 286 processor.

The default is NONCONFORMING.

EXECUTEONLY|EXECUTEREAD

Use these attributes to specify whether a code segment can be read as well as
executed. These attributes apply to code segments only.

¹ EXECUTEONLY specifies that the segment can only be executed.
¹ EXECUTEREAD specifies that the segment can be both executed and read.

The default is EXECUTEREAD.

IOPL|NOIOPL

Use these attributes to determine whether a segment has I/O privilege, that is, whether
it can access the hardware directly.

388 IBM VisualAge�C++ for OS/2 User's Guide

SEGMENTS

¹ IOPL specifies that the segment has I/O privilege.
¹ NOIOPL specifies that the segment does not have I/O privilege.

The default is NOIOPL.

Note: 32-bit segments must be NOIOPL. You cannot specify a 32-bit segment as
IOPL.

MIXED1632

Use MIXED1632 to specify that the segment is part of a group that allows a mix of
16-bit and 32-bit code. If you create a group that allows such mixing, you must
declare each segment in the group as MIXED1632.

PRELOAD|LOADONCALL

Use these attributes to specify when the segment is loaded.

Note: These attributes are ignored on OS/2 version 2.0 and later.

¹ PRELOAD specifies that the segment will be loaded automatically when the
program starts.

¹ LOADONCALL specifies that the segment will not be loaded until accessed.

The default is LOADONCALL.

READONLY|READWRITE

Use these attributes to set the access rights to a data segment. These attributes apply
to data segments only.

¹ READONLY specifies that the segment can only be read.
¹ READWRITE specifies that the segment can be both read and written to.

The default is READWRITE.

SHARED|NONSHARED

Use these attributes to specify whether the segment can be shared by other processes.
These attributes apply to data segments only.

¹ SHARED specifies that one copy of the segment is loaded and shared among all
processes accessing the module. SHARED is the default for dynamic link library
(.DLL) files.

¹ NONSHARED specifies that the segment cannot be shared, and must be loaded
separately for each process. NONSHARED is the default for executable program
(.EXE) files.

 Chapter 21. Creating Module Definition Files389

STACKSIZE

Example

The following example specifies segments named cseg1, cseg2, and dseg. The first
segment is assigned class mycode, and the third segment is assigned class data. The
second segment is assigned class CODE by default. Each segment is given different
attributes.

SEGMENTS
cseg1 CLASS 'mycode' IOPL
cseg2 EXECUTEONLY PRELOAD CONFORMING
dseg CLASS 'data' LOADONCALL READONLY

 STACKSIZE

Syntax: Parameters:
STACKSIZE size Stack size in bytes

Use STACKSIZE to set the stack size (in bytes) of your program. The size must be
an even number, from 0 to 0xFfffFffe. If you specify an odd number, it is rounded
up to the next even number.

You cannot specify a stack size in which the second most significant byte is either 02
or 04 (in hex), because of a restriction in OS/2 2.0. The linker issues a warning, and
adds 64k to the stack size to avoid the restriction.

For example, if you specifySTACKSIZE 0x00020000 the linker adds 64k, which
results in STACKSIZE 0x00030000

Similarly, if you specifySTACKSIZE 0x11041111 the linker adds 64k, which results
in STACKSIZE 0x11051111

If your program generates a stack-overflow message, use the STACKSIZE statement
to increase the size of the stack.

If your program uses the stack very little, you can save some space by decreasing the
stack size. See “Controlling Stack Allocation and Stack Probes” on page 247 for
more information.

Note: Once the output file is produced, you can still change its stack size, using the
EXEHDR utility. See the EXEHDR User's Guide for more information.

The STACKSIZE statement is equivalent to the /STACK linker option. If you specify
both the statement and the option, the statement value overrides the option value.

390 IBM VisualAge�C++ for OS/2 User's Guide

STUB ¹VIRTUAL DEVICE

Example

The following example allocates 4 K of local-stack space:

STACKSIZE 4096

 STUB

Syntax: Parameters:
STUB 'filename' Name of file to add

Use the STUB statement to add a DOS .EXE file to the beginning of your .EXE or
.DLL. The stub function is then invoked whenever your .EXE or .DLL file is run
under DOS. Typically, the stub displays the message that the program cannot run in
DOS mode, and ends the program.

If you do not use the STUB statement, the linker adds its own standard stub for this
purpose.

The linker searches for the file name you specify as the stub as follows:

1. In the directory you specify, or in the current directory if you did not give a path

2. In the directories listed in the PATH environment variable

Example

The following example adds the DOS .EXE file STOPIT.EXE to the beginning of the
file you are creating. STOPIT.EXE runs whenever your file is run under DOS.

STUB 'STOPIT.EXE'

 VIRTUAL DEVICE

Syntax: Parameters:
VIRTUAL DEVICE [drivername] Name of driver

Use the VIRTUAL DEVICE statement to identify the output file as a virtual device
driver (.VDD), and optionally provide a name for the driver.

You can also identify the output file as a .VDD file with the/VDD option.

If you use the VIRTUAL DEVICE statement in your module definition (.DEF) file, it
must be the first statement in the .DEF file, and you cannot use the LIBRARY,
NAME, or PHYSICAL DEVICE statements.

 Chapter 21. Creating Module Definition Files391

VIRTUAL DEVICE

If you provide a name in drivername, it becomes the name of the driver as it is
known by OS/2. The name can be any valid file name. If you do not provide a
name, the name of the device driver is the same as the name of the output file, with
the .VDD extension removed.

392 IBM VisualAge�C++ for OS/2 User's Guide

Debugging Your Program

Part 6. IBM VisualAge C ++ Debugger

This part of the User's Guide describes the VisualAge C++ Debugger, which you can
use to debug your programs once you have compiled and linked them.

Chapter 22. Introduction .395
Understanding the New and Enhanced Features. 395

Chapter 23. Before You Begin . 399
Writing Code that the Debugger Supports. 399
Compiling and Linking Your Program. 399
Setting Environment Variables . 400

Chapter 24. Getting Started .401
Starting the Debugger from OS/2 . 401
Starting the Debugger from WorkFrame.. 402
Understanding Integration .403
Debugging REXX and WorkPlace Shell Objects. 403
Ending the Debugging Session. 404

Chapter 25. Frequently Used Features . 405
Using the Title Bar Buttons. 405
Executing a Program . 406
Setting Breakpoints .407

Chapter 26. Introducing the Main Debugger Windows 409
Using the Control Window . 409
Using the Source Windows. 432

Chapter 27. Introducing the Basic Debugging Windows 443
Using the Call Stack Window . 443
Using the Registers Window . 445
Using the Storage Window . 447
Using the Local Variables Window . 450
Using the Monitor Windows . 453
Using the Breakpoint List Window . 453

Chapter 28. Introducing the PM Debugging Windows 459
Using the Window Analysis Window . 459
Using the Message Queue Window. 462

Chapter 29. Expressions Supported .471

 Copyright IBM Corp. 1992, 1995 393

Debugging Your Program

Supported Expression Operands. 471
Supported Expression Operators. 472
Supported Data Types. 473

394 IBM VisualAge�C++ for OS/2 User's Guide

Debugging Your Program

22 Introduction

The IBM VisualAge C++ for OS/2 Debugger (hereafter referred to as the debugger)
uses Presentation Manager (PM) window services to help detect and diagnose errors
in code developed in IBM 32-bit C/C++.

Use the debugger to debug your code at source level, set breakpoints, and examine
message queues. You can also monitor variables, registers, storage, and the call
stack.

Understanding the New and Enhanced Features
The following describes the new features that have been added to the debugger since
the previous release.

Deferred breakpoints
Allows you to set a breakpoint in a DLL that is not currently loaded. If
your application consists of DLLs that are dynamically loaded, use this
feature to set breakpoints in the dynamically loaded DLLs that have not
been loaded yet. These deferred breakpoints become active once the
DLL is loaded.

Child process debugging
Supports debugging of processes started by a parent program.

Exception filtering
Allows you to select the exceptions that you want the debugger to
recognize. An exception occurs when your application is unable to
interpret specific requests.

Check heap when stopping
Helps to isolate memory management problems by checking for memory
overwriting each time your program stops executing.

Hide debugger on Run
Hides the debugger windows while your application is running.

Color support
Allows you to change the color of the various window elements such as
executable lines, non-executable lines, and the breakpoint prefix area.

SOM support
Allows you to debug SOM objects created with the compiler using
Direct-to-SOM support or created with the SOM compiler. Support
includes monitoring SOM classes in the monitor windows.

 Copyright IBM Corp. 1992, 1995 395

Debugging Your Program

Scroll to line number
Allows you to scroll to a particular line number in the source code. This
feature also provides the ability to set breakpoints.

Autosave window positions and sizes
Saves the window positions and sizes when the windows are moved or
re-sized. Alternatively, you may save the window positions and sizes by
position to the debugger windows on the desktop and selecting the Save
window positions and sizes choice.

Integration
Provides quick and easy access to other tools such as an editor or the
browser. This feature is available when the debugger is started from
within the WorkFrame environment.

Select include files
Allows you to select the include files you want to view. Include files are
files that are included in your source file by a compiler directive and are
considered program source files.

Windows menu
Displays a list of all the active debugger windows.

Hover help for title bar buttons
Displays the name of the title bar button when you place your mouse
pointer on the button. If you drag the mouse pointer across the buttons,
the name in the title bar area changes to reflect the button you are on.

The following describes the enhanced features that have been added to the debugger
since the previous release.

Call stack window
Provides the option of displaying the remaining stack size, the stack
frame size, the return address, the ESP value and the EBP value.

Breakpoint list window
Displays as a window allowing you to continuously monitor the
breakpoint list. You can also display the source code where the
breakpoint is set.

Storage window
Allows you to monitor expressions in a storage window. For example, if
you are monitoring a pointer, as the pointer changes, the storage window
changes to show the new location referenced by the pointer.

Change address breakpoint
Allows you to set a change address breakpoint by typing in an
expression.

396 IBM VisualAge�C++ for OS/2 User's Guide

Debugging Your Program

Enable program profiling
Allows you to enable or disable the use of program profiles which
restores a program's breakpoints, source windows and monitors to the
same state as when last debugged.

 Chapter 22. Introduction 397

Debugging Your Program

398 IBM VisualAge�C++ for OS/2 User's Guide

Before You Begin Debugging

23 Before You Begin

This section lists the considerations you need to be aware of and preparatory items
you should complete before you run the debugger on your program.

Writing Code that the Debugger Supports
Using C and C++, you can write your program code with stylistic features that are
not supported by the debugger. Multiple statements on the same line are difficult to
debug. None of the individual statements can be accessed separately when you set
breakpoints2 or when you use step commands.

Compiling and Linking Your Program
Before using the debugger, compile and link your program with the following
options:

/Ti+ Compiles your program to produce an object file that includes line
number information and a symbol table, in addition to the source code.

/O- Compiles your program with optimization off. This is the default.

/Oi- Compiles your program with inlining off. This is the default.

/DEbug Links your program to produce an executable file that includes line
number information and a symbol table, in addition to the executable
code.

Note: When you specify the /Ti+ option with the /DEbug option, icc
passes this option to the linker automatically, so you only need to use
it if you link separately from the compile.

The following option is only required if you want to use the heap check feature
which is described in “Check heap when stopping” on page 421.

/Tm+ Compiles your program to allow the heap to be checked.

For more information about compiling and linking your program, refer to IBM C++
Tools Programming Guide.

2 Breakpoint is a defined location or condition in a program that, when it is met, stops the execution of the program.

 Copyright IBM Corp. 1992, 1995 399

Before You Begin Debugging

Setting Environment Variables
There are several environment variables that you can use with the debugger. They
affect the search order and number of tab spaces between your source code.

The search path tells the debugger where to find the source file used in the source
windows. The debugger searches for the source files in the following order:

1. The path defined by the PMDOVERRIDE environment variable, if specified.

2. The path where the object file was compiled.

3. The path where the executable file is located.

4. The path defined by the PMDPATH environment variable, if specified.

5. The current path.

6. The path defined in the INCLUDE environment variable.

To override the normal search order, use the PMDOVERRIDE environment variable.
To set the PMDOVERRIDE environment variable, type the following at the command
prompt:

 Set PMDOVERRIDE=path;path

where, path is the location of your source files. If the source file is not found in the
defined override path, the debugger uses the normal search order.

To set the PMDPATH environment variable, type the following at the command
prompt:

 Set PMDPATH=path;path

where, path is the location of your source files.

To set the number of spaces between tab stops in your source code, type the
following at the command prompt:

 Set PMDTABGRID=n

where, n is the increment number of spaces between tab stops. For example, if n is
5, tab stops would be 5, 10, 15, and so on.

400 IBM VisualAge�C++ for OS/2 User's Guide

Getting Started

24 Getting Started

This section describes how to start a debugging session from either the OS/2
command prompt or the WorkFrame environment, explains the WorkFrame
integration process, and describes how to debug REXX and WorkPlace Shell objects.
It also describes how to end a debugging session.

Starting the Debugger from OS/2
To start the debugger from the OS/2 command prompt, enter the command icsdebug
and the following parameters, in the order they are listed:

1. Any debugger parameters that you want to use.
2. Name of the program you want to debug.
3. Any input parameters that you want to pass to the program.

For example, type the following:

icsdebug /x myprog xyz

where /x represents a debugger parameter, myprog represents your program name, and
xyz represents the program parameter you want to pass to the program.

The debugger parameters are:

/p+ Use program profile information.

/p- Do not use any program profile information.

/i Start the debugger in the system initialization routine so that you can debug
initialization code.

If you type icsdebug and press Enter, the Program Startup window displays.

Figure 77. Program Startup Window

 Copyright IBM Corp. 1992, 1995 401

Getting Started

Use the Program Startup window to specify the program you want to debug.

¹ Type the name of the program you want to debug in the Program entry field.
You can also select the File List push button.

If you select File List, the Select Program window displays. From this window,
select the program you want and select OK . The Program Startup window
displays again with the program name you selected displayed in the Program
entry field.

You can also select the list button to display a drop-down combination box. The
drop-down combination box contains a list of up to five previously debugged
programs.

¹ In the Parameters field, type any parameters that you want to pass to your
program. You must separate multiple parameters with spaces.

¹ Enable the Debug child process(es) check box to debug processes that are
started by a parent program. When you enable this check box, the Child
name(s) entry field becomes active.

¹ In the Child name(s) entry field, type the name of the child process you want to
debug. You can also select the Child List push button.

If you select Child List , the Select Child Process window displays. From this
window, select the child process you want to debug. The Program Startup
window displays again with the program name you selected displayed in the
Child name(s) entry field.

¹ Enable the Debug program initialization check box to start the debugger in the
system initialization routine so that you can debug initialization code.

¹ Enable the Use program profile check box to restore the debugger windows and
breakpoints when debugging a program more than once. It is stored separately
for each program debugged.

¹ Select the OK push button to start the debugging session.

Starting the Debugger from WorkFrame.
Before you start the debugger from the WorkFrame environment, you must create a
project for the program you want to debug. Before you can compile and link a target
program with debugging information, you must set the debugger options that the
WorkFrame environment uses for creating a project. For information on creating a
project, setting options, and starting the debugger, refer to IBM WorkFrame section.

402 IBM VisualAge�C++ for OS/2 User's Guide

Getting Started

 Understanding Integration
Integration is a new feature that allows you to access other tools from the debugger.
To make this feature available, you have to start the debugger from within the
WorkFrame environment. For information on starting the debugger from WorkFrame,
refer to the IBM WorkFrame section.

After you start the debugger, the Source window displays with a new menu bar item
called Project as shown in Figure 78.

Figure 78. Integration Source Window

Note: The Source window is the only debugger window that contains this feature.

Select choices from the Project menu to open other tools such as an editor, browser,
or the compiler.

This feature also provides context sensitive help for items in the Source window.
This help becomes available when you select a string, using the mouse pointer, and
press and hold down Ctrl+H . If you place the mouse pointer on a space in the
Source window and double-click, an editor opens to the corresponding source line
that you selected.

Debugging REXX and WorkPlace Shell Objects
To debug REXX DLLs, type the following at an OS/2 prompt:

icsdebug cmd.exe /K <your rexx.cmd>

When ICSDEBUG.EXE displays the code for CMD.EXE, do the following:

1. Set a deferred breakpoint to stop when the DLL is loaded.
2. Run the program.

 Chapter 24. Getting Started403

Getting Started

3. When the breakpoint is encountered, open the desired component in the DLL and
set breakpoints.

To debug WorkPlace Shell objects, replace the RUNWORKPLACE line in your
config.sys with the following line:

 SET RUNWORKPLACE=C:/OS2/CMD.EXE

After rebooting, type the following at an OS/2 prompt:

 icsdebug c:/os2/pmshell

1. Set a deferred breakpoint for the DLL containing the WPS program.
2. Run the program.
3. When the breakpoint is encountered, open the desired component in the DLL and

set breakpoints.

Ending the Debugging Session
To end the debugging session, select Close debugger from the File menu in a
debugger window. The Close Debugger window displays. Select one of the
following choices:

¹ Select Yes to end your debugging session.
¹ Select No to return to the previous screen without exiting the debugger.

You can also end the debugging session by pressing F3 in any of the debugger
windows.

404 IBM VisualAge�C++ for OS/2 User's Guide

Frequently Used Features of the Debugger

25 Frequently Used Features

This section introduces the title bar buttons, ways to execute your program, and how
to set breakpoints.

Using the Title Bar Buttons
Buttons have been provided for easier access to frequently used features. The
following buttons are located in the title bar of the source windows:

Step over executes the current line in the program. If the current line
is a call, execution is halted when the call is completed.

Step into executes the current line in the program. If the current line
is a call, execution is halted at the first statement in the called function.

Step debug executes the current line in the program. The debugger
steps over any function for which debugging information is not
available (for example, library and system routines), and steps into any
function for which debugging information is available.

Step return automatically executes the lines of code up to, and
including, the return statement of the current function.

Run allows you to start and stop the program.

When the debugger is running, the Run button changes to the Halt

button . You can click on the Halt button to halt the program
execution. You can also interrupt the program you are debugging by
selecting the Halt choice from the Run menu or by pressing SysRq
(Alt+PrintScreen).

 Copyright IBM Corp. 1992, 1995 405

Frequently Used Features of the Debugger

View changes the current source window to one of the other source
windows. For example, you can change from the Disassembly
window to the Mixed window.

Monitor Expression displays the Monitor Expression window, which
allows you to type in the name of the expression you want to monitor.

Call Stack displays the Call Stack window, which allows you to view
all of the active functions for a particular thread including the PM
calls. The functions are displayed in the order that they were called.

Registers displays the Registers window, which allows you to view all
the processor and coprocessor registers for a particular thread.

Storage displays the Storage window, which shows the storage
contents and the address of the storage.

Breakpoints displays the Breakpoints List window, which allows you
to view all the breakpoints that have been set.

Control displays the Control window.

Note: If you place your mouse pointer on a button in the title bar, the name of that
button displays in the window title area. As you drag the mouse pointer across the
buttons, the name in the window title area changes to reflect the button you are on.

Executing a Program
You can execute your program by using step commands or the Run command.

Step commands Step commands control the execution of the program. The
execution of the line of code is reflected in all open views, and is
performed in the thread specific to the view.

406 IBM VisualAge�C++ for OS/2 User's Guide

Frequently Used Features of the Debugger

The step commands are located in the title bar of the source
windows and under the Run menu of the source windows.

To single step your program, click mouse button two. This
executes the current line in the program.

Run command The Run command runs the program until a breakpoint is
encountered, the program is halted, or the program ends.

You can start the Run command from the Run button in title bar
or the Run menu of the source windows.

When you execute your program, a clock icon displays to indicate that the program is
running and might require input to continue to the next breakpoint or termination of
the program.

 Setting Breakpoints
You can control how your program executes by setting breakpoints. A breakpoint
stops the execution of your program at a specific location or when a specific event
occurs.

To set breakpoints, select the Breakpoints menu from the Control window or from
any of the source windows and select the the appropriate choice for the type of
breakpoint you want to set. You can also set a simple line breakpoint by
double-clicking in the prefix area of an executable statement in any of the source
windows. The prefix area is the area to the left of the source code where line
numbers or addresses are displayed. The prefix area turns red indicating that the
breakpoint has been set.

 Refer to “Breakpoints Menu Choices” on page 413 for more information on
breakpoints.

 Chapter 25. Frequently Used Features407

Frequently Used Features of the Debugger

408 IBM VisualAge�C++ for OS/2 User's Guide

Introducing the Main Debugger Windows

26 Introducing the Main Debugger Windows

This section introduces the Control window and the three source windows which
offer different views of your source code. It describes the menu items and choices
that are located in each of these windows.

Using the Control Window
The Control window, as shown in Figure 79, is the control window of the debugger
and displays during the entire debugging session. This window is divided in two
panes. One pane shows the threads for the program you are debugging and the other
pane shows the components for the program you are debugging.

Figure 79. Control Window

The Threads box contains the threads and the state of the threads started by your
program. The following states are possible for the threads listed in the Threads box:

¹ Enabled and runnable
¹ Disabled and runnable
¹ Critical and runnable
¹ Suspended and runnable
¹ Enabled and blocked
¹ Disabled and blocked
¹ Critical and blocked
¹ Suspended and blocked.

To display the state of a thread, select the plus icon to the left of the thread. To
enable or disable the thread listed in the Threads pane, double-click on the word
Enabled or Disabled depending on the state of the thread. You can also toggle the
Thread enabled choice from the Run menu.

 Copyright IBM Corp. 1992, 1995 409

Introducing the Main Debugger Windows

When a check mark symbol displays beside the Thread enabled choice, threads are
enabled and the debugger allows the highlighted thread to execute. When the check
mark symbol does not display, threads are disabled and do not execute.

The Components box shows the executable files that are associated with the program
you are debugging.

To display a list of object files contained within an executable file, select the plus
icon to the left of the executable file name. To open a source window of an object
file, double-click on the object file name.

To display a list of functions for a specific object file, select the plus icon to the left
of the object file name. To open a source window of a specific function, double-click
on the function name.

You can display any object or function by double-clicking on the name in the
Components box or by highlighting the component name and selecting a view from
the View menu in one of the source windows.

You specify which components display in the Components list by selecting Options
→ Window Settings → Only components with debugging data. When this choice
is enabled, only components compiled and linked with debugging data are listed.
Otherwise, all components are listed.

File Menu Choices
Select choices from the File menu of the Control window to open a new source file,
locate a particular function, open a source window that contains the next line to be
executed, start a new debugging session, or end a debugging session.

410 IBM VisualAge�C++ for OS/2 User's Guide

Introducing the Main Debugger Windows

Open new source...: Displays theOpen New Sourcewindow which allows you to
open a new source file. If you have multiple source files in your program, only one
source file is initially displayed. Use the Open New Source window to open
additional source files.

Figure 80. Open New Source Window

To use the Open New Source window:

¹ Type the name of the object file you want to open the source for in the Source
entry field. For example, to look for the source used to compile A123.OBJ, type
the following:

 A123.

If you are unsure of the file name, select the File List push button to view a list
of the files that you can select.

¹ Type the name of the executable file in the Executable entry field. The source
files for the executable file display in the Source entry field.

¹ Enable the All executables check box if you want to search all the executable
files. Disable the All executables check box to search for a particular executable
file.

¹ Enable the Debug data only check box if you want to search only the source
files that contain debugging information.

¹ Select the OK push button.

 Chapter 26. Introducing the Main Debugger Windows411

Introducing the Main Debugger Windows

Locate function...: Displays the Locate Function window, shown in Figure 81,
which allows you to open a source window to a particular function.

Figure 81. Locate Function Window

To use the Locate Function window:

¹ Type the name of the function you want to search for in the Function entry field.

If the function that you specify is not found, the following message displays:

No matching function found

This means it may be a static function or the function you specified does not
exist.

¹ Enable the All executables check box to search all the executable files for the
function.

The debugger searches each object file for global functions that match the
function name specified. If an object file contains the global function that was
specified, then it will also search for any static function with the same name.

Note: To search for a function in a specific executable file, disable this check
box and type the name of the executable file in the Executable entry field and
type the name of the source file in the Source entry field.

¹ Enable the Debug data only check box if you want to search only the object
files that contain debugging information.

¹ Enable the Case sensitive check box if you want to search for the string exactly
as typed. Disable this check box if you want to search for both uppercase and
lowercase characters.

¹ Select the OK push button.

412 IBM VisualAge�C++ for OS/2 User's Guide

Introducing the Main Debugger Windows

Where is execution point: Opens a source window containing the next line to be
executed.

Program startup...: Displays the Program Startup window, which allows you to
start another debugging session. Refer to “Starting the Debugger from OS/2” on
page 401 for detailed information.

Close debugger: Ends the debugging session. When you select the Close debugger
choice, the Close Debugger message box prompts you to confirm that you want to
end the debugging session.

Breakpoints Menu Choices
Select choices from the Breakpoints menu to set breakpoints and to stop the
execution of your program at any point. You can set as many breakpoints as you
want.

Breakpoints can be set from the Control window or from the source windows. When
you set a breakpoint in one source window, it is reflected in the other source
windows.

Set line...: Displays the Set Line window which allows you to set a line breakpoint
to stop the execution of your program at a specific line number.

Figure 82. Set Line Window

The Set Line window is divided into two group headings:Required parameters
and Optional parameters.

The Required parameters group heading contains the following:

¹ Executable Entry Field

To select a component from the Executable list:

 Chapter 26. Introducing the Main Debugger Windows413

Introducing the Main Debugger Windows

1. Type the executable name in the entry field or open the Executable list by
selecting the list button. This displays a drop-down combination box.

2. Highlight the executable where you want to set the breakpoint
¹ Source Entry Field

To select a component from the Source list:
1. Type the source name in the entry field or open the Source list by selecting

the list button. This displays a drop-down combination box.
2. Highlight the source where you want to set the breakpoint.

¹ File Entry Field

If the source you selected has include files with executable statements, then the
File list displays all the file names that contain executable lines. If the source
you selected does not have include files, the File entry field does not display in
this window.
1. Type the name of the file in the entry field or open the File list by selecting

the list button. This displays a drop-down combination box.
2. Highlight the file where you want to set the breakpoint.

¹ Line number Entry Field

To set a line breakpoint, type the line number in the Line number entry field.
The breakpoint is set on the line number.

The Optional parameters group heading contains the following:

¹ Thread Entry Field

To select a thread ID from the Thread list:
1. Open the Thread list by selecting the list button. This displays a drop-down

combination box.
2. Highlight the thread where you want to set the breakpoint.

Select EVERY, the default, to set a breakpoint in all of the active threads in your
program. The Every choice is thread independent. Select one of the individual
threads to set a breakpoint in one thread only. Threads are added to the Thread
list as new threads are activated.

¹ From Entry Field

This field is used for location breakpoints and load occurrence breakpoints. Type
in a whole integer number to start activating the breakpoint the nth time the
location is encountered.

¹ To Entry Field

This field is used for location breakpoints and load occurrence breakpoints. Type
in a whole integer number to stop activating the breakpoint after the nth time the
location is encountered.

¹ Every Entry Field

414 IBM VisualAge�C++ for OS/2 User's Guide

Introducing the Main Debugger Windows

This field is used for location breakpoints and load occurrence breakpoints. Type
in a whole integer number to indicate how often the breakpoint should be
activated within the From and To range.

¹ Expression Entry Field

If you are setting an address, function, or line breakpoint, you can also type in an
expression. The execution of the program stops only if this condition tests true.
For example, you could type the following:

(i==1) ¦¦ (j==k) && (k!=5)

Note: Variables in a conditional expression associated with aFUNCTION
breakpoint are limited to any static or global variables that are known to the
called function when the function is called. Local variables and automatic
variables cannot be used.

The maximum length of the condition is 256 characters.
¹ Defer breakpoint Check Box

Enable the Defer breakpoint check box if you want to set a breakpoint in a DLL
that is not currently loaded.

Note: If your application consists of an EXE or preloaded DLLs, do not use this
choice. If your application consists of DLLs that are dynamically loaded, use
this choice to set breakpoints in DLLs which have not been loaded yet.

If you set a deferred line breakpoint and the line is located in a template, the
debugger sets the line breakpoint in all of the templates when the DLL is loaded.

When a DLL is loaded and a deferred breakpoint has been set in the DLL, the
state of the breakpoint changes from deferred to active. When a DLL is freed,
any breakpoints that were set in the DLL change from the active state to deferred
state.

If you enter an invalid source, file or line number, the debugger will be unable to
activate the breakpoint when the DLL is loaded. Therefore, the invalid
breakpoint will remain in the deferred state even after the DLL is loaded.

 Chapter 26. Introducing the Main Debugger Windows415

Introducing the Main Debugger Windows

Set function...: Displays the Set Function window which allows you to set a
function breakpoint to stop the execution of your program when the first instruction
of the function is encountered where the breakpoint has been set.

Figure 83. Set Function Window

The entry fields in this window are the same as in the Set Line window except for
the following:

¹ Function Entry Field

Type the name of the function where you want to set the breakpoint or select a
function from the Function list. To select a function, do the following:
1. Open the Function list by selecting the list button. This displays a

drop-down combination box.
2. Highlight the function where you want to set the breakpoint.

If a function is overloaded, then a window displays with a list of all the
overloaded function names. Select the appropriate function from the list.

¹ Defer breakpoint Check Box

Enable the Defer breakpoint check box if you want to set a breakpoint in DLLs
which have not been loaded yet.

If you set a deferred breakpoint in a function and that function is overloaded, the
debugger sets the breakpoint in all of the overloaded functions when the DLL is
loaded.

When a DLL is loaded and a deferred breakpoint has been set in the DLL, the
state of the breakpoint changes from deferred to active. When a DLL is freed,
any breakpoints that were set in the DLL change from the active state to deferred
state.

If you enter an invalid source file or invalid function, the debugger will be unable
to activate the breakpoint when the DLL is loaded. Therefore, the invalid
breakpoint will remain in the deferred state even after the DLL is loaded.

416 IBM VisualAge�C++ for OS/2 User's Guide

Introducing the Main Debugger Windows

For a description of the types of data you can enter in the entry fields under the
Optional parameters group heading, refer to “Set line...” on page 413.

Set address...: Displays the Set Address window, which allows you to set an
address breakpoint to stop the execution of your program at a specific address.

Figure 84. Set Address Window

The entry fields in this window are the same as in the Set Line window except for
the following:

¹ Address Entry Field

Type the name of the address in the Address entry field.

Note: The address can be either segmented or flat format.

For example, to set an address breakpoint for the address 0x000A1FCC, you
would type one of the following in the Address entry field.

0x000A1FCC or A1FCC

The 0x is optional.

For a description of the types of data you can enter in the entry fields under the
Optional parameters group heading, refer to “Set line...” on page 413.

 Chapter 26. Introducing the Main Debugger Windows417

Introducing the Main Debugger Windows

Set change address...: Displays theChange Address Breakpointwindow, which
allows you to sets a change address breakpoint to stop the execution of your program
when contents of memory at a given address changes where the breakpoint has been
set.

Figure 85. Change Address Breakpoint Window

Use the Change Address Breakpoint window to set a change address breakpoint.
To do so, type a hexadecimal address or an expression and select the range of bytes.

Note: The debugger supports up to 4 enabled change address breakpoints. However,
you can set as many disabled change address breakpoints as you want.

¹ Address or expression Entry Field

Type a hexadecimal address or an expression that can be evaluated to a
hexadecimal address.

Note: If you type ABC in the Address or expression entry field, and there is a
variable named ABC, it uses the value of the variable instead of the hex value
ABC. Also, you can type &a in the Address or expression entry field to set the
breakpoint on the address of a variable a.

For example, type the following in the Address or expression entry field to set a
change address breakpoint for the addressA1FCC.

 A1FCC

Type the following in the Address or expression entry field to set a change
address breakpoint for the expression&variable.

 &variable

418 IBM VisualAge�C++ for OS/2 User's Guide

Introducing the Main Debugger Windows

Warning: If you set a change address breakpoint that is on the call stack, you
should remove the breakpoint before leaving the routine associated with the
breakpoint. Otherwise, when you return from the routine, the routine’s stack frame
will be removed from the stack leaving the breakpoint intact. Any other routine that
gets loaded on the stack will then contain the breakpoint.

¹ Bytes to monitor Radio Buttons

Select one of the radio buttons to specify the range of bytes. The 2-byte range must
be aligned on a word boundary and the 4-byte range must be aligned on a
double-word boundary.

Execution stops when the specified range of memory changes.

For a description of the types of data you can enter in the entry fields under the
Optional parameters group heading, refer to “Set line...” on page 413.

Set load occurrence...: Displays theLoad Occurrence Breakpoint window, which
allows you to set a load occurrence breakpoint to stop the execution of your program
when the DLL is encountered where the breakpoint has been set.

Figure 86. Load Occurrence Breakpoint Window

To use the Load Occurrence Breakpoint window, type the name of the DLL in the
DLL file name entry field. Execution stops when the DLL is loaded.

¹ DLL file name Entry Field

To set a load occurrence breakpoint when MY.DLL is loaded, you would type one of
the following in the DLL file name entry field:

MY or MY.DLL

 Chapter 26. Introducing the Main Debugger Windows419

Introducing the Main Debugger Windows

For a description of the types of data you can enter in the entry fields under the
Optional parameters group heading, refer to “Set line...” on page 413.

List: Displays the Breakpoint List window, which lists all the breakpoints that have
been set. It also shows the state of each breakpoints.

Figure 87. Breakpoint List Window

Use the Breakpoints List window to display a list of the breakpoints that have been
set. The following information is also provided for each breakpoint.

¹ The enablement state
¹ The type of breakpoint
¹ The position of the breakpoint
¹ The conditions under which the breakpoint is activated.

For more information on the Breakpoint List window, refer to “Using the
Breakpoint List Window” on page 453.

Delete all: Deletes all the breakpoints that have set.

Monitors Menu Choices
Select choices from the Monitors menu of the Control window to open other
debugging windows such as monitors, call stack, registers, and storage.

The first three choices listed under the Monitors menu are also accessible from the
title bar buttons of the source windows.

Call stack Displays the Call Stack window, which allows you to
monitor the call stack for a particular thread. This window is

described in “Using the Call Stack Window” on page 443.

420 IBM VisualAge�C++ for OS/2 User's Guide

Introducing the Main Debugger Windows

Registers Displays the Registers window, which allows you to monitor
registers and flags for a particular component or thread. This
window is described in “Using the Registers Window” on
page 445.

Storage Displays the Storage window, which allows you to monitor
the storage in your program. This window is described in
“Using the Storage Window” on page 447.

Local variables Displays the Local Variables window, which allows you to
display the local variables for the program's current function.
This window is described in “Using the Local Variables
Window” on page 450.

Window analysis Displays the Window Analysis window, which allows you to
display the windows of the program in a three dimensional
view. This window is described in “Using the Window
Analysis Window” on page 459.

Message queue Displays the Message Queue window, which allows you to
display the PM messages associated with a PM application.
This window is described in “Using the Message Queue
Window” on page 462.

Run Menu Choices
Select choices from the Run menu to execute your program, stop execution, or enable
or disable threads.

Run: Executes the program from the current line until a breakpoint is encountered or
the program ends.

Halt: Interrupts the program you are debugging. You can access this choice by
pressing SysRq (Alt+PrintScreen).

Program restart: Allows you to restart the debugging session.

Hide debugger on Run: Minimizes the debugger windows while your application is
running.

Check heap when stopping: Checks all memory blocks allocated or freed by the
compiler debug memory management functions to make sure that overwriting has not
occurred outside the bounds of allocated blocks and free memory blocks have not
been overwritten. When Check heap when stopping choice is enabled, each time
the program stops, the heap is checked. For example, stopping at a breakpoint or at
the end of a step command would cause the heap check to be performed. If a heap
error is detected, your application terminates. The Termination window displays

 Chapter 26. Introducing the Main Debugger Windows421

Introducing the Main Debugger Windows

showing the source line number where the application stopped and the heap check
was performed.

Notes

¹ For the Check heap when stopping choice to work, you have to compile your
application using the Tm+ compiler option.

¹ If you enable the Check heap when stopping choice and you run your
application to termination, the heap check is not made. To check the heap just
before termination, set a breakpoint on the last line of your application.

¹ If you are debugging a multiple thread program and a thread stops while running
in compiler memory management code which is holding a memory semaphore,
the heap check will not be performed.

¹ If the stopping thread is running in 16-bit code, the heap check will not be
performed.

Thread enabled: Enables or disables threads.

When a thread is enabled, a check mark symbol displays beside the Thread enabled
choice and the thread is executed when you run your program. When a thread is not
enabled, a check mark symbol does not display and the highlighted thread is not
executed when you run your program.

Options Menu Choices
Select choices from the Options menu to control how the debugger windows display.

Window settings →: Use the Window settings cascading choices to modify how
characteristics are displayed in the Control window.

Only components with debug data
If enabled, only the components containing debugging information are
displayed in the Control window.

Sort threads
If enabled, threads are sorted numerically in the Control window.

Sort components
If enabled, components are sorted alphabetically in the Control window.

Titles on
If enabled, the heading titles are displayed in the Control window.

Fonts...
Displays the system Font Selection window.

422 IBM VisualAge�C++ for OS/2 User's Guide

Introducing the Main Debugger Windows

Debugger settings →: Use the Debugger settings cascading choice to set various
debugger options that control how the debugger windows display. These settings
affect the behavior of the debugger and remain in effect for the duration of the
debugging session.

Source window properties...: Displays theSource Window Propertieswindow,
which allows you to select how the threads and source files initially display.

Figure 88. Source Window Properties Window

Use the Source Window Properties window to define the following:

¹ Which source window displays when the debugger starts.
¹ When a source window first displays during a debugging session.
¹ How to process a source window from which execution has just left. The

window can remain displayed, be turned into an icon, or be discarded.

New view priority Group Heading

Source Displays the source code for the thread or component.

Disassembly Displays your source code as assembler instructions without
symbolic information.

Mixed Displays a line of source code followed by the assembler
instructions for that line of source code.

 Chapter 26. Introducing the Main Debugger Windows423

Introducing the Main Debugger Windows

When a source window opens, the New view priority indicates which source window
displays, subject to the availability of the source code. You can select the order in
which the source windows display.

To change the order:

1. Press and hold mouse button two on the view icon you want to rearrange.
2. Drag the icon and release mouse button two when you have the icon in its new

location.

You can display the source windows in the New view priority group heading as
icons or text. Select the appropriate push button to set the display mode.

Old source disposition Group Heading

In the course of debugging, these selections allow you to control the behavior of
source windows from which execution has just left. The Old source disposition
radio buttons control the behavior of source windows within a thread.

The dispositions that the views can take are:

Keep Leaves open the source windows that contain the components and
threads that you select with Display at stop.

Iconize Changes into icons the views that contain the components and threads
that you select with Display at stop.

Discard Disposes of the views that contain the components and threads that you
select with Display at stop.

Display at stop Group Heading

You can control how many source windows are displayed using the following radio
buttons:

The choices are:

Only stopping thread Keeps, iconizes, or discards all views that are not the
stopping thread.

All threads Keeps, iconizes, or discards the views for old
components within each thread.

For example, if you select Only stopping thread, the Old source disposition applies
to all of the source windows except the current view of the stopping thread. If you
select All threads, the Old source disposition applies only to the source windows for
the components from which execution has just left within a thread.

424 IBM VisualAge�C++ for OS/2 User's Guide

Introducing the Main Debugger Windows

Source as notebook Check Box

You can display your source window in a notebook format if there are include files in
the source file.

Multiple views Check Box

You can choose to display more than one source window for a particular source file.

Title bar buttons Check Box

You can choose to display or not display the title bar buttons. The default is to
display the title bar buttons.

Title bar buttons help Check Box

You can choose to display or not display the title bar buttons hover help. The default
is to display the hover help.

Monitor properties...: Displays the Monitor Properties window, which allows you
to select the settings for monitoring variables or expressions.

.

Figure 89. Monitor Properties Window

Use the Monitor Properties window to set the following:

¹ Whether the context for variables or expressions displays in the monitor
windows.

¹ The window into which the variable or expression being monitored is placed.

 Chapter 26. Introducing the Main Debugger Windows425

Introducing the Main Debugger Windows

¹ Whether the displayed contents of the variable or expression are updated as the
state of the program changes.

¹ For popup expression windows, how long the monitor windows display.

Show context Check Box

Select the Show context check box to display the context for variables or expressions
when they are selected for monitoring.

Monitor location Group Heading

Choose one of the following radio buttons to select the monitor window that opens
when you select a variable or expression to monitor. The selections you can make,
and the corresponding windows, are:

Popup
Display the variable or expression in a popup expression window.

Private monitor
Display the variable or expression in the Private Monitor window.

Program monitor
Display the variable or expression in the Program Monitor window.

Storage monitor
Display the variable or expression in the Storage window.

Enabled Check Box

Select the Enabled check box to update the displayed contents of variables when they
are selected for monitoring.

Popup duration Group Heading

If you select Popup from the Monitor location group heading, select one of the
following radio buttons to specify how long the popup expression window displays:

Step/run The monitor window closes when the next step command or Run
is executed.

New source The monitor window closes when execution stops in a new source.

Permanent This monitor window is associated with a specific source window
and closes when the associated source window closes.

426 IBM VisualAge�C++ for OS/2 User's Guide

Introducing the Main Debugger Windows

PM debugging mode...: Displays thePM Debugging Modewindow, which allows
you to set the debugging mode and control the interaction between the program
windows and PM.

Figure 90. PM Debugging Mode Window

Use the PM Debugging Mode window to set the debugging mode to asynchronous
or synchronous.

When the debugger is operating in asynchronous mode and the program you are
debugging is stopped, the debugger immediately responds to messages that have been
sent to the program being debugged on the program’s behalf. The debugger answers
the messages with a simple default response, freeing up other processes to operate
while the debugger has control. When you are running the debugger in asynchronous
mode, other PM applications running in the system are not blocked when the program
being debugged stops.

Warning:

Do not operate the debugger in asynchronous mode if the PM application that you are
debugging requires the appropriate response to its messages. For example, a dynamic
data exchange (DDE) message would require the appropriate response.

When the debugger is operating in synchronous mode, the messages that are passed
between PM applications are answered by their target applications in the order that

 Chapter 26. Introducing the Main Debugger Windows427

Introducing the Main Debugger Windows

they were created. The messages that are passed within the debugger take priority
over any other messages that are passed in the system.

When the program being debugged is stopped and the debugger is in synchronous
mode, other PM applications are locked, leaving the debugger free to operate. In
synchronous mode, you will not be able to use any other PM applications that are
running.

The PM system is a message-based system. As program events are encountered by
PM programs, the programs communicate with each other by passing messages and
by receiving user input through input messages. When a PM program encounters an
enabled breakpoint, the input queue can become blocked and dependent program
events, or processes, can also become blocked as a result. For example, the input
queue can become blocked when your program stops at a breakpoint that has been
triggered by an input event.

Debugging mode Group Heading

Select one of the following radio buttons to set the debugging mode:

 ¹ Synchronous

 ¹ Asynchronous

Program windows Group Heading

No painting radio button

Select this radio button if you want none of the invalid areas of the window to be
repainted.

Color invalid areas radio button

The Color invalid areas option works only in asynchronous mode. This option
paints the invalid areas in a solid fill color. The color can be changed by selecting a
different color from the Invalid area color combination box.

Restore radio button

The Restore option works only in asynchronous mode. This option restores the
application window with the last available image of the window. The image that you
can regain consists of the last available image when a step or run command ended,
minus any parts of the window that were covered when the step or run command
ended. The parts of the window that were covered are filled with the solid color you
chose from the Invalid area color combination box.

428 IBM VisualAge�C++ for OS/2 User's Guide

Introducing the Main Debugger Windows

Repaint radio button

Restores that application window with the last available image. The image that you
can regain consists of the last available image when a step or run command ended
minus any parts of the window that were covered when the step or run command
ended. The parts of the window that were covered are filled with the solid color you
chose from the Invalid area color combination box.

The Repaint option differs from the Restore option. It interrupts the normal
debugging process of the window as follows:

¹ The program windows will not receive any screen interaction messages while the
application is stopped. For example, the application will not receive any of the
WM_MOUSEMOVE or WM_PAINT messages that were generated while the
application was stopped.

¹ An extra WM_PAINT message is generated for the program windows when
execution resumes.

Note: The program windows might not process the WM_PAINT message
depending on where the breakpoints are set or on which step or run command
was selected.

Invalid area color Group Heading

Select the color that is to be used to repaint the invalid area of an application
window. Depending on the original color of the application window, certain colors
will be more appropriate for repainting. The color you choose is used when you
select the Color invalid areas, Restore, or Repaint options.

Default data representation →: Use theDefault data representationcascading
choices to change the representation for a data type in a specific language.

Select a language to change the default representation of the selected data type. For
example, you can change the default representation for an integer in the C language
from decimal to hexadecimal. Select the System choice to change the default
representation of the math coprocessor registers. This choice is language
independent.

Program profiles →: Use the Program profiling cascading choices to enable
program profiling, delete program profiles, or change the location where the program
profiles are stored,

Program profiles are used to restore the debugger windows and breakpoints when
debugging a program more than once. They are stored separately for each program
debugged. The file extension for the files that contain this information is @2R.

 Chapter 26. Introducing the Main Debugger Windows429

Introducing the Main Debugger Windows

Note: Only information for executable files and preloaded DLLs relating to the
primary thread is restored.

Enable program profiling
Enables program profiling so that program profiles are saved in a file for
use when debugging the program again.

Delete
Delete program profiles for a program that you have debugged.

Change location
Change the location of the file that holds the program profiles. This also
moves any existing profiles to the new directory.

Exception filtering...: Displays the Exception Filtering window, shown in
Figure 91, which allows you to select which exceptions you want the debugger to
recognize.

Figure 91. Exception Filtering Window

To highlight an exception, do the following:

1. Select the exception by clicking on the name. It becomes highlighted.
2. Select the OK push button.

If a highlighted exception is encountered during the execution of your program, the
Application Exception window is displayed. Any other exceptions that are
encountered are ignored.

430 IBM VisualAge�C++ for OS/2 User's Guide

Introducing the Main Debugger Windows

Using the Application Exception Window: During execution of the program by the
debugger, it is possible that the program can generate an exception. If this happens,
the debugger suspends execution of the program and indicates the location within the
code where the exception occurred.

The OS/2 Application Exception window displays with the following choices:

Examine/Retry You can investigate the cause of the exception and retry
execution of the line that caused the fault.

Step Exception The debugger steps into the first registered exception
handler, which is tracked by OS/2. Execution stops at the
first executable line of code in that exception handler.

Run Exception The debugger runs the exception handlers.

Save window positions and sizes: When you select this choice, the window
positions and sizes are saved for each type of debugger window currently open.

Alternatively, you can select the Autosave window positions and sizes choice to
enable automaic saving of window positions and sizes.

Autosave window positions and sizes: Select theAutosave window positions and
sizes choice to enable automatic saving of window positions and sizes for each type
of debugger window currently open. Type refers to the different windows such as
Registers, Storage, and so on.

When you enable this choice, the window positions and sizes are automatically saved
when you move or resize a window. When you close the debugging session and start
another session the positions and sizes that you selected are displayed in the new
session.

Alternatively, you may save the window positions and sizes by positioning the
debugger windows on the desktop and selecting the Save window positions and sizes
choice.

Windows Menu Choices
Select the Windows menu of the Control window to view a list of all the open
debugger windows. By selecting a window from the Windows menu, it is brought
into focus and made the active window. Also, if the window is minimized, it is
restored.

 Chapter 26. Introducing the Main Debugger Windows431

Introducing the Main Debugger Windows

Help Menu Choices
Select choices from the Help menu of the Control window to display the various
types of help information.

Help index Displays an alphabetical index of all available debugger
help topics.

General help Displays help information for the active window.

Using help Describes how to use the IBM C/C++ Debugger help
facility.

How do I Displays the debugger task help.

Product information Displays product information.

Using the Source Windows
A source window allows you to view the program you are debugging. You can look
at your source in one of the following windows:

 ¹ Source
 ¹ Disassembly
 ¹ Mixed.

A source window is thread-specific. Executable lines initially display in blue and
non-executable lines initially display in black.

The Source window, as shown in Figure 92, displays the source code for the object
that contains the main function to the program being debugged. If it is available, the
Source window displays with the Control window when the debugging session starts.
Otherwise, the Disassembly window displays.

Figure 92. Source Window

432 IBM VisualAge�C++ for OS/2 User's Guide

Introducing the Main Debugger Windows

The Disassembly window, as shown in Figure 93 on page 433, displays the
assembler instructions for your program, without symbolic information.

Figure 93. Disassembly Window

The Mixed window, as shown in Figure 94, displays your program as follows:

¹ Each lines of source code is prefixed by its line number, as in the Source
window.

¹ Each disassembled line is prefixed by an address, as in the Disassembly window.
¹ Source comment lines also display.
¹ The lines of source code are treated as comments within the lines of disassembly

code. You can only set breakpoints or run your program on lines of disassembly
code.

Note: The Mixed window cannot be opened if the source code is not available.

Figure 94. Mixed Window

 Chapter 26. Introducing the Main Debugger Windows433

Introducing the Main Debugger Windows

File Menu Choices
The choices in the File menu are the same as those listed under the File menu of the
Control window. Refer to “File Menu Choices” on page 410 for a description of
the choices.

View Menu Choices
Select choices from the View menu to locate strings of text, scroll to a particular line,
view include files, change the current window to a notebook format, or select a
different view of your program.

Find...: Displays the Find window which allows you to search for a text string.

Figure 95. Find Window

To use the Find window to search for a text string:

1. Type the text string you want to search for in the Enter text entry field.
2. Enable the Case sensitive check box if you want to search for the string exactly

as typed. Disable this check box to search for uppercase and lowercase
characters.

3. Select the OK push button.

The search string can have alphabetic and numeric characters, a maximum of 256
characters, and uppercase and lowercase characters.

Find next: Allows you to search for the next occurrence of the text string that you
typed in the Find window.

434 IBM VisualAge�C++ for OS/2 User's Guide

Introducing the Main Debugger Windows

Scroll to line number...: Displays theScroll to Line Number window, which
allows you to go to a particular line in your program or set a line breakpoint.

Figure 96. Scroll to Line Number Window

To use the Scroll to Line Number window to scroll to a specific line:

1. Type the line number you want to scroll to in the Enter line number entry field.
2. Select the OK push button to scroll to that line.

Note: If the Source window is active, just type a number and the Scroll to Line
Number window automatically displays.

To use the Scroll to Line Number window to set a breakpoint:

1. Type the line number you want to set the breakpoint on in the Enter line
number entry field.

2. Select the Set Breakpoint push button to set the breakpoint on the specified line
number.

Notebook: Enable the Notebook choice to display the source windows in notebook
format.

Note: If you have include files in your program, the Notebook choice enables by
default.

The Source and Mixed windows can be displayed in a notebook format. The
Disassembly window cannot be displayed in a notebook format.

 Chapter 26. Introducing the Main Debugger Windows435

Introducing the Main Debugger Windows

Select include...: Displays the Select Include File window that allows you to view
the files that are included in your program.

Figure 97. Select Include File Window

To use the Select Include File window:

1. Select the include file. The include file name is highlighted.
2. Select the OK push button. The selected include file view displays.

Change text file...: Displays theChange Text Filewindow, which allows you to
specify a file name to be used as the source in the current view. This is useful if the
debugger found the incorrect source file for your program, so that you can specify the
use of a different source file from a different directory.

Figure 98. Change Text File Window

Use the Change Text File window to replace the path name or file name of the
program you are debugging with a new path name or file name.

436 IBM VisualAge�C++ for OS/2 User's Guide

Introducing the Main Debugger Windows

To replace the file name:

1. Type the new path name or file name in the File name entry field.
2. Select the appropriate push button.

Source: Displays the Source window, which displays the source code for the object
that contains the main function to the program being debugged.

 Refer to “Using the Source Windows” on page 432 for more information.

Disassembly: Displays the Disassembly window, which displays the assembler
instructions for your program, without symbolic information.

 Refer to “Using the Source Windows” on page 432 for more information.

Mixed: Displays the Mixed window, which is a combination of the Source and
Disassembly windows.

 Refer to “Using the Source Windows” on page 432 for more information.

Breakpoints Menu Choices
The choices listed under the Breakpoints menu are the same as those listed for the
Control window. Refer to “Breakpoints Menu Choices” on page 413 for a
description of the Breakpoints menu choices.

Monitors Menu Choices
Select choices from the Monitors menu of the source windows to monitor
expressions or variables and view the other debugger windows such as call stack,
registers, and so on.

The first four choices listed under the Monitors menu are also accessible from the
title bar buttons in the source windows.

 Chapter 26. Introducing the Main Debugger Windows437

Introducing the Main Debugger Windows

Monitor expression...: Displays the Monitor Expression window, shown in
Figure 99, which allows you to monitor expressions or variables and add them to
various monitor windows.

Figure 99. Monitor Expression Window

Use the Monitor Expression window to type the name of the expression you want to
monitor. This window lists the following contextual information:

¹ The component you are in.
¹ The view of the program that is active.
¹ The active line of the source code, which is highlighted.
¹ The thread you are in.

To specify an expression to be monitored:

1. Type the name of the variable or expression you want to monitor in the
Expression entry field.

2. Select the appropriate push button from the Add to group heading for the
location from where you want to monitor your expression.

Note: The expression displays as specified in the Monitor Properties window.
To change the default location, select Monitor properties from the Debugger
settings choice from the Options menu in the source windows or the Control
window.

Call Stack: Displays the Call Stack window, which allows you to monitor the call
stack stack for a particular thread. This window is described in “Using the Call
Stack Window” on page 443.

438 IBM VisualAge�C++ for OS/2 User's Guide

Introducing the Main Debugger Windows

Registers: Displays the Registers window, which allows you to monitors registers
and flags for a particular component or thread. This window is described in
“Using the Registers Window” on page 445.

Storage: Displays the Storage window, which allows you to monitors the storage in
your program. This window is described in “Using the Storage Window” on
page 447.

Local variables: Displays the Local Variables window, which allows you to display
the local variables for the program's current function. This window is described in
“Using the Local Variables Window” on page 450.

Window analysis: Displays the Window Analysis window, which allows you to
display the windows of the program in a three dimensional view. This window is

described in “Using the Window Analysis Window” on page 459.

Message queue: Displays the Message Queue window, which allows you to
display the PM messages associated with a PM application. This window is

described in “Using the Message Queue Window” on page 462.

Run Menu Choices
Select choices from the Run menu to perform step commands, run your program,
restart the debugging session, hide debugger windows, enable heap check, and enable
or disable threads.

Step over: Executes the current, highlighted line in the program, but does not enter
any called function.

Step into: Executes the current, highlighted line in the program and enters any
called program or function.

Step debug: Executes the current, highlighted line in the program. The debugger
steps over any function for which debugging information is not available (for
example, library and system routines), and steps into any function for which
debugging information is available.

Step return: Automatically executes the lines of code up to, and including, the
return statement of the current function.

Run: Runs the program, executing all enabled threads. Control returns to the
debugger when the program ends or execution stops at an enabled breakpoint.

Halt: Interrupts the program you are debugging. You can also access this choice by
pressing SysRq (Alt+PrintScreen).

 Chapter 26. Introducing the Main Debugger Windows439

Introducing the Main Debugger Windows

Program restart: Select the Program restart choice to start the debugging session
again. Program restart allows you to restart the current debugging session on the
existing program, while Program startup allows you to debug another program.

Run to location: Executes your program from the current line up to the line that is
highlighted or gray in the prefix area.

To use the Run to location choice:

1. Single-click in the prefix area of the line you want to become the current line.
The prefix area turns gray.

2. Select the Run to location choice. The program runs up to the line that you
marked.

The Run to location choice stops only on executable lines. If a highlighted line is
not executable, the run is not performed.

Jump to Location: Select theJump to Location choice to change the current line in
your program without executing the lines between the present current line and the
new current line.

To use the Jump to location choice:

1. Single-click in the prefix area of the line you want to become the current line.
The prefix area turns gray.

2. Select the Jump to location choice. The current line is changed and the lines
between are not executed.

The Jump to location choice stops only on executable lines. If a highlighted line is
not executable, the jump is not performed.

Warning: Jumping out of the current function may corrupt the call stack and cause
unpredictable results.

Hide debugger on Run: For a description of this choice, refer to “Hide debugger
on Run” on page 421.

Check heap when stopping: For a description of this choice, refer to “Check
heap when stopping” on page 421

Thread enabled: For a description of this choice, refer to “Thread enabled” on
page 422.

440 IBM VisualAge�C++ for OS/2 User's Guide

Introducing the Main Debugger Windows

Options Menu Choices
Select choices from the Options menu to control how the debugger windows display.

Window settings →: Use the Window settings cascading choices to modify the
colors and the font of the source windows.

Colors...

Displays the Colors window, shown in Figure 100, which allows you to change the
color of the various window elements.

Figure 100. Colors Window

Use the Colors window to change the color of the background and foreground (text)
in the source windows.

To change the color of the background in the source window:

¹ Open the OS/2 Color Palette window.
¹ Using the mouse pointer, select a color from the color palette.
¹ Hold down mouse button two and drag the selected color into the Colors

window.
¹ Release mouse button two over the text line that represents the source window

area that you want to change.
¹ Select the Apply push button.

To change the color of the foreground in the source window:

¹ Open the OS/2 Color Palette window.
¹ Using the mouse pointer, select a color from the color palette.

 Chapter 26. Introducing the Main Debugger Windows441

Introducing the Main Debugger Windows

¹ Hold down the Ctrl key and mouse button two and drag the selected color into
the Colors window.

¹ Release the Ctrl key and mouse button two over the text line that represents the
source window area that you want to change.

¹ Select the Apply push button.

Note: To change the colors in the other debugger windows, simply drag and drop
the selected colors directly on the window that you want to change.

Fonts...

Displays the Font Selection window.

Debugger settings →: Use the Debugger settings cascaded choices to set various
debugger options that control how the debugger windows display. These settings
affect the behavior of the debugger and remain in effect for the duration of the
debugging session.

 Refer to “Debugger settings→” on page 423 for a description of the choices.

Windows Menu Choices
Select the Windows menu of the source windows to view a list of all the open
debugger windows. By selecting a window from the Windows menu, it is brought
into focus and made the active window. Also, if the window is minimized, it is
restored.

Help Menu Choices
Select choices from the Help menu of the source windows to display the various
types of help information.

 Refer to “Help Menu Choices” on page 432 for a description of the help choices.

442 IBM VisualAge�C++ for OS/2 User's Guide

Introducing the Basic Debugging Windows

27 Introducing the Basic Debugging Windows

This section introduces the basic debugging windows. These are the windows that
are normally located in the Monitors menu of the Control and the source windows.
The windows include call stack, registers, storage, monitor, and breakpoints.

Using the Call Stack Window
The Call Stack window as shown in Figure 101, lists all of the active functions for a
particular thread including the PM calls. The functions are displayed in the order that
they were called.

Figure 101. Call Stack Window

Each Call Stack window displays call stack information for one thread only. When
the state of the program changes, such as when you execute the program or you
update displayed data, the Call Stack window changes to reflect the current state.
You can double-click on any call stack entry to display the source code for that entry.
The line that calls the next stack entry is highlighted. The remaining stack size
shows the bytes left in the stack for the thread.

To display the Call Stack window, select Call Stack from the Monitors menu or

select the Call Stack button from the title bar .

File Menu Choice
Use the choice from the File menu to end the debugging session.

The Close debugger choice allows you to end the current debugging session. When
you select Close debugger, the Close Debugger message box prompts you to
confirm that you want to end the debugging session.

 Copyright IBM Corp. 1992, 1995 443

Introducing the Basic Debugging Windows

Options Menu Choices
Use choices from the Options menu to control how the items on the call stack
display and select the font you want for the Call Stack window.

Display style...: Displays the Display Style window, shown in Figure 102, which
allows you to select the type of information you want displayed in the call stack and
choose how the items are to be displayed.

Figure 102. Display Style Window

To use the Display Style window:

1. Select one or more of the items under the Columns Group Heading to display
for each call stack entry. Each item causes a new column to be added to the
Call Stack window.

The following items are available:

Entry No. Represents the position of the call stack item in the
list. Entry level 1 is the first function invoked.

Function Lists program name or the address of the function call
that created the new call stack entry.

Source Lists the component name that contains the function.
The name displayed corresponds with a name listed in
the Components list box in the Control window.

Return Address The address represents where execution will return in
that function.

Recursion Lists the recursion level. 0 is the first invocation.

444 IBM VisualAge�C++ for OS/2 User's Guide

Introducing the Basic Debugging Windows

EBP Start of the call stack frame for that function.

ESP End of the call stack frame for that function.

Size Size of the call stack frame for that function.

2. Select one of the following Growth direction radio buttons to determine how
new items are displayed on the call stack.

Up Displays new items at the top of the Call Stack window.

Down Displays new items at the bottom of the Call Stack window.

Fonts...: Displays the Fonts Selection window, which allows you to select the type
of font you want to use for the Call Stack window.

Windows Menu Choices
Select the Windows menu of the Call Stack window to view a list of all the open
debugger windows. By selecting a window from the Windows menu, it is brought
into focus and made the active window. Also, if the window is minimized, it is
restored.

Help Menu Choices
Select choices from the Help menu of the Call Stack window to display the various
types of help information.

 Refer to “Help Menu Choices” on page 432 for a description of the help choices.

Using the Registers Window
The Register window, as shown in Figure 103 on page 446, lists all the processor
and coprocessor registers for a particular thread. The contents of all of the registers
except ST0 through ST7 are displayed in hexadecimal. To update a register, type
over the contents that are displayed in the register. To toggle the value of a 1-bit
flag, double-click on it or place the cursor on it and press Enter.

 Chapter 27. Introducing the Basic Debugging Windows445

Introducing the Basic Debugging Windows

Figure 103. Registers Window

In the Registers window, floating-point registers display as floating-point decimal
numbers. They can be updated with a floating-point decimal number or with a
hexadecimal string that represents a floating-point number.

To display the processor registers and flags, including the math coprocessor
information, select Registers from the Monitors menu or select the Register button

from the title bar .

File Menu Choice
Use the choice from the File menu to end the debugging session.

The Close debugger choice allows you to end the current debugging session. When
you select Close debugger, the Close Debugger message box prompts you to
confirm that you want to end the debugging session.

Options Menu Choice
Use the choice from the Options menu to select the font you want for the Registers
window.

When you select Fonts..., the Font Selection window displays.

Windows Menu Choices
Select the Windows menu from the Registers window to view a list of all the open
debugger windows. By selecting a window from the Windows menu, it is brought
into focus and made the active window. Also, if the window is minimized, it is
restored.

446 IBM VisualAge�C++ for OS/2 User's Guide

Introducing the Basic Debugging Windows

Help Menu Choices
Select choices from the Help menu of the Registers window to display the various
types of help information.

 Refer to “Help Menu Choices” on page 432 for a description of the help choices.

Using the Storage Window
The Storage window, as shown in Figure 104, shows the storage contents and the
address of the storage.

Figure 104. Storage Window

Multiple storage windows can display the same storage. When you run a program or
update displayed data, the Storage window is updated to reflect the change.

To update the storage contents and all affected windows, type over the contents of the
field in the Storage window.

To specify a new address location, type over the address field in the Storage window.
The window scrolls to the appropriate storage location.

To display the Storage window, select Storage from the Monitors menu or select the

Storage button from the title bar .

File Menu Choice
Use the choice from the File menu to end the debugging session.

The Close debugger choice allows you to end the current debugging session. When
you select Close debugger, the Close Debugger message box prompts you to
confirm that you want to end the debugging session.

 Chapter 27. Introducing the Basic Debugging Windows447

Introducing the Basic Debugging Windows

Options Menu Choices
Use choices from the Options menu to monitor expressions, control how the items in
the storage window display, and select the font you want for the Storage window.

Monitor expression...: Displays the Monitor Expression in Storage window, as
shown in Figure 105, which allows you to type in the name of the expression you
want to monitor.

Figure 105. Monitor Expression in Storage Window

To specify an expression, type the name or address of the variable or expression you
want to monitor in the Address or expression entry field.

The expression evaluator used is based on the context. For example if you display
the Storage window by selecting the Monitor expression... choice from the
Monitors menu, the evaluator used is based on the context in the Monitor
Expression window. However, if you display the Storage window first and then
select the Monitor expression... choice from the Options menu of the Storage
window, the evaluator used is based on the context of the stopping thread.

Note: You cannot look at variables that have been defined using the DEFINE
preprocessor directive. If the variable is not in scope when the monitor is opened, the
default address is displayed. If the variable goes out of scope, the address is changed
to a hex constant.

If you enable the Enabled monitor check box, the monitor updates the stop value of
the program to the actual value in storage. However, a disabled monitor suspends
this updating and reflects the stop value or the value held when the monitor was
disabled.

448 IBM VisualAge�C++ for OS/2 User's Guide

Introducing the Basic Debugging Windows

Display style...: Displays the Display Style window, shown in Figure 106, which
allows you to select the format for the storage contents and storage addresses and
change the columns per line that display.

Figure 106. Display Style Window

Use the Storage Display Style window to select the parameters that control how the
storage contents display and set how the storage addresses display.

Content style Group Heading

Select how you want the storage contents displayed. You can select from several
storage display styles.

To select the storage content style:

1. Scroll to the content style you want.
2. Select the content style.
3. The style becomes highlighted.

Address style Group Heading

Select how you want the address style displayed.

To select an address style:

1. Scroll to the address style you want.
2. Select the address style.
3. The address style becomes highlighted.

Columns per line Entry Field

Select the number of columns per line you want displayed in the Storage window.

 Chapter 27. Introducing the Basic Debugging Windows449

Introducing the Basic Debugging Windows

Use the Up or Down arrow keys to select the number of columns you want displayed
in the Storage window. The available number of columns per line are 1-16.

Enable the Column titles check box if you want to display the titles of the columns
in the Storage window.

Fonts...: Displays the Font Selection window, which allows you to select the type
of font you want to use for the Storage window.

Windows Menu Choices
Select the Windows menu from the Storage window to view a list of all the open
debugger windows. By selecting a window from the Windows menu, it is brought
into focus and made the active window. Also, if the window is minimized, it is
restored.

Help Menu Choices
Select choices from the Help menu of the Storage window to display the various
types of help information.

 Refer to “Help Menu Choices” on page 432 for a description of the help choices.

Using the Local Variables Window
The Local Variables window, as shown in Figure 107, monitors the local variables
(static, automatic, and parameters) for the current execution point in the program.
The contents of the Local Variables window change each time your program enters
or leaves a function.

Figure 107. Local Variables Window

450 IBM VisualAge�C++ for OS/2 User's Guide

Introducing the Basic Debugging Windows

File Menu Choice
Use the choice from the File menu to end the debugging session.

The Close debugger choice allows you to end the current debugging session. When
you select Close debugger, the Close Debugger message box prompts you to
confirm that you want to end the debugging session.

Edit Menu Choices
Select the choices from the Edit menu of the Local Variables window to delete,
select, or deselect variables.

Delete: Select the Delete choice to delete variables or expressions that are being
monitored from a monitor window.

To delete a variable or expression from a monitor window:

1. Select the variable or expression using your mouse pointer. The variable or
expression becomes highlighted.

2. Select the Delete choice from the Options menu.

Select all: Select the Select all choice to select all the expressions in the window.

Deselect all: Select the Deselect all choice to cancel the selection of all the
expressions in the window,

Options Menu Choices
Select choices from the Options menu to control how the contents of variables
display and to set debugger options.

Representaion →: Use the Representation cascading choices to display the contents
of the variable in a new representation. The types of representation that display on
the menu depend on the data type of the variable you are monitoring.

The following are possible representations:

Hexadecimal
Displays the contents of the monitored variable in hexadecimal notation.

Decimal
Displays the contents of the monitored variable in decimal notation.

String
Displays the contents of the monitored variable as a character string.

Hexadecimal pointer
Displays the contents of the monitored variable as a hexadecimal pointer.

 Chapter 27. Introducing the Basic Debugging Windows451

Introducing the Basic Debugging Windows

Decimal pointer
Displays the contents of the monitored variable as a decimal pointer.

Array
Displays the contents of the monitored variable as an array.

Floating point
Displays the contents of the monitored variable in floating-point notation.

Character
Displays the contents of the monitored variable in character form.

Note: Floating point registers or variables display as either a floating-point decimal
number or as a hexadecimal string. However, they cannot be updated with a
hexadecimal string that represents a floating-point number. If you need to update a
floating-point variable with a hexadecimal representation of a floating-point number,
you must step through the Disassembly window to see when the variable loads into a
register and then change the value in the Registers window.

Show context: Select the Show context choice to display the contextual information
for the variable you are monitoring. The following information displays:

 ¹ Source

 ¹ File

 ¹ Line

 ¹ Thread.

Hide context: Select the Hide context choice to hide the contextual information for
the variable you are monitoring.

Fonts...: Displays the Font Selection window, which allows you to select the type
of font you want to use for the Local Variables window.

Windows Menu Choices
Select the Windows menu from the Local Variables window to view a list of all the
open debugger windows. By selecting a window from the Windows menu, it is
brought into focus and made the active window. Also, if the window is minimized, it
is restored.

452 IBM VisualAge�C++ for OS/2 User's Guide

Introducing the Basic Debugging Windows

Help Menu Choices
Select choices from the Help menu of the Local Variables window to display the
various types of help information.

 Refer to “Help Menu Choices” on page 432 for a description of the help choices.

Using the Monitor Windows
The debugger has three other windows that allow you to monitor variables and
expressions. These windows are as follows:

 ¹ Data Popup
 ¹ Program Monitor
 ¹ Private Monitor .

A Data Popup window monitors single variables or expressions. This window is
associated with a specific source window and closes when the associated window
closes.

The variables or expressions can be transferred either to the Program Monitor
window or the Private Monitor window.

The Program Monitor and the Private Monitor windows are used as collectors for
individual variables or expressions you might be interested in. Variables and
expressions may be created in these monitors or may be transferred to them from a
Data Popup window.

The difference between the Private Monitor window and the Program Monitor
window is the length of time that they remain open. The Program Monitor window
remains open for the entire debugging session. The Private Monitor window is
associated with the source window from which it was opened and closes when its
associated view is closed.

Using the Breakpoint List Window
Use the Breakpoint List window to display a list of the breakpoints that have been
set. The following information is provided for each breakpoint that has been set:

¹ The enablement state
¹ The type of breakpoint
¹ The position of the breakpoint
¹ The conditions under which the breakpoint is activated.

 Chapter 27. Introducing the Basic Debugging Windows453

Introducing the Basic Debugging Windows

To display the Breakpoint List window, as shown in Figure 108 on page 454, select
List from the Breakpoints menu or select the Breakpoints button in the title bar

.

Figure 108. Breakpoint List Window

File Menu Choice
Use the choice from the File menu to end the debugging session.

The Close debugger choice allows you to end the current debugging session. When
you select Close debugger, the Close Debugger message box prompts you to
confirm that you want to end the debugging session.

Edit Menu Choices
Select the choices from the Edit menu of the Breakpoint List window to delete,
disable, modify, or delete breakpoints.

Delete: Deletes any breakpoints that are highlighted in the Breakpoint List window.

To delete a breakpoint:

1. Highlight the breakpoint you want to delete.
2. Select the Delete choice.

Disable: Disables any highlighted breakpoints. The breakpoint remains set but not
active. This allows you to run your program and not stop when the breakpoint is
encountered.

To disable a breakpoint:

1. Highlight the breakpoint you want to disable.
2. Select the Disable choice.

454 IBM VisualAge�C++ for OS/2 User's Guide

Introducing the Basic Debugging Windows

Modify: Use the Modify choice to change the breakpoints that have been set in your
program.

To modify a breakpoint:

1. Highlight the breakpoint you want to change.
2. Select the Modify choice. The breakpoint window that represents the type of

breakpoint displays.
3. Make the appropriate changes to the entry fields.
4. Select the OK push button to accept your changes and close the window. If you

want to make other changes, select the Set push button to accept the changes and
keep the window open.

Delete all: Deletes all the breakpoints that have been set.

To delete all the breakpoint:

1. Select the Delete all choice. The Delete All Breakpoints window displays.
2. Select Yes from the Delete All Breakpoints window.

Set Menu Choices
 Refer to “Breakpoints Menu Choices” on page 413 for a description of the Set

menu choices.

Options Menu Choices
Select choices from the Options menu of the Breakpoint List window to sort the
breakpoints, change the style, and change the font for the window.

 Chapter 27. Introducing the Basic Debugging Windows455

Introducing the Basic Debugging Windows

Sort...: Displays the Sort Breakpoints window, shown in Figure 109, which allows
you to sort the breakpoints by the characteristics of the breakpoint.

Figure 109. Sort Breakpoints Window

Use the Sort Breakpoints window to sort the breakpoints that have been set in your
program.

Breakpoints can be sorted according to the following categories:

 ¹ Type
 ¹ Executable
 ¹ Source
 ¹ File
 ¹ Function
 ¹ Line number
 ¹ Address
 ¹ Status
 ¹ Thread
 ¹ Condition
 ¹ From
 ¹ To
 ¹ Every.

Select the category you want and select the OK push button.

456 IBM VisualAge�C++ for OS/2 User's Guide

Introducing the Basic Debugging Windows

Display style...: Displays the Display Style window, which allows you to control
how the items in the breakpoint list display.

Figure 110. Breakpoints - Display Style Window

To change how the items in the breakpoint list display:

1. Select one or more of the items under the Columns group heading. Each item
you select causes a new column to be added to the Breakpoint List window.

2. Select the OK push button.

Fonts...: Displays the Font Selection window that allows you to select the font you
want to use for the text in the Breakpoint List window.

Windows Menu Choices
Select the Windows menu from the Breakpoint List window to view a list of all the
open debugger windows. By selecting a window from the Windows menu, it is
brought into focus and made the active window. Also, if the window is minimized, it
is restored.

 Chapter 27. Introducing the Basic Debugging Windows457

Introducing the Basic Debugging Windows

Help Menu Choices
Select choices from the Help menu of the Breakpoint List window to display the
various types of help information.

 Refer to “Help Menu Choices” on page 432 for a description of the help choices.

458 IBM VisualAge�C++ for OS/2 User's Guide

Introducing the Presentation Manager (PM) Debugging Windows

28 Introducing the PM Debugging Windows

Because the debugger runs in the OS/2 environment, and more specifically the PM
environment, it offers some windows that allow you to debug programs written for
PM.

Using the Window Analysis Window
Window analysis provides you with an understanding of PM application windows. It
presents both graphical and textual information about the windows of your application
and lets you observe the relationships between windows.

It allows you to view a three-dimensional image of your application’s windows,
characteristics of windows, and parent-child relationships between the windows.

Your application creates many windows, directly or indirectly, to perform tasks. All
of these windows are children or descendents of desktop and desktop-object windows.
Windows created by the application being debugged are referred to as debuggee
windows.

Window analysis consists of the following windows:

¹ The Window Analysis window, which is the primary window.
¹ The Parent and Z-Order Tree window, which is a secondary window.
¹ The Window Characteristics window, which is a secondary window.

The secondary windows provide information pertaining to the Window Analysis
window. When you select an item in any of the three windows, it is reflected in the
other two windows. If you close the Window Analysis window, the secondary
windows closes.

The Window Analysis window presents an image of your debuggee windows. When
this image displays, you can rotate the image to visually separate the windows, select
a window on the image, and look at the detailed information pertaining to that
window.

The Window Analysis window is represented in a notebook format. The notebook is
divided in two sections; desktop and desktop-object. The notebook has major and
minor tabs. Major tabs correspond to the two major sections that are located at the
bottom of the notebook. Major tab pages define the beginning of major sections and
are called primary pages. Pages within major sections are called regular pages.
They have minor tabs that are located at the right of the notebook.

 Copyright IBM Corp. 1992, 1995 459

Introducing the Presentation Manager (PM) Debugging Windows

The images on the desktop and desktop-object primary pages represent children of the
desktop window and desktop-object window, respectively. The images on the regular
pages represent the child of the desktop or desktop-object window as a parent and all
its descendents.

To display the pages and tabs, you can use the notebook standard keyboard selection
technique. Another method of displaying the pages is to double-click on the window
on the primary page.

You can select any window on a page by selecting the window. By using the Tab
and BackTab keys, you can move the selection from window to another window.
When you select an item in the Window Analysis window, it is reflected in the two
secondary windows.

Each page has a status line that is used to display sizes of a window that is selected
on the page. Use the vertical slider or vertical arrows to rotate the page image
vertically (around the x-axis). Use the horizontal slider to rotate the image
horizontally (around the y-axis).

The borders of the windows are drawn as follows:

Screen Solid thick line (only on a primary page)

Visible window Solid thin line

Invisible window Dashed thin line

File Menu Choice
Use the choice from the File menu to end the debugging session.

The Close debugger choice allows you to end the current debugging session. When
you select Close debugger, the Close Debugger message box prompts you to
confirm that you want to end the debugging session.

Monitors Menu Choices
Select choices from the Monitors menu of the Window Analysis window to view the
secondary windows of Window Analysis.

Parent and z-order tree: Displays theParent and Z-order Tree window which
allows you to see the relationships between the following windws:

 ¹ Debuggee
 ¹ Non-debuggee
¹ Debuggee and non-debuggee.

460 IBM VisualAge�C++ for OS/2 User's Guide

Introducing the Presentation Manager (PM) Debugging Windows

The non-debuggee windows shown in the Parent and Z-Order Tree window are the
desktop and desktop-object windows and their children which are not debuggee
windows.

Window characteristics: Displays the Window Characteristics window which
allows you to display the characteristics of the debuggee windows.

The Window Characteristics window displays in a table format with each row
representing a different debuggee window and each column representing a different
characteristic. The rows listed in the Window Characteristics window reflect the
debuggee windows on the current page of the Window Analysis window.

Options Menu Choices
Select choices from the Options menu of the Window Analysis window to control
the display of bitmaps and desktop-object windows and rotate the image to the center
or to the default position.

Bitmaps: Enable the Bitmaps choice to display bitmaps on the tabs of the notebook
in the Window Analysis window. When bitmaps are enabled, a bitmap displays on
the tab if the window is shown on the screen. If the window is hidden, text displays
on the tab. (For desktop-object section, this is always the case). The text displays on
the tabs when bitmaps are disabled. The text is the letter “D” (Desktop) or letter “O”
(Desktop-object) concatenated with the number of a regular page in the section.

Desktop-object windows: You can enable or disable the Desktop-object windows
choice to include the desktop-object windows in the Window Analysis window.

Rotate to center: Select theRotate to centerchoice to center the image on the
Window Analysis window.

Rotate to default: Select theRotate to default choice to rotate the image to the
default position in the Window Analysis window

Windows Menu Choices
Select the Windows menu to view a list of all the open debugger windows. By
selecting a window from the Windows menu, it is brought into focus and made the
active window. Also, if the window is minimized, it is restored.

 Chapter 28. Introducing the PM Debugging Windows461

Introducing the Presentation Manager (PM) Debugging Windows

Help Menu Choices
Select choices from the Help menu to display the various types of help information.

Using the Message Queue Window
The Message Queue window, as shown in Figure 111, displays PM messages
associated with a PM application. It presents formatted messages in a list as they
occur. Using the Message Queue window, you can control:

¹ How the information displays for each message.
¹ How message parameters are formatted.
¹ Which messages are monitored.
¹ Which windows have their messages monitored.
¹ Which message queues have their messages monitored.
¹ How the user generated messages display.

Figure 111. Message Queue Window

File Menu Choice
Select the choice from the File menu of the Message Queue window to end a
debugging session.

Options Menu Choices
Select choices from the Options menu to suspend messages, clear messages, resize
the columns, and select what you want to monitor.

Suspend: Select the Suspend choice to stop any new messages from being added to
the Message Queue window.

462 IBM VisualAge�C++ for OS/2 User's Guide

Introducing the Presentation Manager (PM) Debugging Windows

Clear: Select the Clear choice to clear all the messages in the Message Queue
window.

Resize column width: Select theResize column widthchoice to recalculate the
widths of the columns in the Message Queue window.

Note: This option is available only when the automatic column resizing choice is
not selected in the Display Style window.

Monitor messages...: Displays the Monitor Messages window, shown in
Figure 112, which allows you to specify the messages you want monitored.

Figure 112. Monitor Messages Window

The Monitor Messages window consists of the following:

Defined Message IDs Group Heading

These are the pre-defined and user-defined messages. Each message displays as a
name and hex number. You can select multiple messages for monitoring.

Sort Group Heading

¹ Select the Name button to sort the message names
 alphabetically.

¹ Select the ID button to sort the message IDs numerically.

Undefined Messages IDs Group Heading

 Chapter 28. Introducing the PM Debugging Windows463

Introducing the Presentation Manager (PM) Debugging Windows

¹ Select the Include WM_USER check box to include all undefined messages that
are in the range WM_USER and above.

¹ Select the Include non WM_USER check box to include all undefined messages
that are in the range less than WM_USER.

Include all message IDs Check Box

Select the Include all message IDs check box to include all messages. When this
check box is enabled, the defined and undefined message selections are disabled.

Define Messages IDs Push Button

Select this button and the Define Messages window displays.

Monitor Group Heading

¹ Select the Messages to application check box to monitor messages that are
received by an application.

¹ Select the Messages from application check box to monitor messages that are
dispatched by an application.

¹ Select the Post messages check box to monitor post messages.
¹ Select the Send messages check box to monitor send messages.

Monitor windows...: Displays the Monitor Windows window, shown in Figure 113,
which allows you to specify the windows you want monitored.

Figure 113. Monitor Windows Window

464 IBM VisualAge�C++ for OS/2 User's Guide

Introducing the Presentation Manager (PM) Debugging Windows

You may identify specific windows you want to monitor by using the Window
Analysis window.

The Monitor Windows window consists of the following:

Windows Group Heading

Each window displays with the class and handle. You can select multiple windows
for monitoring.

Sort Group Heading

¹ Select the Class button to sort the window names alphabetically.
¹ Select the Hwnd button to sort the window handles in numerical order.
¹ Select the Parent and z-order button to sort the window handles to show the

parent and z-order relationship of application windows.

Monitor all windows Check Box

Select the Monitor all windows check box to monitor all the windows. This disables
individual selection.

Monitor queues...: Displays the Monitor Queues window, shown in Figure 114,
which allows you to specify the message queues you want monitored.

Figure 114. Monitor Queues Window

The Monitor Message Queues window consists of the following:

 Chapter 28. Introducing the PM Debugging Windows465

Introducing the Presentation Manager (PM) Debugging Windows

Message queues Group Heading

This section contains a list of the message queues. You can select multiple queues.

Sort Group Heading

¹ Select the HMQ button to sort the message queues by message queue handles.
¹ Select the TID button to sort the message queues by thread id.

Monitor all message queues Check Box

Select the Monitor all message queues check box to monitor all the message queues.
This disables individual selections.

Format parameters...: Displays the Format Parameters window, shown in
Figure 115, which allows you to specify how message parameters display.

Figure 115. Format Parameters Window

466 IBM VisualAge�C++ for OS/2 User's Guide

Introducing the Presentation Manager (PM) Debugging Windows

The Format Message Parameters window consists of the following:

Message Group Heading

This section contains a list of the all the defined messages.

Sort by Group Heading

¹ Select the Name button to sort the messages alphabetically by name.
¹ Select the ID button to sort the messages numerically by ID.

Parameter formatting Group Heading

¹ MP1 - Message parameter 1 Select the arrow to open the MP1 list. Select the
type of formatting you want from the parameter list. The formatting selections
are saved in program profiles.

¹ MP2 - Message parameter 2 Select the arrow to open the MP2 list. Select the
type of formatting you want from the parameter list. The formatting selections
are saved in program profiles.

Define messages...: Displays the Define Messages window, shown in Figure 116,
which allows you to define messages.

Figure 116. Define Messages Window

Message Group Heading

In the Name entry field, type in the name of the message that you want to define.

 Chapter 28. Introducing the PM Debugging Windows467

Introducing the Presentation Manager (PM) Debugging Windows

In the ID entry field, type the hex number for the message or use the spin button to
locate the number of the message.

Default parameter formatting Group Heading

¹ MP1 - Message parameter 1 Select the arrow to open the MP1 list. Select the
default type of formatting you want from the parameter list. The formatting
selections are saved in program profiles.

¹ MP2 - Message parameter 2 Select the arrow to open the MP2 list. Select the
default type of formatting you want from the parameter list. The formatting
selections are saved in program profiles.

Message monitored by default Check Box

Select the Message monitored by default check box if you want to monitor the
messages by default.

Display style...: Displays the Display Style window, shown in Figure 117, which
allows you to specify which columns you want displayed in the Message Queue
window.

Figure 117. Display Style Window

The items in this window affect system performance. You may want to experiment
with different settings to see what works best for your system.

Columns Group Heading

Select the columns you want to display in the Message Queue Monitor window.
These are described in the column list.

468 IBM VisualAge�C++ for OS/2 User's Guide

Introducing the Presentation Manager (PM) Debugging Windows

Messages count Group Heading

The following choices affect system performance:

Maximum displayed Entry Field

Select the number of messages you want to display from the Maximum displayed
entry field. You can type in a number or use the spin button to select the number
you want. A higher maximum may cause the system to respond faster. However, too
high a maximum, may cause the system may respond slower.

Note: You may need to experiment with this setting to see what works best for your
system.

Deleted at one time Entry Field

Select the number of messages you want deleted at one time from the Deleted at one
time entry field. You can type in a number or use the spin button to enter the
number you want. The more messages deleted at once causes the system to respond
faster.

Unlimited Check Box

Select Unlimited to have no maximum on the number of messages to be displayed.
When you select unlimited , the Maximum displayed and Deleted at one time entry
fields are disabled. This choice sets no limit on messages to have displayed and the
system may respond slower.

Automatic scrolling Check Box

Select Automatic scrolling if you want the window to automatically scroll forward
when the screen is filled with messages. Selecting this decreases system
performance.

Automatic column resizing Check Box

Select Automatic column resizing if you want the columns to automatically resize.
Selecting this decreases system performance.

Note: When this check box is selected, the Resize column width choice is not
available.

Display titles Check Box

Select Display titles if you want titles to be displayed in the window. This does not
affect system performance.

 Chapter 28. Introducing the PM Debugging Windows469

Introducing the Presentation Manager (PM) Debugging Windows

Windows Menu Choices
Select the Windows menu to view a list of all the open debugger windows. By
selecting a window from the Windows menu, it is brought into focus and made the
active window. Also, if the window is minimized, it is restored.

Help Menu Choices
Select choices from the Help menu to display the various types of help information.

 Refer to “Help Menu Choices” on page 432 for a description of the help choices.

470 IBM VisualAge�C++ for OS/2 User's Guide

Expressions Supported

29 Expressions Supported

This section describes the expression language supported by the debugger, which is a
subset of C/C++. This includes the operands, operators, and data types.

Note: You can display and update bit fields for C/C++ code only. You cannot look
at variables that have been defined using thedefine preprocessor directive.

Supported Expression Operands
You can monitor an expression that uses the following types of operands only:

Operand Definition

Variable A variable used in your program.

Constant The constant can be one of the following types:

¹ Fixed or floating-point constant.

Note: The largest floating-point constant is 1.8E308. The
smallest floating-point is 2.23E-308.

¹ A string constant, enclosed in quotation marks (“ ”)
¹ A character constant, enclosed in single quote marks (’ ’)
¹ Segment:Offset address specification (0000:0000)

When you are specifying a segment offset address for
monitoring in a variable monitor window, specify the offset
address in the following format:

 0x0000:0

Registers One of the following register names:
AX, BX, CX, DX, SP, BP, SI, DI, AL, BL, CL, DL, AH, BH,
CH, DH, EAX, EBX, ECX, EDX, ESP, EBP, ESI, EDI, EIP,
CS, DS, ES, FS, GS, SS, EFLAGS.
One of the following floating-point register names:
ST0 through ST7, FPCW, FPSW, FPTW, FPEIP, FPCS,
FPEDP, FPDS.

In the case of conflicting names, the program variable names
take precedence over the register names. For conversions that
are done automatically when the registers display in
mixed-mode expressions, general purpose registers are treated as
unsigned arithmetic items with a length appropriate to the

 Copyright IBM Corp. 1992, 1995 471

Expressions Supported

register. For example, EAX is 32-bits, AX is 16-bits, and AL
is 8-bits.

If you monitor an enumerated variable, a comment displays to the right of the value.
If the value of the variable matches one of the enumerated types, the comment
contains the name of the first enumerated type that matches the value of the variable.
If the length of the enumerated name does not fit in the monitor, the contents display
as an empty entry field.

The comment (empty or not) lets you distinguish between a valid enumerated value
and an invalid value. An invalid value does not have a comment to the right of the
value.

You can not update an enumerated variable by entering an enumerated type. You
must enter a value or expression. If the value is a valid enumerated value, the
comment to the right of the value updates.

Bit fields are supported for C/C++ compiled code only. You can display and update
bit fields, but you cannot use them in expressions. You cannot look at variables that
have been defined using the DEFINE preprocessor directive.

Supported Expression Operators
You can monitor an expression that uses the following operators only:

Figure 118 (Page 1 of 2). Supported Expression Operators

Operator Coded as

Global scope resolution ::a

Class scope resolution a::b

Subscripting a[b]

Member selection a.b or a->b

Size sizeof a or sizeof (type)

Logical not !a

One's complement ˜a

Unary minus -a

Unary plus +a

Dereference *a

Type cast (type) a

Multiply a * b

Divide a / b

472 IBM VisualAge�C++ for OS/2 User's Guide

Expressions Supported

Figure 118 (Page 2 of 2). Supported Expression Operators

Operator Coded as

Modulo a % b

Add a + b

Subtract a - b

Left shift a << b

Right shift a >> b

Less than a < b

Greater than a > b

Less than or equal to a <= b

Greater than or equal to a >= b

Equal a == b

Not equal a != b

Bitwise AND a & b

Bitwise OR a | b

Bitwise exclusive OR a _ b

Logical AND a && b

Logical OR a || b

Supported Data Types
You can monitor an expression that uses the following typecasting operations:

¹ 8-bit signed byte
¹ 8-bit unsigned byte
¹ 16-bit signed integer
¹ 16-bit unsigned integer
¹ 32-bit signed integer
¹ 32-bit unsigned integer

 ¹ 32-bit floating-point
 ¹ 64-bit floating-point
 ¹ 80-bit floating-point
 ¹ Pointers
 ¹ User-defined types.

 Chapter 29. Expressions Supported473

Expressions Supported

474 IBM VisualAge�C++ for OS/2 User's Guide

Part 7. Performance Execution Trace Analyzer

This part of the User's Guide describes the VisualAge C++ Performance Analyzer,
which you can use to help you understand and improve the performance of your
programs.

Note: Additional information is available in the Performance Analyzer online Help
facility. To access this information, select General help from the Help menu
on any Performance Analyzer window. After the Help facility starts, you can
view the table of contents by selecting Contents from the Options menu.

For an index of Performance Analyzer topics, select Help index from the
Help menu on any Performance Analyzer window.

You may find that the hypertext links in the online Help are easier to use.

Chapter 30. Introducing the Performance Analyzer 477
New and Enhanced Features. 477

Chapter 31. Preparing Your Program . 479
Compiling and Linking Your Program. 479
Tracing Dynamic Link Libraries (DLLs) . 480
Tracing System Calls . 480
Creating User Events in Your Program. 481
Starting and Stopping the Performance Analyzer from Your Program. 482
Understanding Overhead Time. 483

Chapter 32. Starting the Performance Analyzer 485
Starting from OS/2 . 485
Starting from WorkFrame . 487
Exiting the Performance Analyzer . 487

Chapter 33. Creating Trace Files . 489
Creating a Customized Trace File. 490
Saving Trace File Settings . 495

Chapter 34. Using the Performance Analyzer Diagrams 497
Opening a Trace File in a Diagram . 498

Chapter 35. Introducing the Performance Analyzer Windows 499
Performance Analyzer - Specify Profile Location Window. 499
Performance Analyzer - Window Manager Window. 500

 Copyright IBM Corp. 1992, 1995 475

Create Trace Window . 504
Trace Generation Window . 505
Application Monitor Window . 511
Analyze Trace Window . 512

Chapter 36. Managing Trace Files . 515
Using Filtering .515
Using Scaling .516
Using Scrolling .516
Using Multiple Views . 516
Recognizing Patterns .517
Understanding Correlation .517

Chapter 37. Call Nesting Diagram . 519
Areas of the Call Nesting Diagram. 520

Chapter 38. Dynamic Call Graph . 525
Dynamic Call Graph Arcs and Nodes. 526
Areas of the Dynamic Call Graph . 527
Dynamic Call Graph Zoom Bar . 529
Dynamic Call Graph Function Information Window. 530
Dynamic Call Graph Who Calls Whom Window. 531

Chapter 39. Execution Density Diagram . 533
Areas of the Execution Density Diagram. 534
Execution Density Current Column Indicator. 538
Execution Density Vertical Ruler . 538

Chapter 40. Statistics Diagram .539
Areas of the Statistics Diagram. 539

Chapter 41. Time Line Diagram . 545
Areas of the Time Line Diagram. 546
Time Line Vertical Ruler . 550

476 IBM VisualAge�C++ for OS/2 User's Guide

Introducing the Performance Analyzer

30 Introducing the Performance Analyzer

The IBM VisualAge C++ for OS/2, V3.0 Performance Analyzer is an application that
helps you understand and improve the behavior of IBM C and C++ programs.

The Performance Analyzer traces the execution of a program and creates a trace file.
The trace file contains trace analysis data that can be displayed in diagrams. Using
these diagrams, you can improve program performance, examine occurrences that
produce faults, and in general, understand what happens when a program runs.

The Performance Analyzer does not replace static analyzers or debuggers, but it can
complement them by helping you understand aspects of the program that would
otherwise be difficult or impossible to see.

For instance, with the Performance Analyzer you can:

Time and tune programs
The Performance Analyzer time stamps each trace event using a high
resolution clock (about 838 nanoseconds per clock tick). As a result, the trace
file contains a detailed record of when each traced function was called and
when it returned.

The trace data also shows how long each function runs, which helps you find
hot spots.

Locate program hangs and deadlocks
The Performance Analyzer provides a complete history of events leading up to
the point where a program stops. You can view the function call stack from
anywhere in the program.

Trace multithreaded interactions
When multithreaded programs are traced, you can look at the sequencing of
functions across threads in some of the diagrams. This highlights problems
within critical areas of the program.

New and Enhanced Features
Performance Analyzer - Window Manager window

The Performance Analyzer - Window Manager window is the control
window for the Performance Analyzer. From this window, you can start most
Performance Analyzer functions. For instance, you can:
¹ Start creating a new trace file
¹ Start analyzing an existing trace file
¹ Open and close a diagram.

 Copyright IBM Corp. 1992, 1995 477

Introducing the Performance Analyzer

Trace On and Trace Off push buttons
These buttons, which appear on the Application Monitor window, let you
start and stop the trace of your program.

WorkFrame integration
If you have started the Performance Analyzer from WorkFrame, you can:
¹ Get index Help for functions other than those that are part of your

product.
¹ Start the WorkFrame editor from a Performance Analyzer diagram and

edit your source code.
¹ Start other programs from the Performance Analyzer.

Tracing capability in dynamic link libraries
In addition to tracing functions in the executable file, the Performance
Analyzer can trace your program’s activity in:
¹ Statically or dynamically linked dynamic link libraries (DLLs).
¹ The following system libraries:

 – DOSCALL.DLL
 – PMGPI.DLL
 – PMWIN.DLL

¹ Dynamically linked load-on-call DLLs. If you only want to trace a
load-on-call DLL, the Trace Generation window will not have any
executables or DLLs listed in the window, and you will receive an
informational message.

64 threads
The Performance Analyzer can trace up to 64 threads. The diagrams show
activity on all or selected threads.

Pop-up menus
Clicking mouse button two in most diagrams displays pop-up menus that let
you quickly access frequently used functions.

Time find capability in Call Nesting
The Call Nesting diagram has a search capability that lets you go to specific
times in the trace file.

Time Line diagram
The Performance Analyzer can display user events in the Time Line diagram.

Status area
Each diagram has a status area, which shows you detailed information about
the trace file data.

Vertical ruler
Many diagrams have a Vertical Ruler that shows your location in the trace
file.

478 IBM VisualAge�C++ for OS/2 User's Guide

Preparing Your Program for the Performance Analyzer

31 Preparing Your Program

Before you create a trace file and begin using the Performance Execution Trace
Analyzer, you must compile and link your program with the proper options. This is

described in “Compiling and Linking Your Program.”

The Performance Analyzer provides several ways to customize trace files. If you
want to customize a trace file, you may have to complete some steps before you
compile and link your program.For more information and instructions, see the
following topics:

¹ “Tracing Dynamic Link Libraries (DLLs)” on page 480
¹ “Tracing System Calls” on page 480
¹ “Creating User Events in Your Program” on page 481
¹ “Starting and Stopping the Performance Analyzer from Your Program” on

page 482.

Compiling and Linking Your Program
You must compile and link your program with the proper options before you create a
trace file and analyze it with the Performance Analyzer.

 Compiling
When compiling your program, use the following options:

/Gh Includes the profile hooks that allow the Performance Analyzer to monitor
your executable.

/Ti Includes debugging information in the compiled object file.

 Linking
You must link the CPPOPA3.OBJ object file into your program.

When linking your program, use the following options:

/DE Instructs the linker to include debug information in the executable (EXE) or
dynamic link library (DLL) file.

/NOE Instructs the linker not to search for symbols in the extended dictionaries of
the libraries being linked.

 Copyright IBM Corp. 1992, 1995 479

Preparing Your Program for the Performance Analyzer

The following example shows how to compile and link a program called
SAMPLE.EXE for use with the Performance Analyzer. The required object file is
highlighted in bold.

Compile:

icc /c /Ti /Gh sample.c

Link:

icc /b"/DE /NOE" /FeSAMPLE.EXE sample.obj cppopa3.obj

Tracing Dynamic Link Libraries (DLLs)
You can trace statically or dynamically linked DLLs and load-on-call DLLs using the
Performance Analyzer. Compile and link any DLL to be traced. For instructions,

see “Compiling and Linking Your Program” on page 479.

You can trace DLLs without tracing the main program that calls the DLLs.

The tracing of load-on-call DLLs occurs automatically; it cannot be suppressed.
Also, you cannot set triggers, or enable or disable functions in dynamically linked
DLLs.

Tracing System Calls
If you want to trace calls into the OS/2 Toolkit Application Programming Interface
(API), specify the following Performance Analyzer libraries before the OS/2 libraries
in your link statement. You can link one or more libraries.

If you want to trace file accesses, you must link the _DOSCALL.LIB library.

Notes:

¹ Output produced by cout stream objects is stored in the operating
system’s buffer and is not shown until tracing has stopped, and DosCalls
for these calls are not displayed in the trace file.

¹ It is not possible to trace events in the DOSCALL intercept library only.
The Performance Analyzer looks for at least one event from your
program before logging DOS call events. If you link the
_DOSCALL.LIB library, compile your program with the /Gh option to
include events from your program in the trace file.

480 IBM VisualAge�C++ for OS/2 User's Guide

Preparing Your Program for the Performance Analyzer

The APIs and their corresponding Performance Analyzer libraries are as follows.
Each library listed also has an associated DLL.

API Library
DosCalls _DOSCALL.LIB
WinCalls _PMWIN.LIB
GpiCalls _PMGPI.LIB

Important: The order in which these libraries are specified in the link statement is
critical. If the replacement libraries do not precede the OS/2 libraries in the
link statement, the Performance Analyzer will not interpret and trace the API
calls.

Creating User Events in Your Program
The CPPOPA3.OBJ file contains an entry point called PERF, that accepts calls from
the program you are tracing. Calls to the PERF entry point at run time are referred to
as user events. User events cause text strings to be inserted into the trace file.

To add a call to the PERF entry point:

1. Declare a prototype for the PERF entry point.

If you add a user event to your program source file, you must also include a
prototype for the PERF entry point.

For C and C++ programs, the prototype will be inserted for you when you
compile your program if you place the following statement at the beginning of
your source file:

 #include <icsperf.h>

Note: If you want to insert the prototype yourself, the prototypes for C and C++
programs are as follows:

C Prototype

VOID PERF (PSZ string);

C++ Prototype

EXTERN "C" {VOID PERF(PSZ string);}

2. Add a call to the entry point everywhere you want a user event generated.

The following is an example of a call to the PERF entry point:

 PERF (string);

where:
string is an ASCIIZ string.

 Chapter 31. Preparing Your Program481

Preparing Your Program for the Performance Analyzer

When such a call is made, the string is placed in the trace file. You can see the
string in the Call Nesting, Statistics, and Time Line diagrams.

Warning:
¹ The string must consist of unique, static, alphanumeric characters.

Otherwise, you will receive unpredictable results.
¹ The string must exist in storage when your program terminates. If the string

exists in automatic storage on the stack or storage defined in a dynamically
loaded DLL, thestring will appear in the trace file, but the text may not
appear as it was defined. (The string can be allocated on the heap if its
contents are not deleted when your program terminates.)

Starting and Stopping the Performance Analyzer from Your Program
The CPPOPA3.OBJ file contains entry points called PerfStart and PerfStop that
accept calls from the program you are tracing. Calls to the PerfStart and PerfStop
entry points cause the Performance Analyzer to start and stop tracing, respectively.
By putting these calls into your source code, you can control precisely when the
Performance Analyzer starts and stops recording events during program execution.

To turn tracing:

¹ On, call the PerfStart entry point.
¹ Off, call the PerfStop entry point.

Notes: :

1. If the trace is already on, calling PerfStart has no effect. If the trace is
already off, calling PerfStop has no effect.

2. You can also start and stop tracing with the Trace on and Trace off push
buttons on the Application Monitor window.

You can place calls to the PerfStart and PerfStop entry points anywhere in your
program, even in different functions, object modules, or DLLs.

To add calls to the PerfStart and PerfStop entry points:

1. Declare a prototype for the PerfStart and PerfStop entry points.

For C and C ++ programs, the prototypes will be inserted for you when you
compile your program if you place the following statement at the beginning of
your source file:

 #include <icsperf.h>

Note: If you want to insert the prototypes yourself, the prototypes for C and
C++ programs are as follows:

C Prototype

482 IBM VisualAge�C++ for OS/2 User's Guide

Preparing Your Program for the Performance Analyzer

VOID PerfStart (VOID);
VOID PerfStop (VOID);

C ++ Prototype

EXTERN "C" {VOID PerfStart (VOID);}
EXTERN "C" {VOID PerfStop (VOID);}

2. Add a call to the appropriate entry point everywhere you want to start or stop
tracing.

The following example shows how calls to the PerfStart and PerfStop entry
points could be placed in your program:

 .
 .
 .

PerfStop(); // turn off tracing here
 .
 .
 .

PerfStart(); // resume tracing here

Understanding Overhead Time
When you compile and link your program, the compiler generates hooks that enable
the Performance Analyzer to intercept trace events. The time at which each trace
event executes is recorded in the trace file.

These hooks cause a small monitoring function to be called instead of the program’s
callee function. The monitoring function time stamps the event and then calls the
program's callee function.

The monitoring function is run in the program’s address space, thereby avoiding the
high overhead of an operating system context switch when events are recorded. As a
result, it does not significantly affect the program’s runtime performance. However,
the monitoring function does take some small amount of time to execute. In order to
compensate for this additional time introduced by the monitoring function, the
diagrams adjust the timings appropriately.

The Performance Analyzer dynamically determines how much time it takes to execute
the monitoring function by internally calling it several times and computing an
average prior to executing the program. As a result, it is recommended that you shut
down other programs on your desktop so they will not interfere with the Performance
Analyzer’s timings.

If the program is run stand-alone, events are not recorded and should run at or near
the same speed as the same program compiled without the profile hooks.

 Chapter 31. Preparing Your Program483

Preparing Your Program for the Performance Analyzer

484 IBM VisualAge�C++ for OS/2 User's Guide

Starting the Performance Analyzer

32 Starting the Performance Analyzer

After completing the instructions in Chapter 31, “Preparing Your Program” on
page 479, you are ready to create a trace file and use the Performance Analyzer to
analyze your program.

You can start the Performance Analyzer either from OS/2, or from WorkFrame.

Starting from OS/2
The command you enter to start the Performance Analyzer depends on which of the
following you want to do first:

¹ Trace an executable
¹ Analyze an existing trace file.
¹ Display the Performance Analyzer’s main control window

Tracing an Executable
¹ If you have an executable you want to trace, you can start the analyzer from an

OS/2 command prompt or a command file by entering:

icsperf myprog parms

Where:

myprog Represents an executable file name. This is optional.
parms Represents executable parameters. These are optional.

Note:: The first time you start the Performance Analyzer, a profile window
appears and prompts you to specify where the Performance Analyzer’s
profile file should be located. If you want the default, press the OK push
button. See “Performance Analyzer - Specify Profile Location
Window” on page 499 for more information.

¹ You can also include the /go option in the command:

icsperf /go myprog parms

Where:

/go Option that executes your program, creates a trace file, and then exits
the Performance Analyzer. This option is useful if you have several
programs (requiring no manual intervention) that you want to run in
succession from an OS/2 command file. This is optional.

myprog Represents an executable file name.
parms Represents executable parameters. These are optional.

 Copyright IBM Corp. 1992, 1995 485

Starting the Performance Analyzer

Analyzing an Existing Trace File
If you want to start analyzing a trace file you have already created, you can start the
analyzer from an OS/2 command prompt or a command file by entering:

icsperf /x myprog.trc

Where:

/x Represents one or more of the following analyzer options. If you
have already created a trace file, these options cause the trace file to
be displayed in their respective diagrams. Once you are familiar
with the Performance Analyzer application, you can quickly open the
diagrams by entering as many of these options as you want in your
startup command. This is optional.

/cn Displays the trace file in the Call Nesting diagram.

/ed Displays the trace file in the Execution Density diagram.

/cg Displays the trace file in the Dynamic Call Graph.

/ss Displays the trace file in the Statistics diagram.

/tl Displays the trace file in the Time Line diagram.

myprog.trc Represents a trace file name.

Displaying the Performance Analyzer’s Main Control Window
If you enter the following command, the analyzer’s main control window, the
Performance Analyzer - Window Manager window appears.

 icsperf

From this window, you can start either tracing an executable or analyzing an existing
trace file. See Chapter 33, “Creating Trace Files” on page 489 to continue.

Analyzing WorkPlace Shell Objects
To analyze WorkPlace Shell objects:

1. Replace theRUNWORKPLACE line in your config.sys file with the following
line:

 SET RUNWORKPLACE=C:/OS2/CMD.EXE

2. Restart your system.
3. At an OS/2 prompt, type the following:

 icsperf c:/os2/pmshell

486 IBM VisualAge�C++ for OS/2 User's Guide

Exiting the Performance Analyzer

Starting from WorkFrame
Before you start the Performance Analyzer from the WorkFrame environment, you
must:

1. Create a project for the program you want to analyze.

Note: For information on creating a project, refer to WorkFrame documentation.

2. Compile and link your program with Performance Analyzer options.

Note: This is described in “Compiling and Linking Your Program” on
page 479.

3. Open a project folder in the WorkFrame window.

4. Highlight an object that represents an executable file or a trace file.

5. Click mouse button two on the highlighted object to display a pop-up menu.

 6. SelectAnalyze.

Exiting the Performance Analyzer
If you want to exit the Performance Analyzer, and are not in the process of creating a
trace file, do the following:

1. Select the Exit the Performance Analyzer choice from one of the following
menus:

¹ File menu on the Performance Analyzer - Window Manager window
¹ Application menu on the Trace Generation window
¹ Trace file menu on any of the diagrams.

2. Select Yes when prompted.

If you want to exit the Performance Analyzer while a trace file is being created, do
the following:

1. Click on the Stop push button on the Application Monitor window.

2. Click on the Cancel push button on the Analyze Trace window.

3. Select the Exit the Performance Analyzer choice from the File menu on the
Performance Analyzer - Window Manager window.

4. Select Yes when prompted.

 Chapter 32. Starting the Performance Analyzer487

Exiting the Performance Analyzer

488 IBM VisualAge�C++ for OS/2 User's Guide

Creating Trace Files

33 Creating Trace Files

After compiling and linking your program, you can start the Performance Analyzer
and create a trace file. A trace file contains a chronological sequence of events that
occur during the execution of your program.

By analyzing the trace file, you can learn about your program's structure, locate and
diagnose problems, and pinpoint ways to improve performance. The Performance
Analyzer provides five diagrams in which you can analyze the trace file. Each
diagram presents a different view of the trace file to give you an overall idea of how
your program performs. The diagrams are as follows:

 ¹ Call Nesting
¹ Dynamic Call Graph

 ¹ Execution Density
 ¹ Statistics
 ¹ Time Line

Note: Before creating a trace file, you must prepare your program for use by the
Performance Analyzer. For more information, see Chapter 31, “Preparing Your
Program” on page 479.

To create a trace file:

1. Click on the Create Trace push button in the Performance Analyzer - Window
Manager window.

2. Type the full path name and the file name of the program you want to trace in
the Program Name: entry field. If the program is in your current directory, you
do not have to type the path name.

Note: If you are not sure where the file is located, select the Find push button.

3. Type any parameters that you want to pass to your program in the Program
Parameters: entry field.

Note: This entry field is optional.

4. If you want the trace file to have a different path and file name than the defaults,
type a path and file name in the Trace File Name: entry field.

The default path name is the directory where your program resides. The default
trace file name ismyprog.trc, where myprog is the name of the program you are
tracing.

Note: This entry field is optional.

 Copyright IBM Corp. 1992, 1995 489

Creating a Customized Trace File

5. Type any comments that you want to make about your trace in the Trace File
Description: entry field.

Note: This entry field is optional.

6. Select the OK push button. The Trace Generation window appears.

7. Select the Trace push button in the Trace Generation window.

Your program begins executing. When your program ends, the Analyze Trace
window is displayed.

8. Click on the check box next to each diagram in which you want to view the trace
file.

Creating a Customized Trace File
By default, the Performance Analyzer generates event information for every function
possible. However, this sometimes causes the trace file to become large and difficult
to manage. You can limit the size of your trace file by changing the parameters that
control its size prior to running your program. The following parameters affect the
size of the trace file.

¹ Enabled or disabled state of components
¹ Call depth setting for each thread
¹ Time stamp setting
¹ File access setting

 ¹ Trigger settings.

Using these parameters to control the size of your trace file is explained on the
following pages.

You can also customize the trace file by:

¹ Disabling buffer flushing or changing the buffer size setting to specify how often
the buffer flushes to the trace file. For more information, see “Changing the
Buffer Size” on page 494. or the online Help topic “Buffer Control Window”.

¹ Giving the trace file a file name other than the default. The default file name is
myprog.trc, where myprog is the name of the program you are tracing. For more
information on specifying a different trace file name, see the online Help topics
“Name Trace File Choice” and “Unique Trace File Name Choice”.

¹ Attaching a description to the trace file. A description can make a trace file
easier to identify, especially when you create more than one trace file from the
same program and use different options for each trace. The description is
displayed in the Status Area of any open diagram. For more information on
attaching a description to a trace file, see the online Help topics “Name Trace
File Choice” and “Unique Trace File Name Choice”.

490 IBM VisualAge�C++ for OS/2 User's Guide

Creating a Customized Trace File

Enabling and Disabling Components
Your program’s components are listed on the Trace Generation window.

Note: A component can be an executable, a dynamic load library file, an object
(OBJ) file, or a function. EXEs and DLLs contain object files, and object files
contain functions. To view or hide components in the window, click on the
plus/minus icon to expand and contract EXEs, DLLs, and OBJ files.

The Performance Analyzer’s default is to enable all components that have been
compiled and linked with the proper options. When a component is enabled, data for
that component will be included in the trace file when the component is executed.
When the component is disabled, no data is recorded in the trace file when the
component is executed.

Trace files containing data for all enabled components can sometimes become large
and difficult to manage. You can limit the amount of data collected in your trace file
by selecting specific components to enable and disable from the Edit menu on the
Trace Generation window.

When enabling and disabling components, remember the following:

¹ When you disable:
– An EXE, DLL, or OBJ file, the Performance Analyzer disables all functions

within the selected file and removes any triggers set on functions within the
file.

– A function, the Performance Analyzer removes any trigger set on it.
¹ When you enable:

– An EXE, DLL, or OBJ file, the Performance Analyzer enables all functions
within the selected file.

¹ When you set a trigger on a disabled function, the Performance Analyzer enables
the function.

You can enable or disable a component in one of the following ways:

¹ Click on the file name or icon of the component you want to enable or disable.
Then select the appropriate enable or disable choice from the Edit menu on the
Trace Generation window.

¹ Double-click on the file name or icon of the component you want to enable or
disable.

¹ Click mouse button two on the file name or icon of the component you want to
enable or disable. Then select the appropriate enable or disable choice from the
pop-up menu.

 Chapter 33. Creating Trace Files491

Creating a Customized Trace File

Note: If the icon next to a component is:

¹ Green (it also has no slash mark), the component is enabled.
¹ Red (it also has a slash mark), the component is disabled.
¹ White, the component cannot be traced.

For a description of the menu choices you can use to enable and disable components,
see “Trace Generation Menu Bar Summary” on page 506 or the Performance

Analyzer online Help facility.

Selecting the Call Depth for Each Thread
You may want to limit the call depth to isolate an area of interest and reduce the
amount of trace data.

Select Call depth from the Options menu on the Trace Generation window to
select the number of calls you want to trace or to specify threads you want to include
or exclude from the trace file. When the Call Depth window is displayed, you can
select as many as 64 threads with a maximum nesting depth of 128 for each thread.
The default is to have all threads selected with the maximum depth of 128.

Using Time Stamps
Select Time stamp events from the Options menu on the Trace Generation window
to choose whether to time stamp events during the trace analysis. Disabling Time
stamp events causes your trace file to be smaller because time stamps are not stored.
It does not limit the number of events collected in the trace file.

The Performance Analyzer uses an internal timer to get high resolution time stamps.
While logging events, the Performance Analyzer adds a small amount of overhead
time to the normal runtime speed of the program. The time added is negligible, so
you may not be able to tell the difference between code that has been traced and code
that has not, even for highly interactive programs.

The overhead time added by the Performance Analyzer is not shown in the times
reported for user code in all of the Performance Analyzer diagrams. the Performance
Analyzer time stamps the buffer flush so that the buffer-flushing overhead can be
removed from the diagrams.

If you choose to create a trace file without time stamps, you can only view it in the
Dynamic Call Graph, Call Nesting, and Statistics diagrams.

492 IBM VisualAge�C++ for OS/2 User's Guide

Creating a Customized Trace File

Tracing File Accesses
When a DOS call references a file, the Performance Analyzer keeps track of the file
name associated with the traced DOS call. These calls are shown in the diagrams
under the functions that made the file accesses. They appear as function names with
their corresponding files in parentheses.

The Performance Analyzer can trace file access calls that use the following DOS
calls:

 ¹ DosOpen()
 ¹ DosRead()
 ¹ DosWrite()
 ¹ DosClose()
 ¹ DosDupHandle()
 ¹ DosResetBuffer()
 ¹ DosSetFilePtr()
 ¹ DosSetFileLocks()
 ¹ DosSetFileSize()
 ¹ DosQueryFileInfo()
 ¹ DosQueryHType()

To set file access:

Select the File access choice from the Options menu on the Trace Generation
window. A check mark appears next to the choice to indicate that the choice is
enabled.

To reset file access:

Select the File access choice from the Options menu on the Trace Generation
window. The check mark is removed to indicate that the choice is disabled.

Notes:

¹ The settings you enter are saved for the current session. If you want to save the
settings for subsequent sessions, select the Options menu and then select the
Save choice from the Settings cascaded menu.

¹ You can only select the File access choice when the _DOSCALL.LIB file is
linked with your program.

 Chapter 33. Creating Trace Files493

Creating a Customized Trace File

Setting and Removing Triggers
A trigger turns tracing on when it is called and then turns tracing off when it returns.
By setting triggers to start or stop tracing at selected points in your program, you can
control the size of your trace file. You can set and remove triggers on functions.
The Performance Analyzer allows you to set multiple triggers.

You can set and remove triggers from the Edit and Function Pop-up menus on the
Trace Generation window. Remember the following when setting triggers:

¹ If triggers are set, the Performance Analyzer traces all enabled components and
only those functions on which triggers are set. If no triggers are set, the
Performance Analyzer traces all enabled components.

¹ If a trigger function is nested within another trigger function, tracing is turned off
only after the outer function returns.

¹ A function that has a trigger set on it has the letter T in the icon next to its
function name in the Trace Generation window.

¹ If you disable an EXE, DLL, or object file, the Performance Analyzer disables all
functions within the selected file and removes any triggers set on functions within
the file.

¹ If you set a trigger on a disabled function, the Performance Analyzer enables the
function.

¹ If you disable a function, the Performance Analyzer removes any trigger set on it.

Changing the Buffer Size
During a trace analysis, the Performance Analyzer and your program share memory
with the trace buffer. The trace buffer allows the Performance Analyzer to log events
that are running in the address space of the program.

When the trace buffer is full, the Performance Analyzer:

1. Stops the program
2. Time stamps the start of the buffer flush
3. Writes the events in the buffer to the trace file
4. Time stamps the end of the buffer flush
5. Restarts the program.

Note: Time stamping the buffer flush allows the diagrams to remove the
buffer-flushing overhead time.

You can select the size of the trace buffer, and thereby change the time spent flushing
the buffer to the trace file. When you increase the size of the buffer, more events are
recorded before the Performance Analyzer flushes the buffer. Likewise, when you
decrease the size of the buffer, fewer events are recorded before the Performance
Analyzer flushes the buffer.

494 IBM VisualAge�C++ for OS/2 User's Guide

Saving Trace File Settings

You can also enable buffer wrapping, which causes the Performance Analyzer to
overwrite older events in the buffer with newer ones. Since the buffer is flushed only
when the program ends, less disk space is needed for the trace file, but some trace
data is lost. The default for buffer wrapping is disable.

Select Buffer Control from the Options menu on the Trace Generation window to
change the buffer size or to enable buffer wrapping. For more information on
disabling buffer wrapping, see the online Help topic “Buffer Control Window”.

Naming the Trace File
The default file name for a trace file is myprog.trc, where myprog is the file name of
the program you are tracing. When you run several traces of the same program, the
Name trace file choice lets you name each trace file and describe what you did
differently for each trace.

For example, if you disable an object file for the first trace and disable time stamps
for the second trace, you could name the first trace file TRACE1 and enter Disabled
object file for its description. Likewise, you could name the second trace file
TRACE2 and enter Disabled time stamps for its description.

A trace file's description is displayed in the Status Area of any open diagram.

To name a trace file, select Name trace file from the Options menu on the Trace
Generation window. In the Name Trace File window, you can enter your own trace
file name and a short description.

Saving Trace File Settings
Trace settings (settings that determine how a program is traced) that you enter are
saved for the current session. You can save some trace settings for subsequent traces.
If you want to save settings for subsequent sessions, select the Options menu and
then select the Save choice from the Settings cascaded menu.

For information about specific settings saved, see “Save Choice” in the Performance
Analyzer Help facility.

 Chapter 33. Creating Trace Files495

Saving Trace File Settings

496 IBM VisualAge�C++ for OS/2 User's Guide

Using the Performance Analyzer Diagrams

34 Using the Performance Analyzer Diagrams

After you have created your trace file, the Performance Analyzer provides five
diagrams in which you can view and analyze the data. Each diagram presents a
different view of the trace file to give you an overall idea of how your program
performs.

The following list contains a description of each diagram and shows the icon that
represents it in the Performance Analyzer - Window Manager window when the
diagram is open.

Icon/Diagram Description

 Call Nesting Shows the flow of control and interactions among
the various threads. Use this diagram to diagnose
problems with critical sections, sequencing
protocols, thread delays, and program deadlocks
and crashes.

 Dynamic Call Graph Shows an overall view of the program and the
flow of the program. You can easily see where
the most time was spent.

 Execution Density Shows trends of program execution by displaying
the trace data chronologically from top to bottom
as thin horizontal lines of various colors in
different columns.

 Statistics Provides a textual report of execution time by
function or executable. You can use this diagram
to find hot spots in the overall execution. You
can also use this diagram to determine which
user functions to inline.

 Copyright IBM Corp. 1992, 1995 497

Using the Performance Analyzer Diagrams

 Time Line Places the function calls and returns in sequence
along a time line.

Opening a Trace File in a Diagram
To open a trace file in any diagram, use any of the following methods:

¹ From the Trace File menu of an open diagram, select Open as and then select a
diagram from the cascaded menu.

¹ Click mouse button two on the file name or icon of a trace file in the
Performance Analyzer - Window Manager window, then select a diagram from
the Trace File pop-up menu.

¹ Double-click on the file name or icon of a trace file in the Performance
Analyzer - Window Manager window, then select one of the diagram check
boxes in the Analyze Trace window.

¹ Click on the Analyze Trace push button in the Performance Analyzer -
Window Manager window, and then, in Analyze Trace window, enter a trace
file name and select one of the diagram check boxes.

498 IBM VisualAge�C++ for OS/2 User's Guide

Introducing the Performance Analyzer Windows

35 Introducing the Performance Analyzer Windows

The following pages briefly describe the Performance Analyzer windows. For more
complete information, see the Performance Analyzer online Help facility. The
primary Performance Analyzer windows are:

¹ Performance Analyzer - Specify Profile Location Window
¹ Performance Analyzer - Window Manager Window
¹ Create Trace Window
¹ Trace Generation Window
¹ Application Monitor Window
¹ Analyze Trace Window.

Performance Analyzer - Specify Profile Location Window
When you start the Performance Analyzer for the first time, the Performance
Analyzer - Specify Profile Location window appears.

Figure 119. Performance Analyzer - Specify Profile Location Window

This window prompts you to type the path name where you want to store the
ICSPERF.INI file. The ICSPERF.INI file stores your session settings. The default
path name is the drive and directory where your OS/2 operating system is installed.
If you want to store the ICSPERF.INI file in a drive and directory other than the
default, type the full path name in the Path entry field, and then select OK. The
ICSPERF.INI file is created in the directory you specified.

 Copyright IBM Corp. 1992, 1995 499

Introducing the Performance Analyzer Windows

Performance Analyzer - Window Manager Window
The Performance Analyzer - Window Manager window is the Performance
Analyzer's main control window and is always displayed while the Performance
Analyzer is running. Once you have properly compiled and linked your program and
started the Performance Analyzer, you can start most functions from this window,
including creating and analyzing trace files.

Figure 120. Performance Analyzer - Window Manager Window

When you view a trace file, this window lists the file names of your executable, your
trace file, and each open diagram.

Areas of the Performance Analyzer - Window Manager Window
The following topics describe the areas of the Window Manager window.

Window
Manager
Menu Bar
Summary

The menu choices in theWindow Manager window are as follows:

File From this menu, you can select:

Create Trace
Displays the Create Trace window, which lets you start
creating a trace file for your program.

Analyze Trace
Displays the Analyze Trace window, which lets you open a
diagram and start analyzing your program.

Exit Performance Analyzer
Lets you end the Performance Analyzer application.

500 IBM VisualAge�C++ for OS/2 User's Guide

Introducing the Performance Analyzer Windows

View From this menu, you can select:

Tree lines
Displays tree lines on the Performance Analyzer - Window
Manager window.

Show icons
Displays icons that identify file types on the Performance
Analyzer - Window Manager window.

Remove all windows
Removes and closes all open diagrams from your screen.

Options From this menu, you can select:

Font Displays the Font window, which lets you
change the font, font style, and font size for
the windows.

Quick exit Provides a fast way to exit the Performance
Analyzer.

Search paths When you are working in the WorkFrame
environment, this choice displays a window in
which you can specify where the Performance
Analyzer can locate source files for editing.

Unique trace file name This choice gives each trace file a different
name, which allows you to save several trace
files created from the same program.

Settings Displays a cascaded menu that lets you save
settings or restore initial default settings.

Project (only available when working in the WorkFrame environment)
This menu appears on the Performance Analyzer - Window Manager
window when you start the Performance Analyzer within the WorkFrame
environment.

WorkFrame actions that can be launched from the Performance
Analyzer - Window Manager window will appear in this menu. To
have your program appear in this list, you must first associate your
program with a Type Name of EXE in the WorkFrame Tool Setup
window.

Help Select choices from the Help menu to display the various types of Help
information. From this menu, you can select:

Help index
Displays an index of Help topics.

General help
Displays Help for the active window.

 Chapter 35. Introducing the Performance Analyzer Windows501

Introducing the Performance Analyzer Windows

Using help
Describes how to use Help.

How do I?
Displays task Help.

Product information
Displays information about the Performance Analyzer.

Window
Manager
Pop-up
Menus

The pop-up menus allow you to quickly access features that are frequently used.
The Window Manager window has the following pop-up menus:

¹ Window Manager Executable pop-up menu
¹ Window Manager Trace File pop-up menu
¹ Window Manager Diagram pop-up menu.

Window Manager Executable Pop-up Menu: To access this pop-up menu, click
mouse button two on an the file name of an executable or the icon next to it. The
menu is displayed with the following choices:

Create trace
Displays the window from which you can create a trace file. The file
name on which you clicked appears in the window's Program Name
entry field.

Close
Closes the selected executable, its associated trace file, and all diagrams
in which the trace data is displayed.

Window Manager Trace File Pop-up Menu: To access this pop-up menu, click
mouse button two on the file name of a trace file or the icon next to it. The menu is
displayed with the following choices:

Analyze trace
Displays the window from which you can select Performance Analyzer
diagrams to analyze the trace file. The file name on which you clicked
appears in the window's Trace File Name entry field.

Open As Call Nesting
Opens the Call Nesting diagram and displays the trace file in it.

Open As Dynamic Call Graph
Opens the Dynamic Call Graph and displays the trace file in it.

Open As Execution Density
Opens the Execution Density diagram and displays the trace file in it.

Open As Statistics
Opens the Statistics diagram and displays the trace file in it.

Open As Time Line
Opens the Time Line diagram and displays the trace file in it.

502 IBM VisualAge�C++ for OS/2 User's Guide

Introducing the Performance Analyzer Windows

Close
Closes the selected trace file and all diagrams in which the trace file is
displayed.

Delete File
Deletes the selected trace file from your hard disk if you select Yes in the
Trace File - Delete window (displayed when you select this choice).

Window Manager Diagram Pop-up Menu: To access this pop-up menu, click mouse
button two on the file name of a diagram or the icon next to it. The menu is
displayed with the following choices:

Display
Makes the selected diagram active and brings it to the foreground of your
desktop.

Close
Closes the selected diagram.

Push Buttons The Window Manager window has the following push buttons:

Create Trace
Displays the Create Trace window from which you can start creating a
trace file.

Analyze Trace
Displays the Analyze Trace window from which you can select
Performance Analyzer diagrams to analyze a trace file.

 Chapter 35. Introducing the Performance Analyzer Windows503

Introducing the Performance Analyzer Windows

Create Trace Window
The Create Trace window lets you specify the name of the program that you want to
trace and any parameters that you want to include in the trace.

Figure 121. Create Trace Window

You can display the Create Trace window from the Performance Analyzer -
Window Manager window by:

¹ Clicking on the Create Trace push button
¹ Selecting the Create trace choice from the File menu.
¹ Clicking mouse button two on an executable file name or icon (if displayed in

the window), and selecting the Create trace choice from the pop-up menu.

Areas of the Create Trace Window
The following topics describe the areas of the Create Trace window.

Program Name: Entry Field
Type the full path name and program you want to trace in the Program Name: entry
field. If the program is in your current directory, you do not have to type the path.

Note: If you are not sure where the file is located, select the Find push button.

Optional
Entry Fields

The Create Trace window has the following optional entry fields:

Program Parameters:
Type any parameters that you want to pass to your program in the
Program Parameters: entry field. This field is optional.

504 IBM VisualAge�C++ for OS/2 User's Guide

Introducing the Performance Analyzer Windows

Trace File Name:
Type the name of the path and trace file in the Trace File Name: entry
field.

The Performance Analyzer places the trace file in the current directory
unless you specify a path. The default name for the trace file is
myprog.trc, where myprog is the name of the program you are tracing.
This field is optional.

Trace File Description:
Type any comments that you want to make about your trace in the Trace
File Description: entry field. This field is optional.

Push Buttons The Create Trace window has the following push buttons:

Find Displays the Find File window, which helps you locate a file that you
want to trace.

OK Saves the changes and closes the window.
Cancel Exits the current window without saving any changes.
Help Displays information about the current window.

Note: Before creating a trace file, you must compile and link your program with the
proper options as described in “Compiling and Linking Your Program” on
page 479.

Trace Generation Window
The Trace Generation window lists the file names of the preloaded components in
your program and lets you control which parts of your program are traced.

A component can be an executable file, a dynamic link library file, an object file, or a
function. EXE and DLL files contain object files, and object files contain functions.

 Chapter 35. Introducing the Performance Analyzer Windows505

Introducing the Performance Analyzer Windows

Figure 122. Trace Generation Window

To view or hide components, click on the plus/minus icons to expand and contract
EXE, DLL, and object files.

Note: Before creating a trace file, you must compile and link your program with the
proper options as described in “Compiling and Linking Your Program” on
page 479.

Areas of the Trace Generation Window
The following topics describe the areas of the Trace Generation window.

Trace
Generation
Menu Bar
Summary

The menu choices in theTrace Generation window are as follows:

Application From this menu, you can select:
Window Manager

Displays the Performance Analyzer - Window
Manager window.

Exit the Performance Analyzer
Exits the Performance Analyzer application.

Edit The Edit menu is a dynamic menu, which displays choices based
on the type of component selected. From this menu, you can
select:
Enable all executables

Enables all functions in all executable files.
Disable all executables

Disables all functions in all executable files.

506 IBM VisualAge�C++ for OS/2 User's Guide

Introducing the Performance Analyzer Windows

Enable executable
Enables all functions in a selected executable file. This
choice is available when you select a disabled
executable.

Disable executable
Disables all functions in a selected executable file.
This choice is available when you select an enabled
executable.

Enable object file
Enables all functions in a selected object file. This
choice is available when you select a disabled object
file.

Disable object file
Disables all functions in a selected object file. This
choice is available when you select an enabled object
file.

Enable function
Enables a function. This choice is available when you
select a disabled function.

Disable function
Disables a function. This choice is available when you
select an enabled function.

Set trigger
Sets a trigger on a function so that the Performance
Analyzer traces the function and its associated calls.
This choice is available when you select a function that
does not have a trigger set on it.

Note: If triggers are set, the Performance Analyzer
traces all enabled components and only those functions
on which triggers are set. If no triggers are set, the
Performance Analyzer traces all enabled components.

Remove trigger
Removes a trigger on a function so that the
Performance Analyzer does not trace the function and
its associated calls. This choice is available when you
select a function that has a trigger set on it.

Note: If triggers are set, the Performance Analyzer
traces all enabled components and only those functions
on which triggers are set. If no triggers are set, the
Performance Analyzer traces all enabled components.

View From this menu, you can select:
Traceable filter

Displays only the components that are traceable.

 Chapter 35. Introducing the Performance Analyzer Windows507

Introducing the Performance Analyzer Windows

Tree lines
Displays lines between file names to show
relationships.

Options The choices on this menu let you set options to customize your
trace sessions. From this menu, you can select:
Buffer control

Select the size of the event log buffer, plus enable and
disable buffer wrapping.

Call depth
Select the call depth limit for each thread.

File access
Select whether to trace file accesses.

Font
Displays the Font window, which lets you change the
font, font style, and font size for the Trace Generation
window.

Name trace file
Specify a new path or file name for the trace file. Also
allows you to add or change the trace file description.

Timeout control
Select the maximum number of seconds your program
may run without logging events. This choice is useful
when your program is in a continuous loop or
deadlock.

Time stamp events
Select to log or not log time stamps.

Settings
Displays a cascaded menu that lets you save settings or
restore initial default settings.

Project This menu appears on the Trace Generation window when you
start the Performance Analyzer within the WorkFrame environment.
From this menu, you can select:
Edit source

Displays the source file for a selected object file or
function in WorkFrame’s default editor.

WorkFrame actions
WorkFrame actions that can be launched from the
Trace Generation window will appear in this menu.
To have your program appear in this list, you must first
associate your program with a Type Name of EXE in
the WorkFrame Tool Setup window.

Help This menu provides choices that display various types of Help
information. From this menu, you can select:

508 IBM VisualAge�C++ for OS/2 User's Guide

Introducing the Performance Analyzer Windows

Help index choice
Displays an index of Help topics.

General help choice
Displays Help for the active window. The online Help
panel displayed is the same panel that is displayed
when you place your cursor inside the window and
press F1.

Using help choice
Describes how to use Help.

How do I? choice
Displays task help.

Product information choice
Displays information about the Performance Analyzer.

Trace
Generation
Pop-up
Menus

Pop-up menus allow you to quickly access features that are frequently used. The
Trace Generation window has a pop-up menu for each type of program component
displayed on the window. The pop-up menu displayed depends on the type of
component you click on.

The Trace Generation window pop-up menus are as follows:

¹ Trace Generation Executable pop-up menu
¹ Trace Generation Object File pop-up menu
¹ Trace Generation Function pop-up menu.

Trace Generation Executable Pop-up Menu: To access this pop-up menu, click
mouse button two on the file name of an executable or dynamic link library file (or
the plus/minus icon next to it). The pop-up menu and the choices listed in the menu
are different if you click on another file type. The menu is displayed with the
following choices:

Disable executable
Disables the selected executable file so that the Performance Analyzer
does not record trace analysis data for it in the trace file. This choice is
available when you select an enabled executable.

Enable executable
Enables the selected executable file so that the Performance Analyzer
records trace analysis data for it in the trace file. This choice is available
when you select a disabled executable.

Trace Generation Object File Pop-up Menu: To access this pop-up menu, click
mouse button two on the file name of an object file (or the plus/minus icon next to
it). The pop-up menu and the choices listed in the menu are different if you click on
another file type. The menu is displayed with the following choices:

 Chapter 35. Introducing the Performance Analyzer Windows509

Introducing the Performance Analyzer Windows

Disable object file
Disables the selected object file so that the Performance Analyzerdoes
not record trace analysis data for it in the trace file. This choice is
available when you select an enabled object file.

Enable object file
Enables the selected object file so that the Performance Analyzer records
trace analysis data for it in the trace file. This choice is available when
you select a disabled object file.

Edit source
Displays the source file for a selected object file in WorkFrame’s default
editor. The Performance Analyzer finds the source file and opens it to
the first line of the file.

Trace Generation Function Pop-up Menu: To access this pop-up menu, click
mouse button two on the name of a function (or the plus/minus icon next to it). The
pop-up menu and the choices listed in the menu are different if you click on another
file type. The menu is displayed with the following choices:

Disable function
Disables the selected function so that the Performance Analyzerdoes not
record trace analysis data for it in the trace file. This choice is available
when you select an enabled function.

Enable function
Enables the selected function so that the Performance Analyzer records
trace analysis data for it in the trace file. This choice is available when
you select a disabled function.

Set trigger
Sets a trigger on a function so that the Performance Analyzer traces the
function and its associated calls. This choice is available when you select
a function that does not have a trigger set on it.

Note: If triggers have not been set, the Performance Analyzer traces
enabled executables, DLLs, object files, and functions (and their
associated calls). If triggers have been set, the Performance Analyzer
traces enabled executables, DLLs, and object files, but it only traces
functions (and their associated calls) on which triggers have been set.

Remove trigger
Removes a trigger on a function so that the Performance Analyzerdoes
not trace the function and its associated calls. This choice is available
when you select a function that has a trigger set on it.

Note: If triggers have not been set, the Performance Analyzer traces
enabled executables, DLLs, object files, and functions (and their
associated calls). If triggers have been set, the Performance Analyzer

510 IBM VisualAge�C++ for OS/2 User's Guide

Introducing the Performance Analyzer Windows

traces enabled executables, DLLs, and object files, but it only traces
functions (and their associated calls) on which triggers have been set.

Edit source
Displays the source file for a selected function in WorkFrame’s default
editor. The Performance Analyzer finds the source file and opens it to
the line where the function begins.

Push Button The Trace Generation window has the following push button:

Trace Use the Trace push button to close the Trace Generation window and
begin tracing your program.

Application Monitor Window
After you select the Trace push button on the Trace Generation window to start
tracing your program, the Performance Analyzer displays the Application Monitor
window.

Figure 123. Application Monitor Window

This window is displayed until your entire program has executed or you select the
Stop push button, which causes your program to stop executing. When you stop the
execution of your program, you also stop the collection of trace data.

Areas of the Application Monitor Window
The following topics describe the areas of the Application Monitor window.

Application
Monitor
Status Area

The following information is displayed in theApplication Monitor window
Status Area:

¹ Name of the program being traced
¹ Name of the trace file
¹ Number of bytes written to the trace file
¹ Number of events written to the trace file

 Chapter 35. Introducing the Performance Analyzer Windows511

Introducing the Performance Analyzer Windows

Push Buttons The Application Monitor window has the following push buttons:

Stop Stops the execution of your program and the collection of trace data.

The Analyze Trace window is displayed after the trace stops so that you
can select one or more diagrams in which to view the trace data.

Trace on Starts tracing.Trace on does not cause your program to start running; it
causes trace events to start being recorded to the trace file. When the
Application Monitor window is displayed, the Performance Analyzer has
already started tracing events, so you cannot select Trace on until you
have first selected Trace off.

You can also turn tracing on from your program by calling the
Performance Analyzer function PerfStart. For instructions on calling
PerfStart, see the Performance Analyzer online Help facility.

Trace off Stops tracing.Trace off does not cause your program to stop running; it
stops trace events from being recorded to the trace file. When the
Application Monitor window is displayed, the Performance Analyzer has
already started tracing events, so you can select Trace off anytime after
the window is displayed.

Note: Return events are still logged for functions that were called before
you selected Trace off, and execution time will still be logged against
functions that were called but have not returned to the caller.

You can also turn tracing off from your program by calling the
Performance Analyzer function PerfStop. For instructions on calling
PerfStop, see the Performance Analyzer online Help facility.

Analyze Trace Window
The Analyze Trace window lets you specify the name of the trace file that you want
to analyze and the diagrams in which you want to display it.

512 IBM VisualAge�C++ for OS/2 User's Guide

Introducing the Performance Analyzer Windows

Figure 124. Analyze Trace Window

Note: You must have created a trace file before you can open a diagram. See
Chapter 33, “Creating Trace Files” on page 489 for instructions.

You can display the Analyze Trace window from the Performance Analyzer -
Window Manager window by:

¹ Clicking on the Analyze Trace push button
¹ Selecting the Analyze trace choice from the File menu.
¹ Clicking mouse button two on a trace file name or icon (if displayed in the

window), and selecting the Analyze trace choice from the pop-up menu.

Areas of the Analyze Trace Window
The following topics describe the areas of the Analyze Trace window.

Trace File Name: Entry Field
Type the full path and file name of the trace file that you want to analyze in the
Trace File Name: entry field. If the file is in your current directory, you do not
have to type the path.

Note: If you are not sure where the file is located, select the Find push button.

Display Diagrams Check Boxes
Select the check boxes in the Analyze Trace window to open a trace file in one or
more diagrams.

 Chapter 35. Introducing the Performance Analyzer Windows513

Introducing the Performance Analyzer Windows

 Push Buttons
The Analyze Trace window has the following push buttons:

Find Displays the Find File window, which helps you locate a file that you
want to analyze.

OK Saves the changes and closes the window.
Cancel Exits the current window without saving any changes.
Help Displays Help information about the current window.

514 IBM VisualAge�C++ for OS/2 User's Guide

Managing Trace Files

36 Managing Trace Files

The Performance Analyzer diagrams provide methods of making trace data easier to
work with and view. The following topics describe some of these methods.

 Using Filtering
Filters allow you to temporarily reduce the amount of trace data displayed in a
diagram. There are several techniques for filtering the trace file and isolating
interesting or problematic areas.

The following list contains filtering techniques that you can use in each of the
diagrams:

Call Nesting diagram
In this diagram, you can filter data by:
¹ Selecting a function and viewing its call stack.
¹ Selecting specific functions and threads to view. The Performance

Analyzer displays only those selected.
¹ Selecting the thread layout to arrange the starting placement of

multiple threads within the diagram.
¹ Selecting a region of time to view.

Dynamic Call Graph
In this diagram, you can filter data by:
¹ Selecting specific threads to view. The Performance Analyzer

displays trace information for only those threads selected.
¹ Zooming in on a region of the graph that is of most interest.
¹ Scaling node sizes to change the size of the graphical representation

of functions.
¹ Using the Overview function to display a miniature view of the

graph, which allows you to quickly navigate in the diagram.
Execution Density diagram

In this diagram, you can filter data by:
¹ Selecting specific functions and threads to view. The Performance

Analyzer displays only those selected.
¹ Zooming in on a region of the diagram that is of most interest.
¹ Scaling the pages of the diagram to reveal more information.
¹ Selecting a region of time to view.

 Copyright IBM Corp. 1992, 1995 515

Managing Trace Files

Statistics diagram
In this diagram, you can filter data by:
¹ Selecting specific threads to view. The Performance Analyzer

displays trace information for only those threads selected.
¹ Sorting functions by columns that are of most interest and using the

split bars to change the size of the window panes.
Time Line diagram

In this diagram, you can filter data by:
¹ Selecting a function and viewing its call stack.
¹ Zooming in on a region of the diagram that is of most interest.
¹ Scaling the pages of the diagram to reveal more information.
¹ Selecting a region of time to view.

 Using Scaling
Scaling is a way to change how much detail is displayed. You can view the diagram
as a whole or magnify areas to see the finer detail.

When details are hidden, you cannot spot patterns, anomalies, or features of the
execution because there is too much information on the screen. The Execution
Density and Time Line diagrams can be scaled along the time dimension.

 Using Scrolling
You can scroll the window in all diagrams to focus on areas of interest. You can
also use correlation to scroll to areas of interest in each of the chronologically-scaled
diagrams (Call Nesting, Execution Density, and Time Line). Correlation is

described in “Understanding Correlation” on page 517.

Using Multiple Views
The Performance Analyzer allows you to open a trace file in several diagrams or
multiple views of the same diagram simultaneously. Sometimes opening two or more
diagrams can help you better understand a program.

For instance, if you have a new program to learn, and you don't want to wade
through code listings to determine how the code works, you can display and use the
Dynamic Call Graph, Call Nesting, and Time Line diagrams to get a good
understanding of the program's flow.

After you have opened a diagram, one way you can open another diagram is by
selecting the Open as choice from a Trace file menu, and then selecting another
diagram from the cascaded menu.

516 IBM VisualAge�C++ for OS/2 User's Guide

Managing Trace Files

 Recognizing Patterns
Program loops cause the same sequence of calls and returns to be repeated in the
trace. The Performance Analyzer lets you combine like sequences in the Call
Nesting diagram.

By using Pattern Recognition you can reduce the amount of screen space the
diagram uses. Pattern recognition looks at a single thread and finds patterns of calls
and returns. When this choice is enabled, the Call Nesting diagram displays these
patterns as a curved arc and the number of repetitions are shown to the right.

This technique shortens the number of pages which you must scroll through to look at
your trace file.

If you see a large repetition of patterns, you could group the functions together with
pragma alloc_text statements to improve performance by limiting the number of page
swaps between calls in the patterns.

Note: Pattern Recognition is only available when filtering by threads.

 Understanding Correlation
Correlation is helpful because one diagram cannot show everything of interest within
a trace file. Additionally, some events are easier to find in one diagram, but the
information in another is more meaningful; therefore, you can locate the event in one
diagram and correlate to another.

The Performance Analyzer provides three time-scaled diagrams that can be correlated:
Call Nesting, Execution Density, and Time Line. You can correlate these diagrams
based on a specific time or event, or on a range of time or events.

For example, use the Call Nesting diagram to identify the order and names of
functions called, and then use the Time Line diagram to find out how long a function
took to execute.

Or you can use the Execution Density diagram to see general patterns that lead up to
a certain point, and then correlate that point to the Call Nesting diagram to see the
exact order of the function calls.

For instructions on correlating diagrams, see the Performance Analyzer online Help
facility.

 Chapter 36. Managing Trace Files517

Managing Trace Files

518 IBM VisualAge�C++ for OS/2 User's Guide

Call Nesting Diagram

37 Call Nesting Diagram

The Call Nesting diagram shows the trace file as a vertical series of function calls
and returns. Use this diagram to diagnose problems with critical sections, sequencing
protocols, program deadlocks and crashes, and thread delays.

Figure 125. Call Nesting Diagram

Each thread in the Call Nesting diagram has its own starting column of functions. A
call is shown as a step to the right and a return as a line back to the left. The calls
are labeled with the name of the function being called.

Use the mouse to select a call, a return, or a user event. When the call is selected, it
is highlighted.

Context switches between threads are shown by dashed horizontal lines. While the
vertical lines do not show elapsed scaled times in this diagram, you can clearly see
the flow of control and the interactions among the various threads.

 Copyright IBM Corp. 1992, 1995 519

Call Nesting Diagram

Areas of the Call Nesting Diagram
The following topics describe the areas of the Call Nesting diagram.

Call Nesting Menu Bar Summary
The menu choices in the Call Nesting diagram are as follows:

Trace file Allows you to perform functions with your existing trace file. From this
menu, you can select:

Open as
Displays a cascaded menu with the following choices. Select
the name of the diagram you want to view.

 ¹ Call Nesting
¹ Dynamic Call Graph

 ¹ Execution Density
 ¹ Statistics
 ¹ Time Line

Printer settings
Allows you to select a printer and various options for your
printed output.

Print selected region
Prints a selected area of the diagram.

Window manager
Displays the Performance Analyzer - Window Manager
window.

Exit the Performance Analyzer
Exits the Performance Analyzer application.

Edit Allows you to locate and change text in the Call Nesting diagram. From
this menu, you can select:

Find
Displays a cascaded menu from which you can select:

Function Locates the text of function calls.
User event Locates user events.
Annotation Locates annotated text.

Find next
Locates the next occurrence of the last item you searched for.

Annotate
Allows you to insert comments into your diagram.

520 IBM VisualAge�C++ for OS/2 User's Guide

Call Nesting Diagram

Select time
Allows you to go to a specific time in the diagram.

Select time range
Allows you to select all events in a specified time range.

Select all
Select the entire Call Nesting diagram.

View Allows you to change displayed information. From this menu, you can
select:

Include functions
Controls the functions to include or exclude in the diagram.

Include threads
Controls the threads to include or exclude in the diagram.

Options Allows you to customize the Call Nesting diagram and display additional
information. From this menu, you can select:

Call stack
Displays all the functions currently on the call stack from a
selected point.

Correlation
Synchronizes other diagrams to display the same highlighted
region.

Font
Selects the font, font style, and font size for the function
names.

Thread layout
Selects the amount of indentation for each thread column, and
draws separator bars between threads.

Status area
Area at the top of the window that describes the diagram.
You can select which items appear in this area.

Tool bar
Displays a cascaded menu that lets you select:

Show Choose to either show or hide the Tool bar.
Hover Choose to either enable or disable displaying the

help text when the mouse pointer hovers over the
Tool bar buttons.

 Chapter 37. Call Nesting Diagram521

Call Nesting Diagram

Settings
Displays a cascaded menu that lets you either save the
current settings or restore the initial default settings.

Save
Save the current session settings.

Restore initial defaults
Restore the original settings.

Project This menu appears when you start the Performance Analyzer from within
the WorkFrame environment. From this menu, you can select:

Edit function
Displays the source code for the selected function in the
default editor for WorkFrame's edit action.

WorkFrame actions that can be launched from the Call
Nesting diagram will appear in this menu. To have your
program appear in this list, you must first associate your
program with a Type Name of EXE in the WorkFrame
Tool Setup window.

Help This menu provides choices that display various types of Help
information. From this menu, you can select:

Help index
Displays an index of Help topics.

General help
Displays Help for the active window. The online Help panel
displayed is the same panel that is displayed when you place
your cursor inside the window and press F1.

Using help
Describes how to use Help.

How do I?
Displays task help.

Product information
Displays information about the Performance Analyzer.

522 IBM VisualAge�C++ for OS/2 User's Guide

Call Nesting Diagram

Call Nesting Status Area
The Status Area, located at the top of the window, describes the settings of the
diagram. You can select the Status area choice from the Options menu to change
the appearance of the Status Area. When you select Status area, you can select the
following in the Status Area window:

Trace description
Select for a brief description of the trace file.

Filters
Select to display selected filters.

Call Nesting Pop-up Menus
The pop-up menus allow you to quickly access features that are frequently used. The
Call Nesting diagram has two pop-up menus: the Call Nesting Diagram pop-up
menu and the Call Nesting Selected Item pop-up menu.

The Call Nesting Diagram pop-up menu contains actions that can be applied to the
entire diagram, and the Call Nesting Selected Item pop-up menu contains actions
that can be applied to a highlighted area.

Call Nesting Diagram Pop-Up Menu: To access this pop-up menu, click mouse
button two on the background area of the diagram. The menu is displayed with the
following choices:

Find
Displays a cascaded menu from which you can select:

Function Locates the text of function calls.
User event Locates user events.
Annotation Locates annotated text.

Find next
Locates the next occurrence of the last item you searched for.

Include functions
Controls the functions to include or exclude in the diagram.

Include threads
Controls the threads to include or exclude in the diagram.

Font
Selects the font, font style, and font size for the function names.

Thread layout
Selects the amount of indentation for each thread column, and draws
separator bars between threads.

 Chapter 37. Call Nesting Diagram523

Call Nesting Diagram

Call Nesting Selected Item Pop-Up Menu: To access this pop-up menu, click mouse
button two on the highlighted area of the diagram. The menu is displayed with the
following choices:

Annotate
Allows you to insert comments into your diagram.

Call stack
Displays all the functions currently on the call stack from a selected
point.

Correlation
Synchronizes other diagrams to display the same highlighted region.

Edit function
Displays the source code for the selected function in the default editor for
WorkFrame's edit action.

WorkFrame actions that can be launched from the Call Nesting diagram
will appear in this menu. To have your program appear in this list, you
must first associate your program with a Type Name of EXE in the
WorkFrame Tool Setup window.

524 IBM VisualAge�C++ for OS/2 User's Guide

Dynamic Call Graph

38 Dynamic Call Graph

The Dynamic Call Graph is a graphical view of the execution of the target program.
This diagram uses nodes and arcs to represent functions and calls.

Figure 126. Dynamic Call Graph

Colors and sizes of nodes and arcs depict the time spent in the node and the number
of calls between nodes.

A node represent a function and appears as a rectangle on the diagram. An arc,
which is displayed as a line between a pair of nodes, represents a call from one
function to another.

In this diagram, you can double-click on any:

¹ Node for the Function Information window to display additional information.
¹ Arc for the Who Calls Whom window to display additional information. Only

calls made during the given execution of the program are displayed.

 Copyright IBM Corp. 1992, 1995 525

Dynamic Call Graph

Dynamic Call Graph Arcs and Nodes
Colors and sizes of nodes and arcs depict the time spent in the node and the number
of calls between nodes.

The time spent in a particular node and the number of calls in an arc are shown in
different colors. The following table shows what each color means to nodes and arcs.
Node colors are based on the maximum executable time spent in a function. Arc
colors are based on the maximum number of calls between pairs of functions.

Color and Size Representation of Nodes and Arcs

Note: The currently selected nodes are surrounded by a green box and the currently
selected arcs are shown in green.

Color Nodes Arc

Gray 0 - 1/8 0 - 1/8

Blue 1/8 - 1/4 1/8 - 1/4

Yellow 1/4 - 1/2 1/4 - 1/2

Red 1/2 - maximum 1/2 - maximum

 Functions
Double clicking on a function displays a function information dialog which shows
you the function name, object name and executable name. Select one of the
following buttons:

¹ Select the Who calls me button to display the fully qualified function, listed in
the Function Information window, and functions that called it.

¹ Select the Whom do I call button to display the fully qualified function, listed in
the Function Information window and functions that it called.

 Arcs
Double clicking on an arc displays an arc information dialog window which shows
fully qualified function names of the nodes involved with this call. Select one of the
following buttons:

¹ Select the Find caller button to display the function that originated the call. The
originating caller is displayed in the center of the Dynamic Call Graph.

¹ Select the Find callee button to display the function called by the originating
caller. The called function is displayed in the center of the Dynamic Call Graph.

526 IBM VisualAge�C++ for OS/2 User's Guide

Dynamic Call Graph

Areas of the Dynamic Call Graph
The following topics describe the areas of the Dynamic Call Graph.

Dynamic Call Graph Menu Bar Summary
The menu choices in the Dynamic Call Graph are as follows:

Trace file Allows you to perform functions with your existing trace file. From this
menu, you can select:

Open as
Displays a cascaded menu with the following choices. Select
the name of the diagram you want to view.

 ¹ Call Nesting
¹ Dynamic Call Graph

 ¹ Execution Density
 ¹ Statistics
 ¹ Time Line

Printer settings
Allows you to select a printer and various options for your
printed output.

Print selected region
Prints a selected area of the diagram.

Window manager
Displays the Performance Analyzer - Window Manager
window.

Exit the Performance Analyzer
Exits the Performance Analyzer application.

View Allows you to change displayed information. From this menu, you can
select:

Include threads
Controls the threads to include or exclude in the diagram.

Overview
Allows you to navigate through large diagrams quickly.

Zoom in
Enlarges the size of the diagram without changing the size of
the window.

Zoom out
Decreases the size of the diagram without changing the size
of the window.

 Chapter 38. Dynamic Call Graph 527

Dynamic Call Graph

Re-lay graph
Sizes to fit all of the diagram in the window.

Restore nodes
Restores nodes to the diagram to show the default view.

Options Allows you to customize the Dynamic Call Graph and display additional
information. From this menu, you can select:

Scale node sizes
Scales node sizes.

Find function
Searches for functions in the diagram.

Status area
Area at the top of the window describes the diagram.

Tool bar
Displays a cascaded menu that lets you select:

Show Choose to either show or hide the Tool bar.
Hover Choose to either enable or disable displaying the

help text when the mouse pointer hovers over the
Tool bar buttons.

Settings
Displays a cascaded menu that lets you either save the
current settings or restore the initial default settings.

Save
Save the current session settings.

Restore initial defaults
Restore the original settings.

Project This menu appears when you start the Performance Analyzer from within
the WorkFrame environment. From this menu, you can select:

Edit function
Displays the source code for the selected function in the
default editor for WorkFrame's edit action.

WorkFrame actions that can be launched from the Dynamic
Call Graph will appear in this menu. To have your program
appear in this list, you must first associate your program with
a Type Name of EXE in the WorkFrame Tool Setup
window.

Help This menu provides choices that display various types of Help
information. From this menu, you can select:

528 IBM VisualAge�C++ for OS/2 User's Guide

Dynamic Call Graph

Help index
Displays an index of Help topics.

General help
Displays Help for the active window. The online Help panel
displayed is the same panel that is displayed when you place
your cursor inside the window and press F1.

Using help
Describes how to use Help.

How do I?
Displays task Help.

Product information
Displays information about the Performance Analyzer.

Dynamic Call Graph Status Area
The Status Area, located at the top of the window, describes the settings of the
diagram. You can select the Status area choice from the Options menu to change
the appearance of the Status Area. When you select Status area, you can select the
following in the Status Area window:

Trace description
Select for a brief description of the trace file.

Filters
Select to display selected filters.

Selected object
Select to display selected object.

Note: If you highlight a node, a function name is displayed. If you
highlight an arc, a function call is displayed.

Dynamic Call Graph Zoom Bar
When zooming in and out, the Dynamic Call Graph takes the selected node or arc
that is highlighted, and uses it as the focal point. There are several ways to zoom in
the Dynamic Call Graph window.

You can use the:

¹ Zoom in choice from the View menu to change the diagram view.

When zooming in, your view is a step closer to the selected object and the object
in the window appears larger.

¹ Zoom out choice from the View menu to change the diagram view.

When zooming out, your view is a step further away from the selected object and
the object in the window appears smaller.

 Chapter 38. Dynamic Call Graph 529

Dynamic Call Graph

¹ Zoom bar in the Dynamic Call Graph window by sliding the arm up or down,
to change the diagram view.

¹ Re-lay choice from the View menu to return to the original diagram view.

¹ Overview choice from the View menu to quickly move around in the viewing
area of the diagram.

The Overview choice provides you with another option of viewing. Use it to
move quickly to other areas of the diagram when zooming in and out.

When using the Overview choice, you have a miniature version of the Dynamic
Call Graph window. The gray box highlights the area currently in view in the
window.

Moving the small gray box around in the Overview window allows you to
change the view in the Dynamic Call Graph quickly. You can also grab the
sides of the gray box to resize the area being shown in the diagram window.

Dynamic Call Graph Function Information Window
Use the Function Information window to display information about:

¹ A selected function
¹ The total execution time in seconds and percentages
¹ Active time in seconds and percentages
¹ Which functions called the selected function
¹ The functions that the selected function called.

To display the Function Information window double-click on a node. The name of
the function appears on the left side of the split bar area. The object file and
executable name appear on the right side of the split bar area.

The following information is provided in the Function Information Window:

¹ Execution time (in time and percentage)
¹ Time on stack (in time and percentage)
¹ Number of calls

The following lists the push buttons and gives an explanation of each one:

Who calls me Select this push button to display only the selected node and the nodes
that called the selected node. To return to the diagram, select Restore
graph from the Options menu.

Whom do I call Select this push button to display only the selected node and the
nodes that the selected node calls.

Cancel Closes the window.
Help Displays Help.

530 IBM VisualAge�C++ for OS/2 User's Guide

Dynamic Call Graph

Note: If the trace file does not have time stamps, the:

¹ Execution Time and Time on stack will not be displayed.
¹ Nodes will all be displayed in the same color and size.

and
¹ Scale node sizes choice will be disabled.

Dynamic Call Graph Who Calls Whom Window
Use the Who Calls Whom window to display information about a selected arc.

To display the Who Calls Whom window, double-click on an arc. The Who Calls
Whom window shows the name of the calling function, the called function, and the
number of times the call is made.

The calling function field and the called function field each have a split bar function
between the function name and the object file and executable name. Use the split
bar to change the size of the left or right field in either the calling function or the
called function fields.

The Who Calls Whom window has the following push buttons:

Find caller
Selects and centers the node that makes the call represented by the
selected arc.

Find callee
Selects and centers the node that is called by the call represented in the
selected arc.

Cancel
Closes the window.

 Chapter 38. Dynamic Call Graph 531

Dynamic Call Graph

532 IBM VisualAge�C++ for OS/2 User's Guide

Execution Density Diagram

39 Execution Density Diagram

The Execution Density diagram shows trends of program execution by displaying the
trace data chronologically from top to bottom as thin horizontal lines of various
colors in different columns.

Figure 127. Execution Density Diagram

This diagram consists of columns which contain thin lines of various colors. The
following list describes diagram components:

¹ Each vertical column represents a function.
¹ The thickness of each line represents a unit of time called a time slice.
¹ The color of each line represents the percentage of program execution time spent

in the given function for that time slice. Only selected threads are used in
calculating this percentage.

For instance, in the default setting, functions executing more than 50 percent of a
given time slice have a red line drawn in the appropriate column at the vertical
location corresponding to the time slice.

 Copyright IBM Corp. 1992, 1995 533

Execution Density Diagram

Magnification is initially turned off, meaning the entire trace file is visible in the
window. You can magnify or filter the diagram to vary the amount of detail
displayed.

Notes: :

1. When a thread switch occurs in the Execution Density diagram, the time
between the last recorded event in the previous thread and the first event
in the new thread will be allotted to the previous thread.

2. Events that take small amounts of time might be hard to distinguish until
the magnification has been increased.

Areas of the Execution Density Diagram
The following topics describe the areas of the Execution Density diagram.

Execution Density Menu Bar Summary
The menu choices in the Execution Density diagram are as follows:

Trace file Allows you to perform functions with your existing trace file. From this
menu, you can select:

Open as
Displays a cascaded menu with the following choices. Select
the name of the diagram you want to view.

 ¹ Call Nesting
¹ Dynamic Call Graph

 ¹ Execution Density
 ¹ Statistics
 ¹ Time Line

Printer settings
Allows you to select a printer and various options for your
printed output.

Print selected region
Prints a selected area of the diagram.

Window manager
Displays the Performance Analyzer - Window Manager
window.

Exit the Performance Analyzer
Exits the Performance Analyzer application.

Edit Allows you to locate and change text in the Execution Density diagram.
From this menu, you can select:

534 IBM VisualAge�C++ for OS/2 User's Guide

Execution Density Diagram

Find function
Search for a function.

Find Next
Find the next occurrence of the last item you searched for.

Select time
Go to a specific time in the diagram.

Select time range
Select a specified time in the diagram.

Select all
Select the entire Execution Density diagram.

View Allows you to change displayed information. From this menu, you can
select:

Zoom in
Magnifies the Execution Density diagram to view a region
of interest.

Zoom out
Reduces the Execution Density diagram.

Zoom to selected range
Magnifies an area of interest.

Scale pages
Controls the number of pages the diagram uses.

Include functions
Isolates specific functions to view in your program.

Include threads
Selects which threads are displayed in the diagram.

Options Allows you to customize the Execution Density diagram and display
additional information. From this menu, you can select:

Color
Selects the colors used to display the percentage of time used
by each function and the percentage of time each color
represents.

Column width
Controls the width (in pixels) for each function column in the
diagram.

Correlation
Synchronizes other diagrams to display the same highlighted
region.

 Chapter 39. Execution Density Diagram535

Execution Density Diagram

Status area
Control the gray area at the top of the window.

Tool bar
Displays a cascaded menu that lets you select:

Show Choose to either show or hide the Tool bar.
Hover Choose to either enable or disable displaying the

help text when the mouse pointer hovers over the
Tool bar buttons.

Settings
Displays a cascaded menu that lets you either save the
current settings or restore the initial default settings.

Save
Save the current session settings.

Restore initial defaults
Restore the original settings.

Project This menu appears when you start the Performance Analyzer from within
the WorkFrame environment. From this menu, you can select:

Edit function Displays the source code for the selected function
or object file in the default editor for
WorkFrame’s edit action.

WorkFrame actions that can be launched from
the Execution Density diagram will appear in
this menu. To have your program appear in this
list, you must first associate your program with a
Type Name of EXE in the WorkFrame Tool
Setup window.

Help This menu provides choices that display various types of Help
information. From this menu, you can select:

Help index
Displays an index of Help topics.

General help
Displays Help for the active window.

Using help
Describes how to use Help.

How do I?
Displays task Help.

Product information
Displays information about the Performance Analyzer.

536 IBM VisualAge�C++ for OS/2 User's Guide

Execution Density Diagram

Execution Density Status Area
The Status Area, located at the top of the window, describes the settings of the
diagram. You can select the Status area choice from the Options menu to change
the appearance of the Status Area. When you select Status area, you can select the
following in the Status Area window:

Trace description
Shows the description given to the trace file.

Time slice
Displays the value of the time slice.

Selected region
Displays the start, end, and total time of a selected region.

Filters
Shows when selected filters, such as functions and threads, are active.

Selected object
Displays the name of the selected object.

Execution Density Pop-up Menus
The pop-up menus allow you to quickly access features that are frequently used. The
Execution Density diagram has two pop-up menus: the Execution Density Diagram
pop-up menu and the Execution Density Selected Item pop-up menu.

Execution
Density
Diagram
Pop-up Menu

This pop-up menu contains most of the choices from theEdit andOptions
menus. To access this pop-up menu, click mouse button two on the background area
of the diagram. The menu is displayed with the following choices:

Find Function
Search for a function.

Find next
Find the next occurrence of the last item you searched for.

Zoom in
Magnifies the Execution Density diagram to view a region of interest.

Zoom out
Reduces the Execution Density diagram.

Scale pages
Controls the number of pages the diagram uses.

Include functions
Isolates specific functions to view in your program.

Include threads
Selects which threads are displayed in the diagram.

Color
Selects the colors used to display the percentage of time used by each
function and the percentage of time each color represents.

 Chapter 39. Execution Density Diagram537

Execution Density Diagram

Column width
Controls the width (in pixels) for each function column in the diagram.

Execution
Density
Selected Item
Pop-up Menu

To access this pop-up menu, highlight a region of interest, move the mouse
pointer into that area, and click on mouse button two. This menu is displayed with
the following choices:

Zoom to selected range
Magnifies an area of interest.

Correlation
Synchronizes other diagrams to display the same highlighted region.

Edit function
Displays the source code for the selected function or object file in the
default editor for WorkFrame’s edit action.

WorkFrame actions that can be launched from the Execution Density
diagram will appear in this menu. To have your program appear in this
list, you must first associate your program with a Type Name of EXE in
the WorkFrame Tool Setup window.

Execution Density Current Column Indicator
An arrow called the current column indicator is displayed at the top of the columns.
The current column indicator lets you move to each column. Use the mouse to move
to each column.

To move the current column indicator, click on the column of interest and the arrow
moves. You can drag the current column indicator arrow with the mouse and the
Selected object information will change.

Execution Density Vertical Ruler
The Vertical Ruler , located to the left of the diagram, shows scale. To change the
scale, select the Scale pages choice from the View menu, and the Scale Pages
window appears.

538 IBM VisualAge�C++ for OS/2 User's Guide

Statistics Diagram

40 Statistics Diagram

The Statistics diagram gives you a textual report of execution time by function or
executable. Use this information to find hot spots in the overall program execution.

Figure 128. Statistics Diagram

This diagram has two panes: Statistics Summary Pane and Statistics Details Pane.

You can resize the window horizontally and the panes vertically. To resize a window
or window pane, press and drag the mouse pointer on the split bar until the windows
or window panes are the size you want.

Note: Times are shown in milliseconds.

Areas of the Statistics Diagram
The the following topics describe the areas of the Statistics diagram.

Statistics Menu Bar Summary
The menu choices in the Statistics diagram are as follows:

Trace file Allows you to perform functions with your existing trace file. From this
menu, you can select:

 Copyright IBM Corp. 1992, 1995 539

Statistics Diagram

Open as
Displays a cascaded menu with the following choices. Select
the name of the diagram you want to view.

 ¹ Call Nesting
¹ Dynamic Call Graph

 ¹ Execution Density
 ¹ Statistics
 ¹ Time Line

Save as text
Creates a file containing the summary information.

Printer settings
Allows you to select a printer and various options for your
printed output.

Print
Prints the textual report of the Statistics diagram.

Window manager
Displays the Performance Analyzer - Window Manager
window.

Exit the Performance Analyzer
Exits the Performance Analyzer application.

View Allows you to change displayed information. From this menu, you can
select:

Details on
Select to view the Details window by function or executable.

Include threads
Controls the threads to include or exclude in the diagram.

Sort
Select how you want to sort the Details window.

Options Allows you to customize the Statistics diagram and display additional
information. From this menu, you can select:

Find
Searches for a function or an executable.

Font
Selects the font and font size for the Summary and Details
panes.

540 IBM VisualAge�C++ for OS/2 User's Guide

Statistics Diagram

Tool bar
Displays a cascaded menu that lets you select:

Show Choose to either show or hide the Tool bar.
Hover Choose to either enable or disable displaying the

help text when the mouse pointer hovers over the
Tool bar buttons.

Settings
Displays a cascaded menu that lets you either save the
current settings or restore the initial default settings.

Save
Save the current session settings.

Restore initial defaults
Restore the original settings.

Project This menu appears when you start the Performance Analyzer from within
the WorkFrame environment. From this menu, you can select:

Edit function
Displays the source code for the selected function in the
default editor for WorkFrame's edit action.

WorkFrame actions that can be launched from the Statistics
diagram will appear in this menu. To have your program
appear in this list, you must first associate your program with
a Type Name of EXE in the WorkFrame Tool Setup
window.

Help This menu provides choices that display various types of Help
information. From this menu, you can select:

Help index
Displays an index of Help topics.

General help
Displays Help for the active window.

Using help
Describes how to use Help.

How do I?
Displays task Help.

Product information
Displays information about the Performance Analyzer.

 Chapter 40. Statistics Diagram541

Statistics Diagram

Statistics Summary Pane
The Summary pane is in the top area of the window. You must scroll the window
panes to view all of the information. Information provided in the Summary pane is
as follows:

 ¹ Executable name
¹ Trace file description

Note: This will only appear if you entered a description on the Create Trace
window in the Trace File Description field when you created the trace file.

 ¹ Execution date
 ¹ Execution time
¹ Number of executables generating events
¹ Number of functions generating events
¹ Number of threads generating events
¹ Total number of events
¹ Total number of annotations
¹ Number of user events
¹ Maximum call nest depth
¹ Number of trace buffer flushes
¹ Total trace time excluding overhead

 ¹ Trace overhead

Statistics Details Pane
The Details pane is in the bottom area of the window. You must scroll the window
panes to view all of the information. The Details pane has a left and right pane. The
left pane displays the fully qualified name of the component that the statistics have
been gathered on.

Information provided on the left side of the Details pane is as follows:

When you have selected Functions from the View and Details on menus, you see:

 ¹ Function
 ¹ Object file
 ¹ Executable

When you have selected Executables from the View and Details on menus, you see:

 ¹ Executable

With function names, if user events have been included in the trace, they will appear
as separate entries in the list of function names.

The user events will be the function name that made the call to the user event,
followed by the user event in parentheses.

542 IBM VisualAge�C++ for OS/2 User's Guide

Statistics Diagram

For executables, only the executable name is displayed.

Information provided on the right side of the Details pane is as follows:

¹ Percent Of Execution
¹ Percent On Stack
¹ Number of Calls

 ¹ Execution Time
¹ Time on Stack

 ¹ Minimum Call
 ¹ Maximum Call
 ¹ Average Call

Note: If you disabled the Time stamp events choice before you created your trace
file, only theNumber of Calls column will be displayed on the right side of the
Details pane.

 Chapter 40. Statistics Diagram543

Statistics Diagram

544 IBM VisualAge�C++ for OS/2 User's Guide

Time Line Diagram

41 Time Line Diagram

The Time Line diagram displays the sequence of nested function calls and returns.
Time stamps determine the exact placement of an event along the time dimension on
the vertical axis. This provides a direct and natural presentation of the chronological
relationships of events.

Figure 129. Time Line Diagram

The Time Line diagram is similar to the Call Nesting diagram, but the distance
between successive events in the diagram are drawn in proportion to the actual time
between the events as recorded in the trace file.

The names of functions are only drawn when the time spent in that function is large
enough to allow the name to be drawn. This value is dependent upon the size of the
font being used. For example, with the default font, the distance between the call to
the function and the next event must be at least twenty scan lines. This is done to
ensure that the function name will not be overwritten by another function name or
overdrawn by a line representing a function call or thread switch.

You can use this diagram to find where a deadlock occurred. Access violations,
system exceptions and other such program errors are recorded in the trace file as user
events, as are any messages generated in the code by calls to the Performance
Analyzer. These events are indicated by a black diamond in the diagram, and if there
is sufficient space, the text associated will be drawn to the right of the events.

 Copyright IBM Corp. 1992, 1995 545

Time Line Diagram

Areas of the Time Line Diagram
The following topics describe the areas of the Time Line diagram.

Time Line Menu Bar Summary
The menu choices in the Time Line diagram are as follows:

Trace File Allows you to perform functions with your existing trace file. From this
menu, you can select:

Open as
Displays a cascaded menu with the following choices. Select
the name of the diagram you want to view.

 ¹ Call Nesting
¹ Dynamic Call Graph

 ¹ Execution Density
 ¹ Statistics
 ¹ Time Line

Printer settings
Allows you to select a printer and various options for your
printed output.

Print selected region
Prints a selected area of the diagram.

Window manager
Displays the Performance Analyzer - Window Manager
window.

Exit the Performance Analyzer
Exits the Performance Analyzer application.

Edit Allows you to locate and change text in the Time Line diagram. From
this menu, you can select:

Find function
Search for a function call or return.

Find Next
Find the next occurrence of the last item you searched for.

Select time
Go to a specific time in the diagram.

Select time range
Select a specified time in the diagram.

Select all
Select the entire Time Line diagram.

546 IBM VisualAge�C++ for OS/2 User's Guide

Time Line Diagram

View Allows you to change displayed information. From this menu, you can
select:

Zoom in
Magnifies a region of interest in the diagram.

Zoom out
Reduces the diagram to starting size.

Zoom to selected range
Magnifies the diagram to focus on the highlighted area.

Scale pages
Selects the size of the diagram.

Options Allows you to customize the Time Line diagram and display additional
information. From this menu, you can select:

Call stack
Shows all functions on the call stack at a selected point.

Correlation
Synchronizes other diagrams to display the same highlighted
region.

Font
Selects the font, font style, and font size for the diagram.

Thread layout
Selects the indentation amount for each thread column and
whether to draw separator bars between threads.

Status area
Controls the gray area at the top of the window.

Tool bar
Displays a cascaded menu that lets you select:

Show Choose to either show or hide the Tool bar.
Hover Choose to either enable or disable displaying the

help text when the mouse pointer hovers over the
Tool bar buttons.

Settings
Displays a cascaded menu that lets you either save the
current settings or restore the initial default settings.

Save
Save the current session settings.

Restore initial defaults
Restore the original settings.

 Chapter 41. Time Line Diagram 547

Time Line Diagram

Project This menu appears when you start the Performance Analyzer from within
the WorkFrame environment. From this menu, you can select:

Edit function
Displays the source code for the selected function in the
default editor for WorkFrame’s edit action.

WorkFrame actions that can be launched from the Time Line
diagram will appear in this menu. To have your program
appear in this list, you must first associate your program with
a Type Name of EXE in the WorkFrame Tool Setup
window.

Help This menu provides choices that display various types of Help
information. From this menu, you can select:

Help index
Displays an index of Help topics.

General help
Displays Help for the active window.

Using help
Describes how to use Help.

How do I?
Displays task Help.

Product information
Displays information about the Performance Analyzer.

Time Line Status Area
The Status Area, located at the top of the window, describes the settings of the
diagram. You can select the Status area choice from the Options menu to change
the appearance of the Status Area. When you select Status area, you can select the
following in the Status Area window:

Trace description
Shows the description given to the trace file.

Time slice
Displays the value of the time slice.

Selected region
Displays the start, end, and total time of a selected region.

Time Line Pop-up Menus
The pop-up menus allow you to quickly access features that are frequently used. The
Time Line diagram has two pop-up menus: the Time Line Diagram pop-up menu
and the Time Line Selected Item pop-up menu.

548 IBM VisualAge�C++ for OS/2 User's Guide

Time Line Diagram

Time Line
Diagram
Pop-up Menu

This pop-up menu contains almost all the choices from theEdit andOptions
menus. To access this pop-up menu, click mouse button two on the background area
of the diagram. The menu is displayed with the following choices:

Find function
Search for a function call or return.

Find next
Find the next occurrence of the last item you searched for.

Zoom in
Magnifies a region of interest in the diagram.

Zoom out
Reduces the diagram to starting size.

Scale pages
Selects the size of the diagram.

Font
Selects the font, font style, and font size for the diagram.

Thread layout
Selects the indentation amount for each thread column and whether to
draw separator bars between threads.

Time Line
Selected Item
Pop-up Menu

To access this pop-up menu, highlight a region of interest, move the mouse
pointer into that area, and click on mouse button two. The menu is displayed with
the following choices:

Zoom to selected range
Magnifies the diagram to focus on the highlighted area.

Call Stack
Displays all the functions currently on the call stack from a selected
point.

Correlation
Synchronizes other diagrams to display the same highlighted region.

Edit function
Displays the source code for the selected function in the default editor for
WorkFrame's edit action.

WorkFrame actions that can be launched from the Time Line diagram
will appear in this menu. To have your program appear in this list, you
must first associate your program with a Type Name of EXE in the
WorkFrame Tool Setup window.

 Chapter 41. Time Line Diagram 549

Time Line Diagram

Time Line Vertical Ruler
The Vertical Ruler , located to the left of the diagram, shows scale. To change the
scale, select the Scale pages choice from the View menu, and the Scale Pages
window appears.

550 IBM VisualAge�C++ for OS/2 User's Guide

Part 8. Browsing Programs and Libraries

As a C++ programmer using the object-oriented paradigm, you must deal with large
and sometimes complex collections of interrelated classes. A class' behavior is not
only defined by its own data and function members, but also by all the behavior of its
base classes. The VisualAge C++ Browser is a tool to help you understand and use
these classes and their relationships.

Chapter 42. Overview .553
Understanding the Browser. 553
Concepts Used by the Browser. 554
Using the Mouse . 555
Getting Help While You Are Using the Browser. 555

Chapter 43. Getting Started .557
Starting the Browser . 557
Creating Files to Use with the Browser. 559
Closing the Browser . 561

Chapter 44. Understanding and Using the Browser User Interface 563
The List Window . 564
The Graph Window . 576
Changing Browser Settings. 587
Changing Fonts .592
Loading Files into the Browser. 593
Merging Files .595
Finding Objects in the Current Window. 597
Searching for Objects in the Entire Browser Database. 598
The History Window . 599

Chapter 45. Using the Browser . 601
Using the Browser to Assist in Development. 601
Using the Browser to Aid Program Understanding. 604
Using QuickBrowse .615
Updating the Browser Database. 618
Adding Menu Items to the Load 5 and Merge 5 Cascade menus. 619

Chapter 46. A Tour of the Browser . 621
Starting the Browser and Loading User Interface Classes. 622
Finding A Class . 623
Showing the Inheritance Relationship of a Class. 624
Finding Another Class . 625

 Copyright IBM Corp. 1992, 1995 551

Changing the View of a Graph. 626
Investigating the Members of a Class. 627
Customizing Program Elements . 628
Editing Files from the Browser. 628
Organizing the Information in a List Window. 629
Finding A Function . 630
Showing the VisualAge C++ Documentation for a Particular Function. 631
More About the PopUp Menu Actions. 631
Invoking Actions Again . 631
Graphing Include File Relationships. 632
Returning to Previous Queries/Displays. 632
Keeping Your Windows From Being Replaced. 633
Changing the Default Settings for List and Graph Windows. 634
Manipulating Graphs .634
The Browser and WorkFrame . 635

Chapter 47. Trouble Shooting .637
The Browser Won't Start . 637
Error Loading a .EXE, .DLL, or .LIB file . 637
Error Loading a .BRS File . 637
Error Loading a .PDB File . 637
Adding Files to the Load 5 and Merge 5 Menus Doesn't Work 638
The Graph Zone Will Not Maximum Zoom. 638

Chapter 48. Browser Fast-Path Keys and Menu Descriptions 639
Fast-Path Keys .639
PullDown Menus .640
PopUp Menus .648

552 IBM VisualAge�C++ for OS/2 User's Guide

Browser: Overview

42 Overview

The VisualAge C++ Browser is a Presentation Manager (PM) tool for examining
programs developed in VisualAge C++.

This chapter briefly describes the Browser, its major features and concepts, and
explains how you access the online contextual help and How Do I? information while
you are using the Browser.

Understanding the Browser
The graphical user interface consists of two types of Browser windows:

¹ A List window displays a list of program elements, such as source files,
functions, and classes.

¹ A Graph window displays program relationships in a graphical format, for
example, inheritance in a class hierarchy. You can specify the level of detail you
want the graph to show, scroll over the graph, zoom in and out, and select
program elements directly from the graph.

 For more information on List and Graph windows or other elements of the
Browser user interface, see Chapter 44, “Understanding and Using the Browser User
Interface” on page 563.

You can view your program files (.DLL, .EXE, .LIB) and compiler generated
Browser (.PDB) files. In addition, if you have a IBM WorkFrame project, you can
view your programs, without recompiling, by using the Browser QuickBrowse
facility. See “Using QuickBrowse” on page 615 for more information on
QuickBrowsing your programs.

With the Browser, you can look at your source code in many different ways:

¹ List program objects by type (for example, all classes), by content (members of a
class), or by components (all files). See “Ordering the Contents of a
Container View” on page 566 for more details.

¹ View relationships between program components graphically, such as
class-inheritance hierarchies, function calls, and included files. See “Using
the Browser to Aid Program Understanding” on page 604 for more information.

¹ View and edit the actual source code associated with a selected program element
using an editor. By default, the Browser uses the VisualAge Editor, but you can
select to use a different editor by changing your IBM WorkFrame project

 Copyright IBM Corp. 1992, 1995 553

Browser: Concepts

settings. For more information on viewing and editing with the Browser, see
“Editing and Viewing Source Files” on page 601.

¹ View online documentation for a class or class member. For more
information on viewing online documentation through the Browser, see “Showing
VisualAge C++ Open Class Library Documentation” on page 603.

Concepts Used by the Browser
 Browsing Browsing is a navigational technique for understanding the complexities

inherent in a set of classes. The VisualAge C++ Browser helps you
navigate through an inheritance hierarchy, to understand the full interface
of a class available to you as a programmer, to locate the body of a
function or a class definition amongst dozens (possibly hundreds) of files
across multiple directories, to understand calling relationships between
functions, and much more.

 Browser Database The Browser does not use an external database, but has an
internal representation of your program. This representation reflects all
the needed information for the actions that the Browser performs. This
database can be populated from .PDB files (the richest source of
information) or directly via the QuickBrowse facility in the Browser.
.PDB files are generated when you run the compiler with the /Fb option.
In addition, you can populate the Browser database from .DLL, .EXE, or
.LIB files when you have also run the linker with the /BROWSE option.
The Browser will save the contents of these files upon exit to a .PDD,
.PDE, or .PDL Browser database file.

When you next load one of the program files, the Browser will use the
stored Browser database file, updating it if you have modified your
program since the last load. The Browser database files make loading
your programs quicker. For more information on Browser database
files, see “Creating Files to Use with the Browser” on page 559. For
more information on QuickBrowse, see “Using QuickBrowse” on
page 615.

Container View A container view is a list which can be further expanded using the +
and - icons to expand and collapse the entries. For more information
on this type of view, see “Types of List Windows” on page 565.

 Objects The Browser presents program elements to you in the form of objects on
the screen. Objects can be classes, types, functions, variables, and source
files. Use Mouse Button 2 on any of these objects to invoke a PopUp
menu of actions available for that object. For detailed descriptions of
the various objects, see “Browsing List Objects” on page 567.

554 IBM VisualAge�C++ for OS/2 User's Guide

Browser: Using the Mouse ¹Browser: Getting Help

 Object-Action Pairs You can perform actions on any Browser object from the
object's PopUp menu. Use the Mouse Button 2 over the object to invoke
the PopUp menus. The Browser remembers the last 40 object-action
pairs and lists them in the History window for quick access. “The
History Window” on page 599 gives you more information on using the
History window.

The List and Graph window each have an Action Status Bar which is
located directly below the menubar. It indicates what object and action
were used to create the current contents of the window.

Using the Mouse
The Browser makes use of both the Mouse Button 1 (usually the left mouse button)
and Mouse Button 2 (usually the right mouse button).

Use Mouse Button 1 for selecting objects in the windows, for scanning the Browser
PullDown menus, and for sizing windows and selection areas.

Use Mouse Button 2 for performing actions on the various objects displayed in the
windows. Each type of object has several associated actions in the form of a PopUp
menu.

 See “Browsing List Objects” on page 567 for more information on the types of
objects available through the Browser.

Getting Help While You Are Using the Browser
In addition to this guide, there is:

¹ Contextual online help, which gives you help from within the Browser.
¹ How Do I? help, which gives you step-by-step instructions on how to perform

several Browser related tasks.

Using Contextual Help
You can ask for help on any menu choice, window, or entry field on how to use a
particular item by accessing the online context-sensitive help. You can access it in
one of the following ways:

¹ Select a choice from the Help PullDown menu.
¹ Press F1 from any Browser window.
¹ Press F1 while highlighting any menubar item.
¹ Press F1 while highlighting any PullDown menu item.
¹ Press F1 or select the Help PushButton on any dialog or NoteBook.

 Chapter 42. Overview 555

Browser: Getting Help

Using the How Do I... Information
The How Do I? information can help you quickly accomplish tasks when you are
unclear on what to do next.

You can access the How Do I? information in a number of ways:

¹ Select the Help PullDown menu and select the How Do I... menu item from the
Browser.

¹ Select the Help PullDown menu from any component of VisualAge C++, select
the How Do I... Selections 5 Cascade menu, and select the Browser menu item.

¹ Open the Information folder located in the main VisualAge C++ folder on your
desktop. Open the How Do I? folder and select the Browser How Do I?
information.

556 IBM VisualAge�C++ for OS/2 User's Guide

Browser: Getting Started

43 Getting Started

This chapter tells you how to start and close the Browser, and how to generate
Browser database files.

Starting the Browser
You can start the Browser from four different places:

¹ The OS/2 command prompt.
¹ The OS/2 Workplace Shell.
¹ The IBM WorkFrame environment.
¹ The VisualAge C++ Debugger and Editor.

If the program you want to browse is large, the Browser may take several seconds to
load. A Progress dialog will appear to inform you of the progress. You can see this
dialog in Figure 155 on page 594.

From the OS/2 command prompt
To start a Browser session from the OS/2 command prompt, use the icsbrs command
as follows:

55──icsbrs─ ──┬ ┬─────────────────── ─5%
 ├ ┤─file_name─────────
 │ │┌ ┐─────────────────
 └ ┘───6 ┴─pdb_file_name─

Where:

file_name Can be a Browser database file (with extension.PDB, .PDE, .PDD, .PDL)
or a program file (with extension.EXE, .DLL, .LIB).

pdb_file_name Can be multiple .PDB file names. You can load multiple .PDB files
into the Browser. You cannot load any other combination of files into
the Browser, however, you can merge multiple file types. See
“Merging Files” on page 595.

If you type icsbrs without any options, the Browser starts without any loaded files.
From the File PullDown menu:

¹ Select the Load... menu item in order to launch the Load Database dialog.
From this dialog, you can enter a program file name with extension .DLL, .EXE

 Copyright IBM Corp. 1992, 1995 557

Browser: Getting Started

or .LIB, or a Browser database file with extension .PDB, .PDD, .PDE, or .PDL,
or

¹ Select one of the libraries that make up the VisualAge C++ Open Class Library
directly from the Load 5 Cascade menu found on the File PullDown menu.

 For more information on loading, see “Loading Files into the Browser” on
page 593.

From the OS/2 Workplace Shell
You can start the Browser from the OS/2 Workplace Shell in three ways:

¹ Double-click on the Browser icon. You can load a database file name or a
program file name from the Load Database dialog which you can invoke from
the File PullDown menu. For more information on loading, see “Loading
Files into the Browser” on page 593.

¹ Double-click on a Browser database file (.PDB, .PDD, .PDE, or .PDL) from a
Workplace Shell or WorkFrame folder.

¹ Drag a Browser database file (.PDB, .PDD, .PDE, or .PDL) or program file (.DLL,
.EXE, or .LIB) or IBM WorkFrame project icon onto the Browser icon.

 For a description of a Browser database, see “Concepts Used by the Browser” on
page 554. For information on creating database files, see “Creating Files to Use with
the Browser” on page 559.

From the IBM WorkFrame environment
To start the Browser from the IBM WorkFrame environment, you can double-click on
a .PDB, .PDE, .PDD, or .PDL Browser database object in any WorkFrame project
folder, or you can select Browse from any WorkFrame Project PopUp menu to load
a Browser session. You can also select the Browse action on any.PDB, .PDD, .PDE,
.PDL, .EXE, .DLL, or .LIB file.

 For information on creating database files, see “Creating Files to Use with the
Browser” on page 559. For more information on creating a project, setting options,
and starting tools from the WorkFrame environment, see the Part 1, “Developing
with WorkFrame” on page 1.

558 IBM VisualAge�C++ for OS/2 User's Guide

Browser: Creating Files

From the VisualAge C ++ Debugger or Editor
To start the Browser from the Debugger:

1. Select the Project PullDown menu from the Debugger user interface.
2. Select the Browse Cascade menu.
3. Select a Browser action to perform on the program currently loaded into the

Debugger or on a selected program element.

To start the Browser from the VisualAge Editor:

1. Select the Browser PullDown menu from the Editor user interface.
2. Select an action to perform on the file currently loaded into the VisualAge Editor

or on a selected program element.

Creating Files to Use with the Browser
The Browser can view either Browser database files (.PDB, .PDD, .PDE, .PDL) or
programs files (.DLL, .EXE, .DLL). The following describe how to compile and link
your source files, and how the Browser generates Browser database files from your
loaded source. For a description of what a Browser database file is, see
“Concepts Used by the Browser” on page 554.

Created by
Compiling

The compiler will generate .PDB Browser database files (one per compilation unit),
if you compile your source with the/Fb option. This provides the Browser with the
richest source of information. However, there are two options that you can use to
compile your programs for use with the Browser: /Fb or /Fb* .

The difference between the two options relates to how much Browser information is
generated from system include files. That is, those included via:

#include <system_file.h> as opposed to:
 #include "local_file.h".

The Generate Browser information option (/Fb) discards much of the non-type
information from inside of system include files. For instance:

¹ Non-member function declarations will not be included in the .PDB file, including
those C and OS/2 header files. Any friendship granted to these types of omitted
functions will not be recorded for a class. For instance:

// in <foo.h>
 int foobar(void);
// in "bar.h"
class bar {
friend int foobar(void);

 }

This friendship will not be included in the list of friends of class bar.

 Chapter 43. Getting Started559

Browser: Creating Files

¹ No global variable declared, or defined, in the system header file will be included
in the .PDB file. This includes variables of an instantiated template type.

¹ Class member function declarations will be added to the .PDB file, but their
inline definitions, if any, will not.

¹ Non-inline function definitions will not be added to the .PDB file.

These restrictions are lifted when compiling with the Generate All Browser
Information (/Fb*) option. It is recommended that you use the /Fb option, unless the
compiler issues a message indicating that the use of the /Fb* option is appropriate.

Created by
Linking

In addition, you can populate the Browser database from .DLL, .EXE, or .LIB files
when you have run the linker with the /BROWSE option. Note that the linker will
create additional .PDB files for template instantiations from TEMPINC.

Created by
the Browser

Upon exit, the Browser will save the contents of the .DLL, .EXE, and .LIB files to
Browser database files. For example, you can load an .EXE file:

 icsbrs wombat.exe

or enter the program file name into the Load Database dialog. For more
information on loading, see “Loading Files into the Browser” on page 593. When
you view a program file for the first time, the Browser generates a database file with
an extension corresponding to the extension of the file you are viewing.

File Extension Database File Extension
 .EXE .PDE
 .DLL .PDD
 .LIB .PDL

In the example given above, the Browser would generate the filewombat.pde.

Note that this single file contains all the information linked from every compilation
unit's .PDB files, in the same way that the .EXE is the linked composite of all its
compilation unit's .OBJ files.

If you invoke the Browser with a program file for which the Browser has already
generated a Browser database file, the Browser uses that database file instead of
generating a new file. If the file has been updated, the Browser updates the
corresponding database file. This is called an “incremental smart build”. For
example, the next time you view wombat.exe, the Browser uses the wombat.pde file
that it created, thus reducing the time it takes to load the Browser with the
wombat.exe information. If you have made changes to wombat.exe, these changes
are loaded from the new .PDB files. The incremental smart build reduces the loading
time of the new information.

560 IBM VisualAge�C++ for OS/2 User's Guide

Browser: Closing the Browser

Closing the Browser
To end the Browser session, select Exit Browser from the File PullDown menu in
any List or Graph window, or press F3. A dialog appears asking if you want to exit
your current Browser session. Select Yes to exit or No to return to your Browser
session. You can prevent being prompted by this dialog by selecting the Browser...
menu item from the Options PullDown menu. Deselect the Confirm on exit
CheckBox. For more information on the Browser Settings NoteBook, see
“Changing Browser Settings” on page 587.

When you exit the Browser, the currently loaded Browser database is saved to a
Browser database file. By default, the Browser names these files based on the file
name and adding either the .PDD, .PDE, or .PDL extension, depending on whether
the file was a .DLL, an .EXE, or a .LIB, respectively. If the Browser cannot
determine what the database file should be named, a message may prompt you to
name your Browser database file. Also, if you performed a merge or loaded one or
more .PDB file, the Browser will ask you to give the Browser database file a name.

 Chapter 43. Getting Started561

Browser: Closing the Browser

562 IBM VisualAge�C++ for OS/2 User's Guide

Browser: User Interface

44 Understanding and Using the
Browser User Interface

This chapter describes the Browser windows and dialogs. The descriptions cover
what each window or dialog is for, and how you setup and use them. For more
details on using the Browser to understand and develop your applications, see
Chapter 45, “Using the Browser” on page 601. For a quick tour of the Browser
features, try Chapter 46, “A Tour of the Browser” on page 621.

The following are described in this chapter:

¹ “The List Window” on page 564.
¹ “The Graph Window” on page 576.
¹ “Changing Browser Settings” on page 587.
¹ “Changing Fonts” on page 592.
¹ “Loading Files into the Browser” on page 593.
¹ “Merging Files” on page 595.
¹ “Finding Objects in the Current Window” on page 597.
¹ “Searching for Objects in the Entire Browser Database” on page 598.
¹ “The History Window” on page 599.

 Copyright IBM Corp. 1992, 1995 563

Browser: List Window

The List Window
The List window displays a list of program elements such as classes, functions, and
source files that were used to generate your program. Many aspects of a program can
be described as a list. Other aspects can be described as relationships in a Graph
window described on page 576.

To view your programs with the Browser, load your program files (.DLL, .EXE, or
.LIB) into the Browser using the Load Database dialog described on page 593.

Figure 130. List window showing a container view

The List window consists of:

¹ A main menu bar whose PullDown menu actions affect the current window.
See “PullDown Menus” on page 640 for detailed descriptions of the PullDown
menus.

¹ An Action Status Bar which describes what object and action produced the
currently viewed list. A definition of object-action pair is described on page 555.
In the above figure, the Action Status Bar is “Class ISlider - List Members with
Inheritance”.

564 IBM VisualAge�C++ for OS/2 User's Guide

Browser: List Window

¹ A count that indicates how many program elements are in the current list,
excluding label objects. In the above figure, there are 367 program elements
listed.

¹ A Hold CheckBox that, when checked, keeps the current List window contents
from being replaced when an object-action pair results in a list. This can be
useful, for instance, if you want to keep a list of all classes available at the same
time that you want to focus on one given class. If the Hold CheckBox is not
checked (the default behavior), the results of the next action overwrites the
current window contents. There is a limit of four List windows.

¹ A List Area where your program objects are listed. You can perform actions on
the contents of the List Area using Mouse Button 2 on any of the listed items or
on the background of the List window. You can also print, save to a file, or
copy to the clipboard the contents of the List window. In the above figure, the
List Area is displaying a container view. For a description of what a
container view is, see “Types of List Windows.”

¹ An Information Bar at the bottom of the window quickly defines the currently
selected menu item or explains how to invoke the Object PopUp menus. You
can hide the Information Bar by selecting the Expert help level in the Browser
Settings dialog. See “Changing Browser Settings” on page 587 for more
information.

The maximum number of items you can list in a List window is 65533.

The List window has a Background PopUp menu you use to perform actions on the
window. You can access it using Mouse Button 2 on the background of the List
window. See “PopUp Menu Items for List and Graph Windows” on page 648
for detailed descriptions of the window PopUps.

Types of List Windows
The first List window that you see after loading a program into the Browser displays
all the classes defined in the loaded Browser database. This is referred to as a
straight view. The Browser has one other type of List view, a container view to list:

¹ All members of a class and its base classes (List M embers with Inheritance on
a class or List Class Members with Inheritance on a function),

¹ All defined objects in a file (List Defined Objects on a file),
¹ All friends of a class (List Friends on a class), or
¹ All immediate callers and callees of a function (List Immediate Callers &

Callees on a function).

All container views are expandable. (See Figure 130 on page 564 for an example of
a class and its base classes container view). You can use the + and - icons to expand
and collapse the current selection one level, or use the F7 and F8 keys to expand and
collapse the entire contents of the window.

 Chapter 44. Understanding and Using the Browser User Interface565

Browser: List Window

Ordering the Contents of a Container View
When you perform a List M embers with Inheritance action on a class or a List
Class Members with Inheritance on a function, the resultant list is a container view.
You can rearrange the contents of this particular kind of container view. The
container views that you get when you perform the List Defined Objects, List
Immediate Callers & Callees, or List Friends actions only have one level of
expansion, so it does not make sense to order them based on class, access or type.

You can order the contents of the container view resulting from a List M embers
with Inheritance or List Class Members with Inheritance action by:

Class Ordered by class, access, then type:

- Class 1
 - Public
 + Constructors/Destructors
 + Functions
 + Types
 + Variables
 + Protected
 + Private
+ Class 2

Access Ordered by access, type, then class:

- Public
 + Constructors/Destructors
 - Functions

+ Class 1
+ Class 2

 + Types
 + Variables
+ Protected
+ Private

Type Ordered by type, access, then class:

+ Constructors/Destructors
- Functions
 + Public
 - Protected

+ Class 1
+ Class 2

 + Private
+ Types
+ Variables

566 IBM VisualAge�C++ for OS/2 User's Guide

Browser: Objects

By default, the List window displays a container view with the classes at the highest
level (the Class order). If you are interested in seeing particular program elements
(like all functions used by your program) from various classes or particular access
methods (like what is defined as public), it can become quite annoying to have to
scroll back and forth in the list between the classes. The Browser eliminates this
annoyance by giving you the ability to reorder the list contents. You can view all the
program elements together by type or together by access method, eliminating the need
for constant scrolling of the list contents.

Note: The resultant list when you perform the List M embers with Inheritance or
List Class Members with Inheritance action is not sorted alphabetically as
items in a List window generally are. The classes are arranged in a depth
first tree traversal of the classes inheritance hierarchy.

Browsing List Objects
The Browser presents program elements to you in the form of objects on the screen.
Objects can be classes, types, functions, variables, and source files. In addition, the
Browser uses Label objects to organize the program elements on the screen. You can
click Mouse Button 2 on any of these objects to invoke a PopUp menu of actions
available for that object.

Class Objects
C++ classes, structs, unions, class templates, class template instantiations,
classes defined at file (or global) scope, and those nested inside of other
classes. Classes defined inside of function bodies are not included.

Class objects can be specialized as SOM classes. A SOM class is any class
that derives from SOMObject, and a SOM metaclass is any class derived from
SOMClass. C++ Direct-To-SOM classes are supported by the Browser.
Bindings from the C++ SOM emitter may also be browsed, but the symbols
produced by the emitter may not be easy to read or understand.

Function Objects
Functions, member functions, function templates, function template
instantiations, and SOM methods. Class member functions defined inside of
function bodies are not included.

Variable Object
Variables, class member variables, class template member variables, member
variables of class template instantiation, and SOM data members. Not included
are variables defined inside of function bodies.

Type Objects
Typedefs and enums. Not included are enumeration values, nor those enums
and typedefs declared inside of function bodies, or built-in C types, such as int
or char, or any pointer or reference combination of these types. Classes,
structs, and unions are referred to as class objects.

 Chapter 44. Understanding and Using the Browser User Interface567

Browser: Flags

File Objects
Source files used to create your loaded program.

Label Objects
When you perform either the List M embers with Inheritance, List Friends,
List Class Members with Inheritance, List Defined Objects, or List
Immediate Callers & Callees action, the results are placed in a List window
container view. In this type of view, Label objects are used to organize the
results in the List window by category. Categories can be nested. The
categories are Public, Protected, Private, Constructors/Destructors, Classes,
Functions, Types, Variables, Callers, and Callees. Also, the results displayed
when you expand a typedef are label objects.

To browse the program elements listed in the List window, use the Object PopUp
menus. You can invoke them by selecting an object and clicking on Mouse Button 2.

 See “Object PopUp Menu Items” on page 649 for detailed descriptions of the
Object PopUp menus.

Understanding Browser Generated Flags
Sometimes you will see one of the following three flags when viewing items in the
List window:

[anonymous]
The C language has the concept of anonymous structs, unions and enums which
C++ has inherited. For instance, each of the types below has no name (or is
anonymous):

 struct {
 int number;
 int code;
 char *name;

 } record;
 union {

 int a;
 char b;

 };
enum { red, yellow, green } color_1, color_2;

[compiler generated]
When you define a class, but do not define your own default constructor, copy
constructor, or destructor, the compiler will quietly generate one for you. We
thought it important to let you know in the Browser when this occurs.

568 IBM VisualAge�C++ for OS/2 User's Guide

Browser: List Window Settings

('n' instances)
When you use multiple inheritance and two (or more) of your base classes
inherit from a common class such as the following:

Figure 131. ('n' instances) example

Non-virtual inheritance was used by B and C when they inherited from A, but
virtual inheritance was used by F and G when they inherited from E. An object
of type D will contain two copies of the data contained in an object of type A.
An object of type H will contain only one copy of the data contained in an
object of type E.

To highlight this non-diamond shape inheritance structure to you, the Browser
indicates when a derived class contains more than one copy of the data from a
base class.

Changing the Default List Window Settings
The Browser provides you with a List Windows Settings NoteBook from which you
can change:

Settings Used to change the Action Status Bar font, the initial action performed
when you load a file into the Browser, and the double-click actions of the
objects displayed in the List window. See “Changing List Settings”
on page 570.

Colors Used to change the colors of objects in the List window. See
“Changing Colors Used by the List Window” on page 571.

Styles Used to change the amount of text displayed by the List window.
See “Changing the List Style” on page 574.

 Chapter 44. Understanding and Using the Browser User Interface569

Browser: List Window Settings

Changing List Settings
You can change the Action Status Bar font, the initial action performed when you
load a file into the Browser, and the double-click actions of the objects displayed in
the List window.

To load the List Window Settings NoteBook, select List Window... from the
Options PullDown menu.

Figure 132. List Window Settings NoteBook Settings Page

You can change the font used by the Action Status Bar independently of the font
used in the List Area of the List window. To change the font of the Action Status
Bar the List window, choose the Select... PushButton to load the Action Status Bar
Font dialog. For more information on the Fonts dialog, see “Changing Fonts” on
page 592.

You can change the initial action performed when you load a program into the
Browser. Use the Initial Action DropDown to select the action to perform when
loading a program into the Browser from the List window. By default, the List
window displays all the classes defined in your loaded program. You can choose
from List All C lasses, List All Fil es, or None.

570 IBM VisualAge�C++ for OS/2 User's Guide

Browser: List Window Settings

Use the Double-Click Actions section to change the default action performed when
you double-click on an object in the List window. By default, the double-click
actions for all objects, except Labels, is to edit the object's definition. Select the
object from the Object Type: ListBox, and select a corresponding action from the
Actions: ListBox.

Note: These settings are independent of the selections made for the Graph window
settings. See “Changing Graph Settings” on page 581.

Changing Colors Used by the List Window
You can identify objects in the List window by their color. By default, the following
colors are used:

Object Color
Class Cyan
SOM Class Dark Green
SOM Metaclass Light Green
Function Blue
Type Blue
Variable Blue
File Red
Label Brown

In addition, the following letters, displayed in light blue by default, are used to further
indicate the attribute of a function, type or variable:

C Constant (functions)
V Virtual (functions)
E Enumerator (types)
S Static (functions and variables)
PV Pure Virtual (functions)

Note: You can expand the attributes into their complete name using the List
Window Settings NoteBook Styles page which is described in “Changing the
List Style” on page 574.

 Chapter 44. Understanding and Using the Browser User Interface571

Browser: List Window Settings

You can customize the colors used in the List window because:

¹ You may prefer different color schemes.
¹ Different monitor resolutions, or color palettes may make the default Browser

color choices indistinguishable.
¹ Changing the colors can make the types of objects that you are interested in stand

out more and tone down those that you are not interested in.
¹ When printed, the results may look better when different colors or fonts are used.

The results may be different for the List window and Graph window views, so
you have the ability to change them for each type of window.

Note that making a color change will affect all open List windows and all
subsequently opened List windows. The new defaults are saved to the Browser
profile (icsbrs.ini) when you exit from the Browser.

To change the colors used by the List window, select List Window... from the
Options PullDown on a List window to start the List Windows Settings NoteBook.
Select the Colors tab.

Figure 133. List Window Settings NoteBook Colors Page

572 IBM VisualAge�C++ for OS/2 User's Guide

Browser: List Window Settings

On the left side of the page is a scrollable list of items for which you can set colors.
On the upper right side is the color palette containing 16 colors to choose from. On
the bottom right side is an Example Area that will give you a preview of the color
selection that you are currently editing.

To change an object's color:

1. Select the object from the scrollable list.
2. Click on the color from the 16 available colors. Your change appears in the

Example Area.
3. Select the OK PushButton if you want to apply your color changes to the List

Window, or select the Cancel PushButton if you want to exit without making
any changes.

The Default PushButton restores the default colors used by the Browser List
windows. In addition to the default colors used by the objects in the List window
(mentioned above), you can change:

Window Attribute Color
Background White
Attribute Foreground Dark Red
Attribute Background Light Blue
Action Status Bar Foreground Blue
Action Status Bar Background White

Note: These settings are independent of the selections made for the Graph window
color settings. See “Changing Colors Used by the Graph Window” on
page 582.

 Chapter 44. Understanding and Using the Browser User Interface573

Browser: List Window Settings

Changing the List Style
You can change the amount of text that is displayed in the List window. To change
the List window text style, select List Window... from the Options PullDown menu
to start the List Window Settings NoteBook. Select the Styles tab.

Figure 134. List Window Settings NoteBook Style Page

There are three text style settings:

Attributes Summarizes the program element attributes (C-constant, V-virtual,
E-enumerator, S-static, and PV-pure virtual).

Full Text Lists the full text of the program element attributes.
Both Lists both the summary and full text of the program element attributes.

The Example Area shows what the List window text will look like if you choose the
different options. Select OK to accept the changes and Cancel to exit without
making changes.

Note that these settings are independent of the selections made for the Graph window
style settings. See “Changing Graph Styles” on page 584.

574 IBM VisualAge�C++ for OS/2 User's Guide

Browser: Printing and Saving Lists

Printing and Saving your Lists
You can print the currently displayed list using Print... from the File PullDown
menu. The print job will use as many pages as required to print the entire list,
therefore the Multiple Pages - Grid Layout section of this dialog is disabled. Select
the Print PushButton to print the current list. Select the Print Setup... PushButton to
change the printer properties and page setup. Select the Fonts... PushButton to
change the fonts used when printing. Note that the name of this dialog includes the
type of printing you are requesting. In this case, you are requesting to print a list.

Figure 135. List Print Dialog

You can also save the list as an ASCII file. Note that the colors are not saved to the
ASCII file. Select the drive and directory that you want to save the list to, and enter
a filename into the Save as filename: TextEntry field, or enter the drive, path name,
and file name into the TextEntry field.

Figure 136. Save As... Dialog

 Chapter 44. Understanding and Using the Browser User Interface575

Browser: Graph Window

The Graph Window
A Graph window displays program relationships in a graphical format. You can
specify the level of detail you want the graph to show, scroll over the graph, zoom in
and out, and select program elements.

Many aspects of a program can be described as relationships between program
elements. Other aspects can be described by listing some group of elements in a
List window described on page 564.

To use the Graph window to view your program relationships, load your source files
into the Browser using the Load Database dialog described on page 593.

Figure 137. Graph Window

The Graph window consists of:

¹ A main menu bar whose PullDown menu actions affect the current window.
See “PullDown Menus” on page 640 for detailed descriptions of the PullDown
menus.

¹ An Action Status Bar which describes what object and action produced the
current graph, A definition of object-action pair is described on page 555. In the
above figure, the Action Status Bar is “Class IControl - Graph All Base &
Derived Classes”.

576 IBM VisualAge�C++ for OS/2 User's Guide

Browser: Graph Window

¹ A count that indicates how many program elements (nodes) are in the current
graph. In the above figure, there are 49 class nodes.

¹ A Hold CheckBox that, when checked, keeps the current Graph window contents
from being replaced when an object-action pair results in a graph. This can be
useful, for instance, if you want to keep an inheritance graph available at the
same time that you want to focus on another relationship. If the Hold CheckBox
is not checked (the default behavior), the results of the next action overwrites the
current window contents. There is a limit of four Graph windows.

¹ A Graph Area that contains the graphical results of your object-action pair. You
can perform actions on the contents of the Graph Area using Mouse Button 2 on
any of the nodes or on the background of the Graph window. You can also
print, save to a file, or copy to the clipboard the contents of the Graph Area.
When you select a node on the graph, the selected item is highlighted in the List
Area of the Graph window.

¹ A List Area that alphabetically lists all the nodes on the graph. You can click
on the items in this list to see where in the graph the node appears. This node is
highlighted in red, by default. You can perform actions on the contents of the
List Area using Mouse Button 2 on any of the listed items or on the background
of the List Area. You can also save the contents of the List Area to an ASCII
file.

¹ A Slider on the left side to quickly zoom in and out on the graph. Move the
Slider up to reduce the size of the graph and down to increase the size.

¹ Scroll bars located on the right side and bottom of the Graph Area. Use these
to scroll the graph horizontally and vertically.

¹ A divider located between the Graph Area and List Area. Use it to change the
proportion of the screen allocated to each area.

¹ An Information Bar located at the bottom of the window that briefly describes
the currently selected menu item or explains how to invoke the Object PopUp
menus. You can hide the Information Bar by selecting the Expert Help level
in the Browser Settings dialog. See “Changing Browser Settings” on
page 587 for more information.

A very large number of nodes may exhaust the system resources. Note that any
graph approaching this limit would not be clearly understandable in the Graph
window.

The Graph Area has a Background PopUp menu you can use to perform actions on
the window, such as, specifying the level of detail you want the graph to show,
scrolling over the graph, zooming in and out, and changing the layout parameters.
You can access this PopUp using Mouse Button 2 on the background of the Graph
Area. See “PopUp Menu Items for List and Graph Windows” on page 648 for
detailed descriptions of the window PopUps.

 Chapter 44. Understanding and Using the Browser User Interface577

Browser: Graph Overview

You can select a portion of the Graph Area by clicking and dragging the mouse over
the area that you want to select. You can then get a PopUp menu specific for the
selected region that allows you to zoom in on, copy, save, or print the selected area.

 See “Selecting a Graph Zone” on page 580.

Getting a Graph Overview
You can view an overview of the graph using the Overview... item on either the
View PullDown or the Graph Window Background PopUp menu.

Figure 138. Overview Window

The grey shaded area indicates the current view of the Graph Area in the Graph
window. You can move this area around or resize it. Any changes you make to the
size or position of this grey area is automatically reflected in the Graph window.

Use ↔ and Ô to size the view of the graph. The result is the same as if you had used
the Slider on the left side of the Graph window. Use the four-way cross-arrow to
move the grey area around. The result is the same as if you had use the scroll bars
around the Graph Area of the Graph window.

Note: If you change the view of the Graph Area in the Graph window, this change
is automatically reflected in the Overview window.

578 IBM VisualAge�C++ for OS/2 User's Guide

Browser: Organizing a Graph

Organizing the Graph
You can organize the graph using two kinds of layouts that work in conjunction with
one another. By default, the Graph window displays graphs in a vertical layout; that
is, the nodes are drawn from top to bottom. You can change this to a horizontal
layout which redraws the nodes from left to right. For instance, some wide graphs
with wide nodes look best when shown horizontally, while narrower graphs look best
when shown vertically. To choose a vertical or horizontal layout:

1. Select either the View PullDown menu from the main menu bar, or select the
Graph window Background PopUp menu by clicking Mouse Button 2 on the
background of the Graph Area.

2. Select the Horizontal or Vertical menu item.

Figure 139. Horizontal versus Vertical Graph Layout

In addition to the horizontal or vertical layout, you can also weight the nodes of your
graph. Some graphs are easier to understand when all root nodes or leaf nodes are at
an equal level, or something somewhere in between. To select a different weighting:

1. Select either the View PullDown menu from the main menu bar, or select the
Graph window Background PopUp menu by clicking Mouse Button 2 on the
background of the Graph Area.

2. Select the Weighting 5 Cascade menu.
3. Select the Top, Center, or Bottom menu item.

Note: If you have chosen a horizontal layout, then the root nodes will be grouped to
the left and the leaf nodes will be grouped to the right.

Figure 140. Top, Center and Bottom Weighting of a Graph

 Chapter 44. Understanding and Using the Browser User Interface579

Browser: Graph Zone ¹Browser: Graph Window Settings

Selecting a Graph Zone
You can select a particular region of the graph by clicking Mouse Button 1 and
dragging it across the graph. This creates a rectangular dotted box around the
selected region. You can get a Graph Zone PopUp menu using Mouse Button 2 on
this region. This PopUp has the following actions:

Zoom in Zooms in on the selected region.
Save Graph As... Saves the selected region to an OS/2 bitmap file.
Print... Prints the selected region.
Copy All Copies the selected region to the clipboard.

Browsing Graph Objects
In the Graph window, you can display class, function and file objects. See
“Browsing List Objects” on page 567 for descriptions of how the Browser defines
these objects.

You can launch actions from either the nodes on the graph, or their corresponding list
item in the List Area of the Graph window, by selecting the object and clicking on
Mouse Button 2 to invoke the Object PopUp menu. For more information on
Object PopUp menus, see “Object PopUp Menu Items” on page 649.

Changing the Default Graph Window Settings
The Browser provides you with a Graph Windows Settings NoteBook from which
you can change:

Settings Used to change the Action Status Bar font, the initial action performed
when you load a file into the Browser, and the double-click actions of the
objects displayed in the Graph window. See “Changing Graph
Settings” on page 581.

Colors Used to change the colors of objects in the Graph window. See
“Changing Colors Used by the Graph Window” on page 582.

Styles Used to change the shape of the nodes and arcs in the Graph window.
 See “Changing Graph Styles” on page 584.

Bitmap Used to change the dimensions of a saved bitmap. See “Changing
Bitmap Dimensions” on page 585.

580 IBM VisualAge�C++ for OS/2 User's Guide

Browser: Graph Window Settings

Changing Graph Settings
You can change the Action Status Bar font, the initial action performed when you
load a file into the Browser, and the double-click actions of the objects displayed in
the Graph window.

To load the Graph Window Settings NoteBook, select Graph Window... from the
Options PullDown menu.

Figure 141. Graph Window Settings NoteBook Settings Page

You can change the font used by the Action Status Bar independently of the font
used in the Graph Area and List Area of the Graph window. To change the font of
the Action Status Bar on the Graph window, choose the Select... PushButton to
load the Action Status Bar Font dialog. For more information on the Fonts
dialog, see “Changing Fonts” on page 592.

You can change the initial action performed when you load a program into the
Browser. Note that this action is only performed if you load a program while having
a Graph window open. Use the Initial Action DropDown to select the action to
perform when loading a program into the Browser. The Graph window does not have
a default load action. You can choose from Show Inheritance Graph, Show Include
File Graph, or None.

Use the Double-Click Actions section to change the double-click action of the
objects in the Graph window. By default, the double-click actions for all objects is to
edit the object's definition. Select the object from the Object Types: ListBox, and
select a corresponding action from the Actions: ListBox.

 Chapter 44. Understanding and Using the Browser User Interface581

Browser: Graph Window Settings

Changing Colors Used by the Graph Window
When you invoke an action to create a graph, the object you used to launch the action
is highlighted in the Graph window in red, by default.

The Graph window displays each type of program element as a different color/shape
and each relationship as a different colored/shaped arc.

Making a color change affects all open Graph windows and all subsequently opened
Graph windows. The new defaults are saved to the Browser profile (icsbrs.ini)
when you exit from the Browser.

To change the colors used by the Graph window, select Graph Window... from the
Options PullDown on any Graph window to get the Graph Windows Settings
NoteBook. Select the Colors tab.

Figure 142. Graph Window Settings NoteBook Colors Page

On the left is a scrollable list of items for which you can set default colors. On the
upper right is the color palette containing 16 colors to choose from. On the bottom
right is an Example Area that previews the color selection you are currently editing.

582 IBM VisualAge�C++ for OS/2 User's Guide

Browser: Graph Window Settings

To change an object's color:

1. Select the object from the scrollable list.
2. Click on a color from the 16 available colors. Your change appears in the

Example Area.
3. Select the OK PushButton if you want to apply your color changes to the Graph

Window, or select the Cancel PushButton if you want to exit without making
any changes.

The Default PushButton restores the default colors used by the Browser Graph
windows. By default, the color settings are:

Object Color
Class Cyan
SOM Class Dark Green
SOM Metaclass Light Green
Function Blue
File Red
Background White
Action Status Bar Foreground Blue
Action Status Bar Background White
Selection Hilight Red
Public Inheritance Black
Protected Inheritance Red
Private Inheritance Blue
Function and File Arrows Black

Because of the variety of colors being used in one window, the colors dropped from
the OS/2 color palette will not work correctly. Any changes made this way will not
be stored in the Browser profile (icsbrs.ini).

Note: These settings are independent of the selections made for the List window
style settings. See “Changing Colors Used by the List Window” on
page 571.

 Chapter 44. Understanding and Using the Browser User Interface583

Browser: Graph Window Settings

Changing Graph Styles
You can change the shape of the nodes and the line style of the arcs using the Styles
page of the Graph Window Settings NoteBook.

Figure 143. Graph Window Settings NoteBook Styles Page

To change the shape of the nodes and arcs:

1. Select Graph Window... from the Options PullDown on the Graph window.
2. Select the Styles tab on the Graph Window Settings Notebook.
3. Select the object/relationship from the Object Shape/Line Style ListBox.
4. Select a shape/line PushButton.
5. Select OK to apply the changes to the Graph window, or select Cancel to exit

without making changes.

These changes will be saved to the icsbrs.ini profile when you exit the Browser.

The Default PushButton restores the Browser defaults for node shape and line style.

584 IBM VisualAge�C++ for OS/2 User's Guide

Browser: Printing and Saving Graphs

Changing Bitmap Dimensions
You can specify the dimensions of the bitmap to be saved to a file or copied to the
clipboard. Select Graph Window... from the Options PullDown menu on the Graph
window. Choose the Bitmap tab on the Graph Window Settings NoteBook. Enter
the width and height of the bitmap that you want to save.

If you specify values for the width and height of the bitmap that do not correspond
with the dimensions of the current graph or selection area, the output may not be as
expected. For example, if the area to be saved or copied is a square and the values
set specify a rectangular shape, then the image saved or copied will be stretched to fit
the rectangle.

Figure 144. Graph Window Settings NoteBook Bitmap Page

Printing and Saving your Graphs
You can print the whole graph on one or several pages, print marked sections of the
graph on one page, or print the currently viewed section of the graph on one page.

Use the Print 5 Cascade on the File PullDown menu to print:

One Page... Print the entire graph on one page.
Multiple Pages... Print the entire graph across multiple pages.
Client... Print the currently displayed portion of the graph to one page.
Zone... Print the currently selected region to one page. See “Selecting a

Graph Zone” on page 580 for information on selecting areas of the
graph.

 Chapter 44. Understanding and Using the Browser User Interface585

Browser: Printing and Saving Graphs

By selecting any of the above print options, a Browser Print dialog appears. Note
that the name of this dialog includes the type of printing you are requesting. In the
example diagram below, you are requesting to print multiple pages.

Figure 145. Graph Print Dialog

The Multiple Pages - Grid Layout section of the dialog is disabled when you
choose to print One Page..., Client..., or Zone... from the Print 5 Cascade menu on
the Graph window. If you choose to print Multiple Pages... from the Print 5
Cascade menu on the Graph window, you can select the layout of the pages to be
printed by entering the number of horizontal and vertical pages to print. The Graph
window zooms out to its maximum size, and the page layout is indicated by
rectangular boxes on the graph. Each rectangular area is a page to be printed.
Change the horizontal and vertical page numbers, and select the Apply PushButton to
accept the new page layout. Selecting the Apply PushButton will redraw the grid
layout on the graph.

Select the Print PushButton to print the current graph. If you chose to print multiple
pages, then when the graph is finished spooling to the printer, the grid is cleared and
the graph is restored to its previous zoom setting. Select the Print Setup...
PushButton to change the printer properties and page setup. Select the Fonts...
PushButton to change the font used when printing.

586 IBM VisualAge�C++ for OS/2 User's Guide

Browser: Path and Help Settings

You can save either the Graph Area or List Area contents of the Graph window.

¹ Select Save Graph As... from the File PullDown menu on the Graph window to
save the graph to an OS/2 bitmap file. See “Changing Bitmap Dimensions”
on page 585 for more information on setting the size of the OS/2 bitmap saved.
Note that colors, shapes and layout of the graph are saved to the OS/2 bitmap
file.

¹ Select Save List As... from the File PullDown menu on the Graph window to
save the list to an ASCII file.

Figure 146. Save Graph As Dialog

Changing Browser Settings
The Browser provides you with a Browser Settings NoteBook from which you can
set:

Paths Used to change the file search path, the library files to be ignored by
the Browser, and the directory in which you want to save the Browser
profile (icsbrs.ini). See “Changing Paths Used by the Browser”
on page 588 for more information.

Help Level Used to set the help level provided by the Browser, as well as allow
you to disable the Exit Browser dialog. See “Changing Help
Levels” on page 590 for more information.

 Chapter 44. Understanding and Using the Browser User Interface587

Browser: Path and Help Settings

Changing Paths Used by the Browser
The Browser searches for files using the following sequence:

1. The path that was used to create the program.
2. The current directory.
3. The directories listed in the Browser Settings NoteBook Paths page.
4. The INCLUDE environment variable.
5. The DPATH environment variable.

Use the Browser Settings Paths page to specify the path names that the Browser
should use in searching for Browser files and library files. You can also specify
where to store the Browser profile (icsbrs.ini).

Note: When you list files in the Browser, the paths where these files were when the
program was created will be listed. These paths may not necessarily be
correct, as may be the case with the Browser shipped .PDL files for the
classes that make up the IBM VisualAge C++ Open Class Library that you
can access from the Load 5 or Merge 5 Cascade menus.

To change the paths used by the Browser, select Browser... from the Options
PullDown menu to start the Browser Settings NoteBook. The first page in this
NoteBook is the Paths page.

Figure 147. Browser Settings NoteBook Paths Page

588 IBM VisualAge�C++ for OS/2 User's Guide

Browser: Path and Help Settings

Use the File Search Path TextEntry field to enter directory names where you want
the Browser to search for files. By default, the path name contains the INCLUDE
environment variable of the IBM VisualAge C++ Open Class Library. Add your own
directories to this list in the order in which the search should be performed. Place a
semicolon (;) after each directory. If two directory names in the search path contain a
file with the same file name, the file in the first directory will be used.

Use the Library Files TextEntry field to enter the names of the library files (.LIB)
that your program uses, but where you do not want to see the Browser information
for those files. Such files are from another vendor or files whose internals are not
important to you. The files you specify here will most likely be those that you know
do not contain any relevant Browser information. By default, the IBM
VisualAge C++ Open Class Library files are added to this list because they do not
contain any Browser information. These library files are not used when the Browser
loads all relevant information pertaining to your program or library. Place a
semicolon (;) after each file name.

You may prefer, or need to, keep the Browser profile (icsbrs.ini) in a location
different from the one you specified when you first used it. You can use the Profile
TextEntry field to change its location. When you exit the Browser, it will create the
profile in this new location.

Select the OK PushButton to accept the changed path names. The new settings are
saved to the Browser profile (icsbrs.ini) when you exit from the Browser. Select
the Cancel PushButton to exit without changing the path names. Use the Default
PushButton to reset the path and file names to the Browser defaults.

 Chapter 44. Understanding and Using the Browser User Interface589

Browser: Path and Help Settings

Changing Help Levels
Use the Browser Settings NoteBook Help Level page to specify different levels of
help. Select Browser... from the Options PullDown menu to start the Browser
Settings NoteBook., and select the Help Level tab.

Figure 148. Browser Settings NoteBook Help Level Page

You can set the level of help that the Browser provides:

New user The New User Help dialog and an Information Bar .
Intermediate No New User Help dialog, but an Information Bar .
Expert No New User Help dialog and no Information Bar .

The Information Bar is located at the bottom of each Browser window and is used
to describes the various menu items as you highlight them.

You can turn off the Exit Browser dialog that appears each time you close the
Browser by deselecting the Confirm on exit CheckBox.

590 IBM VisualAge�C++ for OS/2 User's Guide

Browser: New User Help

New User Help Dialog
When you first start the Browser, you get both a List window and the New User
Help dialog. The information in the dialog outlines the key features of the Browser.

You can disable this dialog by unchecking the Show new user help on startup
CheckBox or by selecting the Intermediate or Expert help levels. You can see this
dialog again after disabling it by selecting the New User help level from the Help
Level page in the Browser Settings NoteBook.

The following four figures show the contents of the New User Help dialog:

Figure 149. New User Help Dialog Page 1 Figure 150. New User Help Dialog Page 2

Figure 151. New User Help Dialog Page 3 Figure 152. New User Help Dialog Page 4

 Chapter 44. Understanding and Using the Browser User Interface591

Browser: Changing Fonts

 Changing Fonts
You can change fonts for the List window text, the List window Action Status Bar,
the Graph window Graph Area text and List Area text, and the Graph window
Action Status Bar.

All of the above actions result in a Font dialog. You can select the font type, size,
style and emphasis.

Change Font of: How to:

List window text Select Fonts... from the List window Options PullDown menu.

Action Status Bar in
the List window

1. Select List Window... from the Options PullDown menu to get
the List Window Settings NoteBook.

2. Select the Settings tab.
3. Choose the Select... PushButton.

Graph Area text in
the Graph window

Select Node Fonts... from the Graph window Options PullDown
menu.

List Area text in the
Graph window

Select Li st Fonts... from the Graph window Options PullDown
menu.

Action Status Bar in
the Graph window

1. Select Graph Window... from the Options PullDown menu to
get the Graph Window Settings NoteBook.

2. Select the Settings tab.
3. Choose the Select... PushButton.

Figure 153. Graph Node Font Dialog

592 IBM VisualAge�C++ for OS/2 User's Guide

Browser: Load Database Facility

As you make selections, the Sample Area changes to preview the font definition you
have chosen. Select the OK PushButton to accept the font changes. The new font
settings will be saved to the Browser profile (icsbrs.ini) when you close the
Browser. Select the Reset PushButton to reset the dialog selections to the last used
font definition.

Loading Files into the Browser
The Load Database dialog is used to load your program's information into the
Browser. You can load the following types of files into a Browser session:

.DLL Dynamic link library created using the linker option /BROWSE.

.EXE Executable created using the linker option /BROWSE.

.LIB Library file created using the linker option /BROWSE.

.PDB Browser database file created using the compiler option/Fb.

.PDL Browser database file created from a loaded .LIB file.

.PDE Browser database file created from a loaded .EXE file

.PDD Browser database file created from a loaded .DLL file.

Note: The format of the new .PDB files are incompatible with the .BRS files
generated by the previous release of the Browser, and the AIX format of the
.PDB files. You can probably erase these old files, unless you want to use
them with the old Browsers. The good news is that the new .PDB files are
between 60-95% smaller than the .BRS files for the same input files. On a
large application, you will save many Megabytes of hard disk space by
recompiling and generating new .PDB files.

Figure 154. Load Database Dialog

 Chapter 44. Understanding and Using the Browser User Interface593

Browser: Load Database Facility

For information on creating files to load into the Browser, see “Creating Files to Use
with the Browser” on page 559.

To load a file:

1. Select Load... from the File PullDown menu to start the Load Database dialog.
2. Change the file name extension, if appropriate, in the Open Filename: TextEntry

field.
3. Select the drive you want to load from using the Drive: DropDown list.
4. Select a directory on that drive from the Directory: ListBox.
5. Select the file name from the File: ListBox. Note that you can load more than

one .PDB file at a time by making multiple .PDB selections in this ListBox.
You cannot do a multiple load of any other file type.

6. Select the Load PushButton to load the information into the Browser.

Note: You can bypass these steps if you know the name and location of the file you
wish to load. Enter the path name and file name into the Open Filename:
TextEntry field.

You can also quickly load the classes that make up the IBM VisualAge C++ Open
Class Library by using the Load 5 Cascade menu from the File PullDown menu. In
addition, you can add your own files to the Load 5 Cascade menu. See “Adding
Menu Items to the Load 5 and Merge 5 Cascade menus” on page 619.

When you select the Load PushButton, a Progress dialog is displayed to show you
the amount of information that has been loaded by the Browser.

Figure 155. Progress Dialog

594 IBM VisualAge�C++ for OS/2 User's Guide

Browser: Merge Database Facility

 Merging Files
The Merge Database dialog is used to load more than one program into a Browser
session at a time. This is useful if you are thinking of adding classes from another
program. You can check out the structure while still being able to look at your own
program's structure.

When you browse a target program (an .EXE, .DLL, or .LIB), you will only see those
classes, functions, and files that were actually used in the program. You will not see
related objects. For example, assume that you have written a small program using the
IBM User Interface class library, and it contains an IFrameWindow, a Menu bar,
and some static text. The small program will only reference the classes, functions,
and files of the IFrameWindow , IMenuBar , and IStaticText with their parent
classes. If you want to add some PushButtons and a bitmap onto your window, you
can see these classes by merging the User Interface Class Library data with your
small program.

Also, many programs are written as an .EXE and one or more .DLLs. If you browse
the .EXE, then you only see the data from that .EXE. You can merge in the data
from the .DLL(s) and see the whole program's information.

Figure 156. Merge Database Dialog

 Chapter 44. Understanding and Using the Browser User Interface595

Browser: Merge Database Facility

You can merge the following file types: .DLL, .EXE, .LIB, .PDB, .PDD, .PDE, and
.PDL. If you merge more than one .PDB file, this is analogous to grouping a set of
.OBJ files together into a single .LIB file, so the saved file version in this case is a
.PDL file. For information on creating files to load into the Browser, see “Creating
Files to Use with the Browser” on page 559.

To merge files:

1. Select Merge... from the File PullDown menu to start the Merge Database
dialog.

2. Change the file name extension, if appropriate, in the Open Filename: TextEntry
field.

3. Select the drive you want to load from using the Drive: DropDown list.
4. Select a directory on that drive from the Directory: ListBox.
5. Select the file name from the File: ListBox.
6. Select the Merge PushButton to merge the information into the current Browser

session.

Note: You can bypass these steps if you know the name and location of the file you
wish to merge. Enter the path name and file name into the Open Filename:
TextEntry field.

You can also quickly load the classes that make up the IBM VisualAge C++ Open
Class Library by using the Merge 5 Cascade menu from the File PullDown menu. In
addition, you can add your own files to the Merge 5 Cascade menu. See
“Adding Menu Items to the Load 5 and Merge 5 Cascade menus” on page 619.

When you select the Merge PushButton, a Progress dialog is displayed to show you
the amount of information that has been merged into the current Browser database.

Note: If you try to merge a file into the Browser database that duplicates some of
the information that is already loaded into the Browser, a message will appear
to inform you. This file will not be loaded into the Browser database.

596 IBM VisualAge�C++ for OS/2 User's Guide

Browser: Find Facility

Finding Objects in the Current Window
Use the Find dialog to locate text in the current window starting from the currently
selected object. To launch the Find dialog, select Find... from the Edit PullDown
menu.

Figure 157. Find Dialog

Enter a text string into the Find: TextField or use the DownArrow icon to select from
the last 10 text entries made.

Use the Find PushButton to initiate the search and close the Find dialog. Use the
Apply PushButton to initiate the search and keep the Find dialog open. Use the
Cancel PushButton to quit the dialog without performing the search.

If a match is found, the located text is brought into the view of the window and the
text is highlighted. If no matches are found, a Message Box appears to let you know.

You can perform wildcard finds using:

¹ An asterisk (*) to match any number of characters, and
¹ A question mark (?) to match one character.

You can use the Case Sensitive CheckBox to perform case dependent searches, and
use the Wrap Around CheckBox to search the entire contents of the current window.
The message “Wrapped” appears in the Information Bar when the find is starting to
search from the top of the list.

You can find the next instance of the text by either selecting Find Next from the
Edit PullDown or use the Ctrl-N keys. Note that if you used the Apply PushButton,
you can use it to find the next instance.

 Chapter 44. Understanding and Using the Browser User Interface597

Browser: Search Facility

Searching for Objects in the Entire Browser Database
The Search Database dialog is a simple string-matching facility to help you find
objects in your programs or libraries. It does not have a complex query structure.
You can search the entire loaded Browser database with the following specifications:

¹ Object (classes, functions, variables, types, or files). For more information
on the types of objects, see “Browsing List Objects” on page 567.

¹ Access qualifier (public, protected, private, or non-members).
¹ Type (all, SOM, or non-SOM).
¹ Function (all, virtual, pure virtual, or static).

To launch the Search Database dialog, select Search... from the Actions PullDown
menu.

Figure 158. Search Database dialog

Enter the text string that you want to search for into the Search TextEntry field. You
can also use the DownArrow icon to access the last 10 searches performed.

Select the Search PushButton to perform the search query and close the Search
Database dialog. Select the Apply PushButton to perform the search query and keep
the Search Database dialog available. Select Cancel to end the Search Database
dialog without performing a query.

All program object names that match the search string will be listed in the List
window. Note that the return types and arguments are not searched. If no matches
are found, a Message Box appears to let you know.

You can perform wildcard searches using the following wildcards:

¹ A question mark (?) to signify specific character locations, and
¹ An asterisk (*) to signify any number of character locations.

598 IBM VisualAge�C++ for OS/2 User's Guide

Browser: History Window

You can use the Case Sensitive CheckBox to perform case dependent searches. If
you know the exact name of the object you want to locate, then use the Exact Match
CheckBox. Note that you cannot use wildcards in conjunction with the Exact Match
facility. The wildcard is treated as part of the actual search string.

An example using non-exact match:

¹ Enter foobar and deselect the Exact Match CheckBox.
 ¹ Results: foobar and realfoobar.

An example using exact match:

¹ Enter foobar and select the Exact Match CheckBox.
 ¹ Results: foobar

But not: realfoobar.

The History Window
You can use the History window to redo previously invoked object-action pairs.
This is useful if you replaced a particular List or Graph window contents and no
longer have direct access to the object. To launch the History window, select
History... from the Windows PullDown menu on any Browser window. For a
definition of object-action pair, see page 555.

Figure 159. History dialog

The History window displays the last 40 unique object-action pairs that you have
performed during your current session. The object is listed on the left hand side of
the window and the action is displayed on the right side. Double-click on an
object-action to invoke it, or select the OK PushButton to invoke the action and hide

 Chapter 44. Understanding and Using the Browser User Interface599

Browser: History Window

the window, or select Apply to invoke the action and keep the History window
visible.

Invoking the object-action pair in the History window makes the Browser recalculate
all the information. If the object-action pair that you want to invoke is listed at the
top of the History window, use the Previous menu item from the Actions PullDown
menu, or the F6 key to initiate this command. The Browser does not have to
recalculate the last object-action pair performed because the results are stored in a
buffer. This method will be much faster.

When you perform a load, merge, or refresh, the contents of the History window are
checked to see that the object in each object-action pair is still valid. If it is not valid,
it is removed from the History window list.

600 IBM VisualAge�C++ for OS/2 User's Guide

Browser: Assisting in Development

45 Using the Browser

This chapter describes how to use the Browser to help you during your software
development cycle and to help you understand your programs.

The following are covered in this chapter:

¹ “Using the Browser to Assist in Development.”
¹ “Using the Browser to Aid Program Understanding” on page 604.
¹ “Using QuickBrowse” on page 615.

Using the Browser to Assist in Development
The Browser can be a very useful tool during program development. It provides
quick access to source files for:

 “Editing and Viewing Source Files.”

It gives you the ability to quickly view your uncompiled source files and the classes
that make up the IBM VisualAge C++ Open Class Library:

 “Browsing without Recompiling” on page 602.
 “Browsing the IBM VisualAge C++ Open Class Library” on page 602.

It helps you in the design process by providing quick access to the VisualAge C++
Open Class Library documentation and allows you to view more than one program at
the same time.

 “Showing VisualAge C++ Open Class Library Documentation” on page 603.
 “Browsing More Than One Program or Library at a Time” on page 603.

Editing and Viewing Source Files
If you have ever worked on a large project, you know how difficult it is to keep track
of where program elements are defined. Sometimes large programs can be split
across several files and several directories. Even using traditional search methods,
such as grep, it can take a long time to locate where particular program elements are
defined.

The Browser can help you solve this problem in one simple step:

¹ Select the program element that you want to edit, and use the Object PopUp
menu to select the Edit Definition action. This is the default setting, so you can
also just double-click on the object to launch the edit session.

 Copyright IBM Corp. 1992, 1995 601

Browser: Assisting in Development

By default, the Browser will load the VisualAge Editor and take you into the program
file at the exact location where the program element is defined.

You can also quickly view your source files without searching for a specific object
definition in two ways:

¹ Use the List All Fil es or Show Include File Graph menu item from the Actions
PullDown menu, or

¹ Select a class object and from its PopUp menu, select the List Implementing
Files option to get a view of file objects.

Once you have a file object, use the file's PopUp menu to select the Edit File menu
item in order to, by default, launch the VisualAge Editor with this file loaded.

 The various PullDown menus are described in “PullDown Menus” on page 640.

Browsing without Recompiling
If your job is maintaining code, but it does not compile, you can use the Browser to
see the program elements and their relations without having a compiled executable
file. In addition, if you make modifications to your program files, you can see these
changes reflected in the Browser database without having to recompile. A utility
called QuickBrowse quickly examines the makefile for your loaded project and
derives the compile options used to compile the required source files. The source
files are then quickly parsed as if they were compiled with such options. This
method is much quicker than waiting for a lengthy compile, as well as useful when
you inherit code from someone else, and it does not compile.

Note: The QuickBrowse feature is only available when the Browser is started from
an IBM WorkFrame project.

You will not get as much information as if you had compiled and linked your source
files first: no call, exception, or template instantiation information will be available.
However, you can see the class structure of your program.

 For more information on QuickBrowse, see “Using QuickBrowse” on page 615.

Browsing the IBM VisualAge C ++ Open Class Library
The Browser provides quick access to the classes that make up the IBM
VisualAge C++ Open Class Library. You can select them to view independently of
any other files by selecting the library from the Load 5 Cascade menu on the File
PullDown menu.

The Browser also makes it easy to merge the classes that make up the IBM
VisualAge C++ Open Class Library when you are viewing your own programs. You
can select the classes from the Merge 5 Cascade menu on the File PullDown menu.

602 IBM VisualAge�C++ for OS/2 User's Guide

Browser: Assisting in Development

 The Load Database dialog is described in “Loading Files into the Browser” on
page 593. The Merge Database dialog is described in “Merging Files” on
page 595. The File PullDown menu items are defined in “File PullDown Menu” on
page 641.

Browsing More Than One Program or Library at a Time
When you browse a target program (an .EXE, .DLL, or .LIB), you will only see those
classes, functions, and files that were actually used in the program. You will not see
related objects. For example, assume that you have written a small program using the
user interface classes defined in the IBM VisualAge C++ Open Class Library, and it
contains an IFrameWindow , a menu bar, and some static text. Next, you want to
add a couple of PushButtons and a Bitmap onto your window. To see these classes,
you can merge the User Interface Classes data (all of it) with your program's data,
and see all the interface facts about these particular classes that make up part of the
IBM VisualAge C++ Open Class Library.

Also, many programs are written as an .EXE and one or more .DLLs. If you browse
the .EXE, then you only see the data from that .EXE. You can merge in the data
from the .DLL(s) and see the whole program's information.

Note that all IBM VisualAge C++ Open Class Library classes start with the letter “I”
with the exception of the I/O Stream and Complex Mathematics classes. The File
PullDown menu is described in “File PullDown Menu” on page 641. The Merge
Database dialog is described in “Merging Files” on page 595.

Showing VisualAge C ++ Open Class Library Documentation
The Browser gives you quick access to the class and function references provided for
the IBM VisualAge C++ Open Class Library. If you want to find out more
information on one of these classes or functions, from the Class or Function PopUp
menu, select the Show Documentation option.

 The PopUp menus are defined in “PopUp Menus” on page 648.

 Chapter 45. Using the Browser603

Browser: Aiding in Program Understanding

Using the Browser to Aid Program Understanding
The Browser provides two kinds of windows for displaying your program elements
and their association with one another: List and Graph windows.

Many aspects of your program can be described by listing some group of elements in
a List window:

 “List All Classes Defined in the Currently Loaded Program.”
 “List All Files Used to Create the Currently Loaded Program.”
 “Listing All Objects Defined in a File” on page 605.
 “Listing All Friends of a Class” on page 606.
 “Listing All Friendships of a Class or Function” on page 607.
 “Listing Immediate Callers and Callees for a Function” on page 608.
 “Listing Instantiations of Classes or Functions” on page 611.
 “Listing Implementing Files” on page 606.
 “Listing All Class Members” on page 609.
 “Listing Overriding Derived Classes” on page 610.
 “Listing All the Exceptions That A Function May Encounter” on page 611.

Many aspects of your program can be described as relationships in a Graph window:

 “Viewing Class Relationships” on page 612.
 “Viewing Call Chains” on page 613.
 “Viewing Include File Relationships” on page 614.

List All Classes Defined in the Currently Loaded Program
By default, when you first load a program into the Browser, a list of all the classes
defined for that program is displayed in a List window. If you no longer have this
list visible, you can list all the classes by either:

¹ Selecting the List All C lasses from the Actions PullDown menu, or
¹ Selecting the List All C lasses from the List or Graph window Background

PopUp menu.

List All Files Used to Create the Currently Loaded Program
You can list all the files that were used to create the currently loaded program:

¹ Select the List All Fil es from the Actions PullDown menu
¹ Select the List All Fil es from the List or Graph window Background PopUp

menu.

Note that the directories displayed in the list may not be accurate. These are the
directories that were used when the program was created. For more information
on where the Browser searches for files, see “Changing Paths Used by the Browser”
on page 588.

604 IBM VisualAge�C++ for OS/2 User's Guide

Browser: Aiding in Program Understanding

Listing All Objects Defined in a File
If you have a list of files or an include file graph, then you can use the file object to
determine all the program elements that are defined in that file.

1. Select the file object with Mouse Button 2 to get the File PopUp menu.
2. Select the List Defined Objects menu item.

A list of all the program elements defined in the file will be displayed in a List
window.

Figure 160. An Example List: File islider.hpp - List Defined Objects

 Chapter 45. Using the Browser605

Browser: Aiding in Program Understanding

Listing Implementing Files
If you want to know where class definitions are defined:

1. Select the class object with Mouse Button 2 to get the Class PopUp menu.
2. Select the List Implementing Files menu item.

A list of all files that contain definitions for the currently selected class and all of its
members will be displayed in a List window.

Figure 161. An Example List: Class IColor - List Implementing Files

Listing All Friends of a Class
If you have a list of classes or an inheritance graph, you can use the class object to
display all the friends of the currently selected class.

1. Select the class object with Mouse Button 2 to get the Class PopUp menu.
2. Select the List Friends menu item.

A list of all the friends defined for the currently selected class are displayed in a List
window. If there are no friends defined for the currently selected class, then this
menu item will be disabled.

Figure 162. An Example List: Class IBaseListBox - List Friends

606 IBM VisualAge�C++ for OS/2 User's Guide

Browser: Aiding in Program Understanding

Listing All Friendships of a Class or Function
Friendships can be granted to either a single function or a member function, or to all
the member functions of a class at once. You can list all the friendships defined for a
class or function:

1. Select the class or function object with Mouse Button 2 to get either the Class or
Function PopUp menu.

2. Select the List Friendships menu item.

A list of all the friendships that are defined for the selected object are displayed in a
List window. If there are no friendships defined for the currently selected function,
then this menu item will be disabled.

Figure 163. An Example List: Class IListBox::Cursor - List Friendships

 Chapter 45. Using the Browser607

Browser: Aiding in Program Understanding

Listing Immediate Callers and Callees for a Function
When debugging your programs, it is often important to know what impact changing
a particular function may have on other functions that it calls or call it. You can list
all the functions that call a particular function and that a particular function calls:

1. Select the function object with Mouse Button 2 to get the Function PopUp
menu.

2. Select the List Immediate Callers & Callees menu item.

A list of all the callers and callees for the selected function will be displayed in a List
window. If there are no callers or callees are defined for the currently selected
function, then this menu item will be disabled.

Note: This information is not available if you have used QuickBrowse.

Figure 164. An Example List: Function Sound::Sound - List Immediate Callers & Callees

608 IBM VisualAge�C++ for OS/2 User's Guide

Browser: Aiding in Program Understanding

Listing All Class Members
It is often necessary to know what members are defined for a given class or what
class a given member function is a member of. You can list all members of a class
and its base classes:

1. Select the class or function object with Mouse Button 2 to get either the Class or
Function PopUp menu.

2. Select the List M embers with Inheritance or List Class Members with
Inheritance menu item.

A List window container view of all the classes, base classes, and members is
displayed. A container view is a list which can be further expanded using the + and -
icons to expand and collapse the entries. There are three ways to order this window:
by classes, by access, or by type. By default, the items are ordered by class. Note
that this list is not ordered alphabetically, but are arranged in a depth first tree
traversal of the classes’ inheritance hierarchy.

Figure 165. An Example List: Class IFont - List Members with Inheritance

 Chapter 45. Using the Browser609

Browser: Aiding in Program Understanding

Listing Overriding Derived Classes
It is often important to know when, where, and if a function is overrided. You can
list all the overriding derived classes for a function:

1. Select the function object with Mouse Button 2 to get the Function PopUp
menu.

2. Select the List Overriding Derived Classes menu item.

A list of all the overriding derived classes will be displayed in a List window. This
menu item is disabled if the function is not the member of a class, or there are no
derived classes for the class this function is a member of.

Figure 166. An Example List: Function IBase::asDebugInfo - List Overriding Derived Classes

610 IBM VisualAge�C++ for OS/2 User's Guide

Browser: Aiding in Program Understanding

Listing Instantiations of Classes or Functions
You can list the template instantiations for classes and functions:

1. Select the class or function object with Mouse Button 2 to get either the Class or
Function PopUp menu.

2. Select the List Inst antiations menu item.

A list of all the template instantiations for the currently selected object will be
displayed in a List window. This menu item is disabled if the currently selected class
or function is not a class or function template.

Figure 167. An Example List: Class ISet<class Element> - List Instantiations

Listing All the Exceptions That A Function May Encounter
C++ uses exception handling to support error handling because throwing or catching
an exception can affect the way a function relates to other functions. You need to
know what these exceptions are.

You can quickly list all the exceptions for a given function using the List Possible
Exceptions Thrown item on the Function PopUp menu.

Note: This information will not be available for any data loaded using QuickBrowse.

 The Function PopUp menu is described in “Object PopUp Menu Items” on
page 649.

Figure 168. An Example List: Function Sound::Sound - List Possible Exceptions Thrown

 Chapter 45. Using the Browser611

Browser: Aiding in Program Understanding

Viewing Class Relationships
You can quickly graph the class inheritance relationships using one of the following
Class PopUp menu items:

¹ Graph All Base & Derived Classes
¹ Graph All B ase Classes
¹ Graph All D erived Classes
¹ Graph I mmediate Derived Classes

 The Class PopUp menu is described in “Object PopUp Menu Items” on
page 649.

Figure 169. An Example Graph: Class ICanvas - Graph All Derived Classes

612 IBM VisualAge�C++ for OS/2 User's Guide

Browser: Aiding in Program Understanding

Viewing Call Chains
When debugging your programs, you often have to follow the call chain. Sometimes
you may have a function that is acting unexpectedly. You need to know all the
functions that may be calling it or that it calls, so that you can determine what effect
the function may have on other program components.

You can quickly graph the call chain of a function using one of the following
Function PopUp menu items:

¹ Graph All C allers
¹ Graph All Cal lees
¹ Graph All Callers & Callees
¹ Graph I mmediate Callers & Callees

depending on how much of the call chain you want to see. You will not see calls to
C functions defined in the system header files. See “/Fb” on page 269 for a
description of how to compile for use with the Browser.

Note: This information will not be available for any data loaded using QuickBrowse.

 The Function PopUp menu is described in “Object PopUp Menu Items” on
page 649.

Figure 170. An Example Graph: Function Sound::Sound - Graph Immediate Callers & Callees

 Chapter 45. Using the Browser613

Browser: Aiding in Program Understanding

Viewing Include File Relationships
You can quickly graph the file structure of your programs showing you where header
files are included. You can show this structure using the following PopUp menu
items:

¹ Graph All In cludees
¹ Graph All I ncluders
¹ Graph All Includers & Includees

 The File PopUp menu is described in “Object PopUp Menu Items” on page 649.

Figure 171. An Example Graph: File istattxt.hpp - Graph All Includers & Includees

When the Browser lists files, it displays the path name of the files when the program
was compiled. However, this path name may not be correct, as is the case with the
Browser shipped .PDL files for the IBM VisualAge C++ Open Class Library classes
that you can load or merge from the Load 5 and Merge 5 Cascade menus. For
information on where the Browser searches for files, See “Changing Paths Used by
the Browser” on page 588.

614 IBM VisualAge�C++ for OS/2 User's Guide

Browser: QuickBrowse

 Using QuickBrowse
QuickBrowse is a code analysis technology that allows the VisualAge C++ Browser
to extract type information from C++ source code without the associated overhead of
compilation. Declarations local to functions and function call information are not
provided by QuickBrowse.

The QuickBrowse feature allows you to quickly obtain and browse type information
for code for which there is no compiler generated (/Fb) Browser information. Use
QuickBrowse for the following reasons:

¹ It is faster than compiling the code
¹ You may be able to browse files that do not compile

Note: The QuickBrowse feature is only available when the Browser is started from
an IBM WorkFrame project.

QuickBrowse parses the top level declarations which must be valid C++ statements,
and ignores the bodies of function definitions.

You may want to use QuickBrowse if you are not interested in function call
information. Also, if you have code where the type information is well defined, but
function bodies will not compile, you can browse the type information with
QuickBrowse.

If you are browsing in a project, and the Browser detects that some, or all,
information is missing, a dialog will appear telling you that this information is
missing, and will give you the option of QuickBrowsing the files for which data is
missing. Messages will appear in the Project's monitor, just as if you were doing a
build.

Note that the QuickBrowse feature is not a complete replacement to the Generate
Browser information (/Fb) compiler option. The speed of QuickBrowse does come at
a cost in the richness of information provided. Since the QuickBrowse feature does
not look inside of function bodies, function call, exception, and template instantiation
information are not available. If you need to know this kind of information, then you
will need to compile the file and use the Generate Browser information (/Fb) option.

 Chapter 45. Using the Browser615

Browser: QuickBrowse

What Do You See When QuickBrowse Starts
When QuickBrowse is started, you will be presented with the Browser Files dialog.
It lists all the files that will require QuickBrowsing. In addition, you can select the
Change Path PushButton to change the paths used by the Browser. For more
information on changing paths, see “Changing Paths Used by the Browser” on
page 588. Make sure the QuickBrowse files which could not be loaded CheckBox
is selected in order to QuickBrowse the files.

Figure 172. Browser Files Dialog

Select the Load PushButton on the Browser Files dialog to QuickBrowse the listed
files. If the Browser cannot find the compiler option information for some of the
files listed in the Browser Files dialog, then the Browser QuickBrowse dialog will
appear. For more information on where the Browser searches for files, see
“Changing Paths Used by the Browser” on page 588.

Figure 173. QuickBrowse Dialog

The QuickBrowse dialog lists the files for which compiler information could not be
found, but which require QuickBrowsing or recompiling. Select Continue to load the

616 IBM VisualAge�C++ for OS/2 User's Guide

Browser: QuickBrowse

already QuickBrowsed information of the other files listed in the Browser Files
without the information of these listed files.

Scenarios for Using QuickBrowse
The following are some sample QuickBrowse scenarios:

“Porting Code Scenario.”
 “Design Scenario.”

“Browsing Libraries Scenario.”
“Code Understanding Scenario.”

Porting Code Scenario
You may be porting from one operating system to OS/2. Your types are correct, but
many of your functions cannot compile, since they use system functions which do not
exist on OS/2. You can use the QuickBrowse feature on such code to understand the
type structure.

 Design Scenario
The QuickBrowse feature can help you with your designing, especially if you are
doing design in a group, or you wish to communicate your design with others. To do
this, you need to get your types straight - or at least to the point where they are
“correct” C++ code. Then, you can use QuickBrowse.

You could compile at this point too, but QuickBrowse will generally be quicker, and
the function bodies can be in whatever state you like, as long as the { } match up.

Browsing Libraries Scenario
Coming to terms with class libraries and frameworks means understanding the types
they provide. Typically, intra-library function calls are not exposed to the user,
except for trivial inline functions. You can create a single source file which includes
all the interfaces to a third party library, and either use the compiler to generate the
Browser information, or use the QuickBrowse feature.

Code Understanding Scenario
When you get new code, use QuickBrowse to understand the type structure of the
code while ignoring the functional details. Then, when you want to look at the
function call relationships, compile the code. In well-designed and well-built code,
the key abstractions will be found in the type structure. Dealing with just the types
also reduces the amount of information that you have to comprehend at the beginning.

 Chapter 45. Using the Browser617

Browser: Updating the Browser Database

Updating the Browser Database
While you are browsing your program, you may also be modifying the source files.
By selecting the Refresh action from the File PullDown menu, the Browser will
check to see if the loaded program is out of date by checking the dates of the source
files against the program files. If you have modified your source code, but have not
regenerated the Browser information, the Browser Files dialog appears.

¹ If you are browsing an IBM WorkFrame project:

You can choose to QuickBrowse your source by selecting the Load PushButton.
The QuickBrowse facility is fast, but there may be a loss of information provided
for your program. The benefit is that you do not have to wait for a lengthly
recompile of your source to browse the declarations in your programs. For
more information on QuickBrowse, see “Browsing without Recompiling” on
page 602 and “Using QuickBrowse” on page 615.

¹ If you are not browsing an IBM WorkFrame project:

The Browser Files dialog will list all files that are out of date and cannot be
found. You cannot use the QuickBrowse facility to load these files, since
QuickBrowse is only available for IBM WorkFrame projects. If you select the
Load PushButton, the Browser will update the Browser database with the
information that is available and will delete all the information associated with
the listed files. For example, if you are browsing an .EXE file that has five
.PDB files (call them A, B, C, D and E), and you have updated A and B, but not
C and D, and E did not change, then the Browser will delete the old information
(A, B, C and D), and load in the new (A and B). The result is that after the
refresh, the Browser has information for A, B and E, but not for C and D. To
regain the information for C and D, you will have to rebuild the .EXE file and
load it into the Browser. If you do not want to loose the information contained
in the files listed in the Browser Files dialog, then select the Cancel PushButton,
and rebuild these listed files. Now you can select the Refresh action again to
update all the information in the Browser database.

Note: The Refresh action will only load or modify the current Browser database as
required by performing an incremental smart load. This means that the
current Browser database will be refreshed much quicker than if it had to
regenerate the entire Browser database.

618 IBM VisualAge�C++ for OS/2 User's Guide

Browser: Adding Menu Items

Adding Menu Items to the L oad 5 and Merge 5 Cascade menus
If you perform repeated loads or merges of a particular program, you can add it to the
Load 5 and Merge 5 Cascade menus for quick access. To do this:

1. Create an ASCII file called brsmenu.txt and place it in a directory in your
DPATH.

2. Use the following format:

Menu Item Name“path_name\file_name

Where Menu Item Name is the name you want to have appear on theLoad 5
and Merge 5 Cascade menus, andpath_name\file_name is the path name
and file name of the file to be loaded or merged. You can have spaces in
the Menu Item Name. Be sure to separate the Menu Item Name from the
path_name\file_name with a double quote (").

Note: You must have a blank line at the end of thebrsmenu.txt file.

3. You can add upto a maximum of six files.

The new menu items will be added to the Load 5 and Merge 5 Cascade menus the
next time you start the Browser.

 For more information on loading, see “Loading Files into the Browser” on
page 593. For more information on merging, see “Merging Files” on page 595.

 Chapter 45. Using the Browser619

Browser: Adding Menu Items

620 IBM VisualAge�C++ for OS/2 User's Guide

Browser: A Tour

46 A Tour of the Browser

This tour takes you through some of the features of the Browser using the User
Interface classes that make up part of the IBM VisualAge C++ Open Class Library.
The following is a list of tasks performed during this tour:

¹ “Starting the Browser and Loading User Interface Classes” on page 622
¹ “Finding A Class” on page 623
¹ “Showing the Inheritance Relationship of a Class” on page 624
¹ “Finding Another Class” on page 625
¹ “Changing the View of a Graph” on page 626
¹ “Investigating the Members of a Class” on page 627
¹ “Customizing Program Elements” on page 628
¹ “Editing Files from the Browser” on page 628
¹ “Organizing the Information in a List Window” on page 629
¹ “Finding A Function” on page 630
¹ “Showing the VisualAge C++ Documentation for a Particular Function” on

page 631
¹ “More About the PopUp Menu Actions” on page 631
¹ “Invoking Actions Again” on page 631
¹ “Graphing Include File Relationships” on page 632
¹ “Returning to Previous Queries/Displays” on page 632
¹ “Keeping Your Windows From Being Replaced” on page 633
¹ “Changing the Default Settings for List and Graph Windows” on page 634
¹ “Manipulating Graphs” on page 634
¹ “The Browser and WorkFrame” on page 635

 Copyright IBM Corp. 1992, 1995 621

Browser: A Tour

Starting the Browser and Loading User Interface Classes
You will be browsing the User Interface classes of the IBM VisualAge C++ Open
Class Library.

1. On the OS/2 command line, enter: icsbrs.
2. Select the File PullDown menu.
3. Select the Load 5 Cascade menu.
4. Select the User Interface Classes menu item.

By default, the List Window will populate with a list of all the classes defined in the
User Interface classes of the IBM VisualAge C++ Open Class Library.

Figure 174. List window showing all classes in the User Interface classes

 For more information on loading, see “Loading Files into the Browser” on
page 593.

622 IBM VisualAge�C++ for OS/2 User's Guide

Browser: A Tour

Finding A Class
Suppose that in your application, you want to use a Listbox. You will need to find
more about Listboxes. From the List window:

1. Select the Edit PullDown menu.
2. Select the Find... menu item. The Find dialog appears.
3. Enter listbox as the search text.
4. Check that case sensitive is off.
5. Select the Apply PushButton untilIListbox is highlighted.
6. Cancel the Find dialog.

The list scrolls to the IListBox class.

Figure 175. Finding a class name

 For more information on the Find facility, see “Finding Objects in the Current
Window” on page 597.

 Chapter 46. A Tour of the Browser 623

Browser: A Tour

Showing the Inheritance Relationship of a Class
Now you will need to show the relationship of IListBox in the class hierarchy. Note
that there are other classes that start with IListBox which you could look at later.

1. Click Mouse Button 2 on top of IListBox to get the Class PopUp menu.
2. Select Graph All B ase Classes from the Class PopUp menu.

The Graph window shows the inheritance hierarchy for IListBox, and lists an
alphabetical list of the classes that appear in the graph.

Figure 176. Graph window showing all base classes of the IListBox class

624 IBM VisualAge�C++ for OS/2 User's Guide

Browser: A Tour

Finding Another Class
Now you may want to investigate what other controls are in the User Interface classes
of the IBM VisualAge C++ Open Class Library. Maybe there is a special color
Listbox.

1. Select the IControl class object (either using the node on the graph or the
alphabetical graph-list item) using Mouse Button 2. The Class PopUp menu
appears.

2. Select the Graph All Base & Derived Classes menu item.

The new graph shows all the classes that inherit from IControl. However, the graph
is too large to view all at once.

Figure 177. Graph window showing all base and derived classes of IControl class

 Chapter 46. A Tour of the Browser 625

Browser: A Tour

Changing the View of a Graph
Some graphs are better viewed using a horizontal organization rather than vertical
(the default). For example, wide trees with long names are better shown horizontal,
while tall trees with short names are better shown vertical. The inheritance graph of
IControl falls into this category. To change the organization of the nodes from
vertical to horizontal:

1. Click Mouse Button 2 on the background of the Graph window to display the
Background PopUp menu. (Note that the List window also has a Background
PopUp menu).

2. Select the Horizontal menu item.

Now adjust the zoom factor of the graph:

1. Display the Graph window Background PopUp menu again.
2. Select the Max Zoom in menu item.
3. Display the PopUp menu again
4. Select the Center menu item in order to center the selected node (Class

IControl) in the Graph Area of the Graph window.

Figure 178. Graph window showing all base and derived classes of IContrl class

Note the difference between the vertical organization of the nodes in the previous
graph and the horizontal organization in this graph.

626 IBM VisualAge�C++ for OS/2 User's Guide

Browser: A Tour

Investigating the Members of a Class
Now you need to find out more details about IListBox and its members.

1. Select either the graph node or the graph-list item for IListBox.
2. Select List M embers with Inheritance on the Class PopUp menu.

A List window appears showing the contents view of IListBox. This is called a
container view. It can be expanded to show all the members of IListBox or any of
the members of the base classes of IListBox.

1. Select the + icon on IListBox to expand and show the classes public, protected,
and private sections.

2. Expand the + icon on public to show the constructors, destructors, functions,
variable, and types.

3. Expand the + icon on types.

Note how different colors and highlighting techniques are used for the various kinds
of program elements.

Note that the classes are arranged in a depth first tree traversal of the classes
inheritance hierarchy.

Figure 179. List window showing all members with inheritance of IListBox class

 Chapter 46. A Tour of the Browser 627

Browser: A Tour

Customizing Program Elements
Each program element has its own unique customization for either the Graph or List
windows. You can associate different colors and shapes to different program element
types. Also, each object has a double-click action associated with it, as indicated by
a check mark on the PopUp menu. For information on changing the Graph or
List window settings, see “Changing the Default Graph Window Settings” on
page 580 or “Changing the Default List Window Settings” on page 569.

In the List window, some listed items have a one-letter attribute, and bold is used to
highlight function names from the rest of the string. The one letter attributes are:
V-Virtual (on functions), PV-Pure Virtual (on functions), C-Const (on functions),
S-Static (on functions and variables), and E-Enum (on types).

Editing Files from the Browser
The default double-click action for class and function objects is to edit the file
containing the object's definition. You can make changes to the object's definition or
just read the code/comments in the source code.

1. Double-click on IListBox to load ilistbox.hpp into the VisualAge Editor.
Note how the VisualAge Editor places you at the start of the class definition.

2. Close the VisualAge Editor

Figure 180. List window and VisualAge Editor

628 IBM VisualAge�C++ for OS/2 User's Guide

Browser: A Tour

Organizing the Information in a List Window
You can organize the information about IListBox in different ways. For example,
suppose that you are only interested in the public members:

1. Select the Order PullDown menu.
2. Select the Access menu item to change the order of the list items. Previously,

the order was by Class; the class was at the highest level, followed by the access
type (public, protected, private), followed by the program element type. Now,
the access methods are placed at the highest level, followed by program element
type, followed by class.

3. Double click on public to expand the whole tree under that label.
4. Display the List window PopUp menu by clicking Mouse Button 2 on the List

window background.
5. Select the Expand All menu item.

Figure 181. List window showing organization by access

Compare the order of the contents in this List window with the previous List window
contents.

 For more information on ordering a container view, see “Ordering the Contents of
a Container View” on page 566.

 Chapter 46. A Tour of the Browser 629

Browser: A Tour

Finding A Function
Now search for all the functions that contain the wordcolor.

1. Select the Actions PullDown menu.
2. Select the Search... menu item. The Search Database dialog appears.
3. Type color as the search text.
4. Select Functions as the objects to search for.
5. Select Public as the access type.
6. Select All as the type of function.
7. Select the Search PushButton.

A list of all the function names that have the text stringcolor are displayed. Scroll
the list of functions until you find a function that allows you to set the color
(setColor).

Figure 182. List window showing all public functions that contain the “color” string

 For more information on the Search Database facility, see “Searching for
Objects in the Entire Browser Database” on page 598.

630 IBM VisualAge�C++ for OS/2 User's Guide

Browser: A Tour

Showing the VisualAge C ++ Documentation for a Particular Function
To find out more information about the setColor function with regards to Listboxes:

1. Click Mouse Button 2 on theIListBox::setColor function.
2. Select the Show Documentation menu item from the Function PopUp menu.

The VisualAge C++ online reference manual opens to this function.

More About the PopUp Menu Actions
You can also perform other actions from the various PopUp menus.

On the Function PopUp menu, select any of:

¹ Graph All Callers & Callees to display the call graph for that function. For an
example, see “Viewing Call Chains” on page 613.

¹ List Possible Exceptions Thrown to see the exceptions that could be thrown by
this function. For an example, see “Listing All the Exceptions That A Function
May Encounter” on page 611.

¹ List Overriding Derived Classes to see the derived classes that override this
function. For an example, see “Listing Overriding Derived Classes” on
page 610.

From the Function or Class PopUp menus, select:

¹ List Friends, List Friendships, or List Inst antiations of a template. Note you
can only list friends from a class, not a function. For examples, see “Listing All
Friends of a Class” on page 606, “Listing All Friendships of a Class or
Function” on page 607, and “Listing Instantiations of Classes or Functions” on
page 611.

The above actions help you to understand a class library, someone else's code, or
your own programs. For more information, see “PopUp Menus” on page 648.

Invoking Actions Again
The last action done in any window is always saved. For example:

1. Select the Actions PullDown menu.
2. Select the List All Fil es menu item. A list of all the files used to create the User

Interface classes of the IBM VisualAge C++ Open Class Library are listed in a
List window.

3. Select the Actions PullDown menu again.
4. Select the Previous menu item. The results of your last action are displayed.
5. Select the F6 key to go back to the list of files.

 Chapter 46. A Tour of the Browser 631

Browser: A Tour

By selecting the Previous or the F6 key, you can toggle back and forth between
displays.

Graphing Include File Relationships
To find out where classes, types, variables, and code included in your program come
from, you will need to look at an include file relationship.

1. Click Mouse Button 2 on the igbitmap.hpp file to invoke the File PopUp menu.
2. Select the Graph All Includers & Includees menu item.

A graph of the include file structure is displayed. This graph indicates which files
include other files.

Figure 183. Graph window showing all includers and includees of igbitmap.hpp

Returning to Previous Queries/Displays
If you performed a query or had a display that you want to return to, use the History
window.

1. Select the Windows PullDown menu.
2. Select the History... menu item.

The last 40 object-actions that were performed are listed, and you can perform any of
those actions again by double-clicking on the object-action pair.

632 IBM VisualAge�C++ for OS/2 User's Guide

Browser: A Tour

 For more information on the History facility, see “The History Window” on
page 599.

Keeping Your Windows From Being Replaced
By default, the Browser replaces the contents of the current window. You can keep
the current window and do the next action in a new window by using the Hold
CheckBox. From the List window:

1. Select the Actions PullDown menu.
2. Choose the List All Fil es menu item.
3. Select the Hold CheckBox on this window.
4. Click Mouse Button 2 on ilistbox.hpp from the list of files to invoke the File

PopUp menu.
5. Choose the List Defined Objects menu item. A new List window will open with

the results. You can have a maximum of four List windows and four Graph
windows open at any time.

6. Double-click on the classes label to see all the classes defined in ilistbox.hpp.

Use the Windows PullDown menu to get back to another window.

Figure 184. Two List windows open at same time

 Chapter 46. A Tour of the Browser 633

Browser: A Tour

Changing the Default Settings for List and Graph Windows
You can alter the default settings to the List and Graph windows by selecting:

¹ Fonts... to change the font of the List window. See “Changing Fonts” on
page 592.

¹ Li st Fonts... and Node Fonts... to change the fonts in the Graph window.
See “Changing Fonts” on page 592.

¹ List Window... to change the double-click actions for the objects in the List
window, the colors used by the List window, and the text style used by the List
window. See “Changing the Default List Window Settings” on page 569.

¹ Graph Window... to change the double-click actions for the objects in the Graph
window, the colors used by the Graph window, the node and line shape used by
the graph, and the size of the bitmap to save. See “Changing the Default
Graph Window Settings” on page 580.

All options are saved between uses of the Browser to the Browser profile
(icsbrs.ini).

 Manipulating Graphs
You can perform many actions on a graph. You can:

¹ Select Show Inheritance Graph from the Actions PullDown PullDown menu to
get a large graph.

¹ Select Overview... from the View PullDown menu to get the overview window
for navigating around large graphs.

¹ Drag the Zoom slider on the left side of the window up and down to zoom the
graph in and out.

¹ Press Mouse Button 1 and drag it. This creates a dotted selection box. There is
a PopUp for the selected area to Zoom, Print, etc. the selected area.

¹ Select Center from the Graph PopUp menu to center the currently selected node
on the graph area display.

You can print the graph to a single page or across multiple pages. You can also print
a selcted zone in the graph. For more information on printing graphs, see
“Printing and Saving your Graphs” on page 585.

You can save graphs to an OS/2 bitmap file, or copy them to the clipboard for
including graphs in your own documentation.

Of course, there is Print, Save to a file, and Copy to the clipboard in the List Window
too.

634 IBM VisualAge�C++ for OS/2 User's Guide

Browser: A Tour

The Browser and WorkFrame
The Browser is fully integrated with WorkFrame.

¹ You can browse a WorkFrame project.
¹ You can invoke Browser actions from the VisualAge Editor and the Debugger,

and perform browse actions on words highlighted in those tools.
¹ Other project actions appear in the Project PullDown.

 Chapter 46. A Tour of the Browser 635

Browser: A Tour

636 IBM VisualAge�C++ for OS/2 User's Guide

Browser: Trouble Shooting

47 Trouble Shooting

This chapter helps you solve problems you may encounter while using the Browser.

The Browser Won't Start
If you cannot start the Browser either by using the icsbrs on the command line or
by launching the Browser action from any VisualAge C++ tools menubar, then delete
the icsbrs.ini file and start the Browser.

This file contains your user defined settings, such as color, size, placement, paths, etc.
You can find this file in the \OS2 directory on your boot partition, unless you
specified a different location to store this file through the Browser Settings Paths
NoteBook page. For more information on this dialog, see “Changing Paths Used
by the Browser” on page 588.

Error Loading a .EXE, .DLL, or .LIB file
If you are having problems loading an .EXE, a .DLL, or a .LIB file, the file may
have been created using a back-level version of the compiler. Recompile the source
with the VisualAge C++ compiler and linker version 3.0.

Error Loading a .BRS File
The .BRS files generated with the C Set++ V2.1 compiler and linker are not
compatible with the VisualAge C++ Version 3.0 compiler and linker. You will need
to recompile and link your program using the VisualAge C++ compiler and linker
version 3.0 for OS/2.

Error Loading a .PDB File
If your .PDB file was created using the VisualAge C++ compiler for AIX version 3.1,
you will need to recompile and link your program using the VisualAge C++ compiler
and linker version 3.0 for OS/2. The AIX and OS/2 .PDB files are not compatible.

If the above is not the problem, please contact your IBM service representative.

 Copyright IBM Corp. 1992, 1995 637

Browser: Trouble Shooting

Adding Files to the L oad 5 and Merge 5 Menus Doesn't Work
You need to create an ASCII file called brsmenu.txt. See “Loading Files into
the Browser” on page 593 or “Merging Files” on page 595 for instructions on how
to create this file.

If you have already created this file, make sure that it is located in a directory in your
DPATH. You may need to reboot if you just added the directory to theDPATH in your
config.sys file.

If you have the brsmenu.txt file in a directory in theDPATH, but the files are still
not displayed in the Load 5 and Merge 5 Cascade menus, make sure that there is a
blank line at the end of the brsmenu.txt file.

The Graph Zone Will Not Maximum Zoom
If you select a region of a graph and perform a Zoom in, but the select region does
not fill the entire client area of the Graph window, this is not an error. The graph
can only be zoomed to its maximum size allowed, it cannot zoom in beyond that. In
other words, you have selected a region of the graph that is smaller than the
maximum size of the Graph window client area.

638 IBM VisualAge�C++ for OS/2 User's Guide

Browser: Keys and Menus ¹Browser: Keys

48 Browser Fast-Path Keys and Menu Descriptions

This chapter lists the combinations of keys that you can use to perform Browser
functions, the List and Graph window PullDown and PopUp menus, and the Object
PopUp menus.

 ¹ “Fast-Path Keys”
¹ “PullDown Menus” on page 640
¹ “PopUp Menus” on page 648

 Fast-Path Keys
The following two lists outline the fast-path keys for using the Browser. The format
is as follows:<key> or <key> - <key>.

Note: The letter keys are shown in uppercase for clarity. You do NOT have to press
the Shift key unless this key is specifically mentioned.

Application-Provided Keys:

F3 Close the Browser session.
F6 Perform the previous object-action pair.
F7 Expand all the items in the List window.
F8 Collapse all the items in the List window.
Ctrl-C Centers the currently selected node on a graph
Ctrl-E Edit the currently selected definition or file.
Ctrl-F Initiate Find dialog to find text in the current window.
Ctrl-G Graph all the base and derived classes for the currently selected class.
Ctrl-H Show the documentation for the currently selected class or function.
Ctrl-L List all members with inheritance for the currently selected class.
Ctrl-N Find next instance of text in the current window.
Ctrl-S Initiate Search dialog to search for text in the loaded database.
Ctrl-Insert Copies the current window contents to the clipboard.
Ctrl-+ Zoom in on a graph.
Ctrl-– Zoom out on a graph.
Alt-+ Maximum zoom in on a graph
Alt-– Maximum zoom out on a graph

 Copyright IBM Corp. 1992, 1995 639

Browser: PullDown Menus

System-Provided Keys:

Alt-F4 Close window.
Alt-F7 Move window.
Alt-F8 Size window.
Alt-F9 Minimize window.
Alt-F10 Maximize window.

 PullDown Menus
The PullDown menus can be found on both the List and Graph window, although
some PullDowns are specific to each window.

 “File PullDown Menu” on page 641.
 “Edit PullDown Menu” on page 642.
 “View PullDown Menu” on page 643.
 “Actions PullDown Menu” on page 644.
 “Options PullDown Menu” on page 645.
 “Order PullDown Menu” on page 646.
 “Windows PullDown Menu” on page 646.
 “Project PullDown Menu” on page 647.
 “Help PullDown Menu” on page 647.

640 IBM VisualAge�C++ for OS/2 User's Guide

Browser: File Menu

File PullDown Menu
Menu Item Description Window

Load 5 Loads your program or Browser database files, or
you can quickly load the classes that make up the
VisualAge C++ Open Class Library (User Interface
Classes, Collection Classes, I /O Stream Classes,
Complex Math Classes, Database Access Classes,
and Application Support Classes).

 See “Loading Files into the Browser” on
page 593 for more information on loading files into
the Browser. See “Adding Menu Items to the Load
5 and Merge 5 Cascade menus” on page 619 for
information on adding your own menu items.

List, Graph

Merge 5 Extends programs with additional controls or
features from another program, or merge the classes
that make up the VisualAge C++ Open Class
Library (User Interface Classes, Collection
Classes, I /O Stream Classes, Complex Math
Classes, Database Access Classes, and Application
Support Classes).

 See “Merging Files” on page 595 for more
information on merging files into the Browser. See
“Adding Menu Items to the Load 5 and Merge 5
Cascade menus” on page 619 for information on
adding your own menu items.

List, Graph

Refresh Updates your current Browser database with the best
source of data possible. See “Updating the
Browser Database” on page 618.

List, Graph

Save Graph
As...

To save the Graph Area to an OS/2 bitmap.
See “Printing and Saving your Graphs” on
page 585.

Graph

Save List As... To save the contents of the List window or List
Area of a Graph window to an ASCII file. See
“Printing and Saving your Lists” on page 575 or
“Printing and Saving your Graphs” on page 585.

List, Graph

Print... Prints the List window contents to the printer.
See “Printing and Saving your Lists” on page 575.

List

Print 5 Prints the Graph window contents to the printer
(One Page..., Multiple Pages..., Client..., and
Zone...).

 See “Printing and Saving your Graphs” on
page 585.

Graph

 Chapter 48. Browser Fast-Path Keys and Menu Descriptions641

Browser: Edit Menu

Menu Item Description Window

New Window Creates another List window if launched from a List
window, or another Graph window if launched from
a Graph window. The new window will be blank.

List, Graph

Copy Window Copies the current List or Graph window contents
and puts them into a new List or Graph window.

List, Graph

Exit Browser
(F3)

Ends your current Browser session. All List and
Graph windows are closed.

List, Graph

Edit PullDown Menu
Menu Item Description Window

Find... (Ctrl-F) Launches the Find dialog. You can search the
objects in the current window for the first instance
matching the text string that you entered into the
Find dialog. See “Finding Objects in the
Current Window” on page 597.

List, Graph

Find Next
(Ctrl-N)

Searches the objects of the current window for the
next instance of the text string that was last entered
into the Find dialog. It does not search the entire
Browser database. Note that the search begins from
the current selection position in the window.

List, Graph

Copy Copies the currently selected line to the clipboard. List

Copy All
(Ctrl-Insert)

Copies the entire contents of the List or Graph
window to the clipboard.

List, Graph

642 IBM VisualAge�C++ for OS/2 User's Guide

Browser: View Menu

View PullDown Menu
Menu Item Description Window

Overview... Launches a window which displays a miniature
version of the current graph. See “Getting a
Graph Overview” on page 578.

Graph

Zoom in
(Ctrl-+)

Increases the magnification of the current graph by
approximately 10%.

Graph

Zoom out
(Ctrl-–)

Decreases the magnification of the current graph by
approximately 10%.

Graph

Max Zoom in
(Alt-+)

Increases the current graph to the maximum
magnification.

Graph

Max Zoom out
(Alt-–)

Decreases the current graph to the minimum
magnification.

Graph

Center (Ctrl-C) Moves the currently selected node to the center of
the graph area.

Graph

Vertical Draws the graph with a vertical orientation. That is,
the nodes are read from top to bottom.

Graph

Horizontal Draws the graph with a horizontal orientation. That
is, the nodes are read from left to right.

Graph

Weighting 5 Adjusts where the nodes on the graph are displayed
depending on the Vertical/Horizontal setting.

Top - Aligns all the root nodes at the top/right
of the graph.
Center - Aligns the nodes around the center of
the graph.
Bottom - Aligns all the leaf nodes to the
bottom/left of the graph.

Graph

 Chapter 48. Browser Fast-Path Keys and Menu Descriptions643

Browser: Actions Menu

Actions PullDown Menu
Menu Item Description Window

Previous (F6) Returns to the last object-action pair performed in
that window. See “The History Window” on
page 599.

List, Graph

Search...
(Ctrl-S)

Launches the Search dialog in order to search the
current Browser database for classes, functions,
types, variables, and files. See “Searching for
Objects in the Entire Browser Database” on
page 598.

List, Graph

Show
Inheritance
Graph

Displays the tree structure that represents how all the
defined classes in the entire Browser database are
related by inheritance. See “Viewing Class
Relationships” on page 612.

List, Graph

Show Include
File Graph

Displays a tree structure that represents how all the
source files in the current Browser database are
related by the C and C++ include mechanism.
See “Viewing Call Chains” on page 613.

List, Graph

List All C lasses Creates an alphabetical list of all the classes defined
or declared in the Browser database.

List, Graph

List All Fil es Creates an alphabetical list of all the source files
used to create the currently loaded Browser
database.

List, Graph

644 IBM VisualAge�C++ for OS/2 User's Guide

Browser: Options Menu

Options PullDown Menu
Menu Item Description Window

Fonts... Launches the List Window Fonts dialog to change
the fonts used by the Browser.

List

Node Fonts... Launches the Graph Node Fonts dialog in order to
change the default text font used in the nodes.

Graph

Li st Fonts... Launches the Graph List Fonts dialog in order to
change the default text font used in the Graph List
Fonts of the Graph window.

Graph

List Window... Launches the List window Settings NoteBook. It
has three pages: Settings, Colors, and Styles.
See “Changing the Default List Window Settings”
on page 569.

List, Graph

Graph
Window...

Launches the Graph window Settings NoteBook. It
has four pages: Settings, Colors, Styles, and
Bitmap. See “Changing the Default Graph
Window Settings” on page 580.

List, Graph

Browser... Launches the Browser Settings NoteBook. It has
two pages: Paths and Help Level. See
“Changing Browser Settings” on page 587.

List, Graph

 Chapter 48. Browser Fast-Path Keys and Menu Descriptions645

Browser: Order Menu ¹Browser: Windows Menu

Order PullDown Menu
Menu Item Description Window

Class Reorders the current objects in the list. The base
classes are at the highest level, and class members
are listed by type below. See “Ordering the
Contents of a Container View” on page 566.

List

Access Reorders the current objects in the list with the
access method at the highest level. See
“Ordering the Contents of a Container View” on
page 566.

List

Type Reorders the current objects in the list with the type
of object at the highest level. See “Ordering the
Contents of a Container View” on page 566.

List

Windows PullDown Menu
Menu Item Description Window

History... Launches the History window. It
lists the last 40 object-action
pairs performed. See “The
History Window” on page 599.

List, Graph

List 1
List 2
List 3
List 4

Gives you quick access to the
List windows that you opened. If
you do not have any List
windows open, these menu items
do not appear.

List, Graph

Graph 1
Graph 2
Graph 3
Graph 4

Gives you quick access to the
Graph windows that you opened.
If you do not have any Graph
windows open, these menu items
do not appear.

List, Graph

646 IBM VisualAge�C++ for OS/2 User's Guide

Browser: Project Menu ¹Browser: Help Menu

Project PullDown Menu
Menu Item Description Window

IBM
WorkFrame
actions

Items in this menu are dependent on what you have
installed and how you launched the Browser.

List, Graph

Help PullDown Menu
Menu Item Description Window

Help Index Launches the index for the Browser online help. List, Graph

General Help Launches the online help panel for either the List
window or Graph window depending on which
window you chose this item from.

List, Graph

Using Help Launches help information for using the Information
Presentation Facility (IPF).

List, Graph

How Do I... Launches the How Do I... information which
provides step-by-step instructions on how to perform
tasks using the Browser.

List, Graph

VisualAge C++
Documentation
Cascades

Launches the various online documentation for the
VisualAge C++. These cascades are populated with
the documents depending on what you have
installed.

List, Graph

Product
Information

Provides information about this release of the
Browser.

List, Graph

 Chapter 48. Browser Fast-Path Keys and Menu Descriptions647

Browser: PopUp Menus ¹Browser: Window PopUp Menus

 PopUp Menus
The Browser has two types of PopUp menus:

 “PopUp Menu Items for List and Graph Windows.”
 “Object PopUp Menu Items” on page 649.

PopUp Menu Items for List and Graph Windows
You can access the List and Graph window PopUps by clicking Mouse Button 2 on
the background area of the window. The following items will appear, depending on
the window you accessed the PopUp from:

Menu Item Description Window

Show Inheritance Graph
Show Include File Graph
List All C lasses
List All Fil es

 See “Actions PullDown
Menu” on page 644.

List, Graph

Expand All Expand all items in the List
window container view.

List (container
view)

Collapse All Collapse all items in the List
window container view.

List (container
view)

Overview...
Zoom in
Zoom out
Max Zoom in
Max Zoom out
Center
Vertical
Horizontal
Weighting 5

 See “View PullDown Menu”
on page 643.

Graph

648 IBM VisualAge�C++ for OS/2 User's Guide

Browser: Object PopUp Menus

Object PopUp Menu Items
You can access the Object PopUps can be accessed by clicking Mouse Button 2 on
any program element displayed in the List or Graph windows. The following items
will appear, depending on which window you accessed the PopUp from:

Menu Item Description Object

Collapse Collapse the currently selected object entirely if it
has a minus icon (-) next to it.

class, label

Edit Definition
(Ctrl-E)

Launches either the editor as defined for your
project, if you have started the Browser from a
WorkFrame project, or the VisualAge Editor. The
file containing the definition of the currently selected
object is loaded into the editor. The editor is
positioned to the first line of the definition of this
object.

class, function,
type, variable

Edit File
(Ctrl-E)

Launches either the editor as defined for your
project, if you have started the Browser from a
WorkFrame project, or the VisualAge Editor. The
file is loaded into the editor.

file

Expand Expands the currently selected object entirely if it
has a plus icon (+) next to it.

class, label

Expand
Typedef

Creates a list which contains successive expansions
of a typedef, until it contains only fundamental
types.

type

Graph All Base
& Derived
Classes (Ctrl-G)

Creates an inheritance graph of all the base classes
of the selected class, and all the classes that derive
from the selected class, in one relationship graph.
These include both direct and indirect base and
derived classes.

class

Graph All B ase
Classes

Creates an inheritance graph of all the base classes
of the selected class. These include both direct and
indirect base classes.

class

Graph All
Derived Classes

Creates an inheritance graph of all the classes that
are derived from the selected class. These include
both direct and indirect derived classes.

class

Graph
Immediate
Derived Classes

Create a Graph window which displays one level of
derived classes for this class.

class

Graph All
Callers &
Callees

Creates a graph of all the functions that call the
currently selected function and the functions that are
called by the currently selected function. These
include the functions that the selected function calls
and is called from, both directly or indirectly.

function

 Chapter 48. Browser Fast-Path Keys and Menu Descriptions649

Browser: Object PopUp Menus

Menu Item Description Object

Graph All
Callers

Creates a graph of all the functions that call the
currently selected function. These include the
functions which call the selected function directly,
and those functions that call it indirectly through
other functions.

function

Graph All
Callees

Creates a graph of all the functions that the currently
selected funtion calls. These include the functions
that the selected function calls directly or indirectly.

function

Graph
Immediate
Callers &
Callees

Creates a graph of all the functions that either call
the selected function directly or is called from
directly.

function

Graph All
Includers &
Includees

Creates a graph of all the files included by the
currently selected file and all the files that include
the currently selected file. These include both direct
and indirect inclusion.

file

Graph All
Includers

Creates a graph of all the files that include the
currently selected file. These include both direct
and indirect inclusion.

file

Graph All
Includees

Creates a graph of all the files that are included by
the currently selected file. These include both direct
and indirect inclusion.

file

List Class
Members with
Inheritance

Creates a List window container view of all the
members of the classes and base classes for the class
that the selected function is a member of.

function

List Defined
Objects

Creates a list of all the Browser objects which are
defined in the selected file.

file

List Friends Lists all the friends of the currently selected class.
A friend of a class is a function that has been
granted access to the private members of the class.
A friend class obtains access to private members for
all its member functions. The result of this action is
a List window container view with functions and
classes as the two labels in the container.

class

List
Friendships

Lists all the friendships that are defined for the
currently selected class or function. You can grant
friendships to either a single function or member
function at a time, or to all the member functions of
a class at once. This action results in a list of all
those classes that have granted the selected class or
function friendship.

class, function

650 IBM VisualAge�C++ for OS/2 User's Guide

Browser: Object PopUp Menus

Menu Item Description Object

List Immediate
Callers &
Callees

Creates a list of all the functions that directly call or
are directly called by the selected function.

function

List
Instantiations

Creates a list of the instantiations of the selected
class or function template.

class, function

List
Implementing
Files

Create a list of files that contain definitions for the
class, and for any of the members of the class.

class

List M embers
with
Inheritance
(Ctrl-L)

Creates a List window container view of all the
members for the selected class and its base classes.

class

List Overriding
Derived Classes

Creates a list of all the derived classes of the class
of which this function is a member which have a
member function that overrides this function.

function

List Possible
Exceptions
Thrown

Creates a list of all the possible types of exceptions
that could be thrown by the selected function, or by
any function that this function calls.

function

Show
Documentation
(Ctrl-H)

Launches the help panel in the VisualAge C++ class
library documentation for the currently selected
object.

class, function

 Chapter 48. Browser Fast-Path Keys and Menu Descriptions651

Browser: Object PopUp Menus

652 IBM VisualAge�C++ for OS/2 User's Guide

 Part 9. Managing Libraries

This part of the User's Guide describes tools that can help you manage libraries.

To create and maintain .LIB files, use the ILIB utility.

If you are using DLL files, you can use the DLLRNAME utility to globally rename a
DLL, and the FWDSTAMP utility to maintain compatibility between old executables
and new versions of a DLL.

Chapter 49. Using ILIB .655
Running ILIB .656
Creating a New Library . 659
Modifying a Library . 660
Copying Object Modules to Object Files . 660
Listing the Contents of a Library. 661
ILIB Commands .665
ILIB Options .669

Chapter 50. Packaging the VisualAge C++ Runtime DLLs 675
Using the DLLRNAME Utility . 676
How DLLRNAME Works . 677
DLLRNAME Options .678
An Example .679

Chapter 51. Forwarded Entry Point (FWDSTAMP) 681
Using Forwarders .681

 Copyright IBM Corp. 1992, 1995 653

654 IBM VisualAge�C++ for OS/2 User's Guide

Using ILIB

49 Using ILIB

Use the IBM Library Manager (also referred to as ILIB in this reference) to create
and maintain libraries of object code.

Library files are given the extension of .LIB (as in MYLIB.LIB). High Performance
File System (HPFS) files with names that end with ".LIB" (as in
MYLIBRARYFILE.NEW.LIB) are also supported.

ILIB works with standard libraries and OS/2 import libraries. It does not work with
dynamic link libraries (DLLs).

Use the ILIB utility to:

¹ Create a new library (standard only)
¹ Add, delete, or replace modules in a library (import or standard)
¹ Copy object modules in a library to object files (from import or standard)
¹ List the contents of a library (import or standard)

Note: The Library Manager in VisualAge C++ is different from the one included in
previous releases of C Set++. The new Library Manager (ILIB) uses a new
format for libraries that improves link time. It also features several options
that the old Library Manager (referred to as LIB in previous releases) did not
have:

 /NOBACKUP
 /NOBROWSE
 /CONVFORMAT

ILIB does not support the /PAGESIZE option.

For compatibility with previous releases, the LIB utility is included in
VisualAge C++ with the name LIBV2R1.EXE. You can also convert existing
libraries created with LIB to the new library format using ILIB with the
/CONVFORMAT option (described in “/CONVFORMAT (Convert to New
Format)” on page 669).

 Copyright IBM Corp. 1992, 1995 655

Using ILIB

 Running ILIB
Run ILIB by typing ILIB at the operating system prompt.

You can specify parameters in one of three ways:

1. Enter them directly on the command line.
2. Respond to prompts.
3. Put them in a text file called a response file and specify the file name after the

ILIB command.

To enter more commands than can be conveniently entered on one line, type an
ampersand (&) at the end of the line and press Enter to extend the command field to
a new line. You can use the ampersand with all three input methods.

You can press Ctrl+C or Ctrl+Break at any time while running ILIB to return to the
operating system. Interrupting ILIB before completion restores the library from a
backup.

Notes:

1. When started, ILIB makes a backup copy of the original library in case it is
interrupted or a mistake is made. Make sure you have enough disk space for
both your original library and the modified copy.

2. The library must end with the extension .LIB. If an extension is not specified,
the default extension, .LIB, will be appended. HPFS file names are supported.
Hence, MYLIBRARYNAME.NEW.LIB is still a valid library. Note that this
implies that MYLIBRARYNAME.NEW refers to
MYLIBRARYNAME.NEW.LIB.

3. If you enter an input library name and follow it immediately with a semicolon
(;), ILIB performs a consistency check on the library and takes no other action.

Using the Command Line
You can specify all the input ILIB needs on the command line. The syntax of the
command line is:

ILIB [options] inlibrary [commands] [[,listfile] [, outlibrary]] [;]

options Options that affect the behavior of ILIB.

inlibrary The input library to be created or modified.

commands Commands used to add, delete, replace, copy, and move modules
within the library.

656 IBM VisualAge�C++ for OS/2 User's Guide

Using ILIB

listfile The name for a listing file. If you don't specify a name, no file
is created.

outlibrary The output library created from the input library. If you don't
specify an output library, your input library is replaced with the
modified version (see below).

Commas are used to separate commands and options. The semicolon (;) is used to
mark the end of the command line.

Using ILIB Prompts
If you don't provide input to ILIB on the command line, ILIB prompts you for the
information it needs by displaying the following messages, one at a time:

PROMPT ENTER

Library name Name of the input library to be modified. If the library you
specify does not exist, the following prompt appears:

Library does not exist. Create library? (y or n)

Operation(s) Commands to modify the library. If no operations are
specified, the input library is unchanged.

List file Name for a listing file.
 If no listing file is specified, no listing file is created.

New Library Name Name of the output library to be created from the input library.
If no output library is specified, ILIB modifies the input
library.

Enter the same information that you would enter when using the ILIB command line.
You can enter ILIB options at any prompt.

Notes:

¹ ILIB waits for you to respond to each prompt before displaying the next prompt.
If you notice that you have entered an incorrect response to a previous prompt,
press Ctrl+C or Ctrl+Break to exit ILIB and begin again.

¹ A file name must be entered at the Library name: prompt. To choose a default
response for any of the other prompts, press Enter. To choose default responses
for all remaining prompts, type a semicolon (;) and press Enter.

Using an ILIB Response File
To provide input to ILIB with a response file, type:

LIB @responsefile;

 Chapter 49. Using ILIB 657

Using ILIB

where responsefile is the name of a file containing the same information that can
be specified on the command line.

In a sense, a response file extends the command line to include everything in the
response file. To split input to ILIB between the command line and a response file,
put part of your input on the command line and specify a response file (preceding the
response file name with the at sign (@)). The response file name can be any valid
OS/2 file. To use special characters such as a space or the @ symbol, the filename
must be enclosed in quotes.

ILIB responds to input you place in a response file just as it does to input you enter
on a command line or after a prompt. Using a newline character in the response file
is the equivalent of pressing the Enter key after an ILIB prompt.

A response file uses one text line for each prompt. To extend an ILIB command to
multiple lines, end each line except the last with an ampersand (&). Responses must
appear in the same order as the prompts. If a response for one of the prompts does
not appear, the default is used.

Use a response file for:

¹ Complex and long commands you type frequently.

¹ Strings of commands that exceed the limit for command line length.

Specifying ILIB Parameters - Examples
The following examples show different methods for specifying parameters to ILIB.

The operations shown in each example create a new library, NEWLIB.LIB, and its
listing file, NEWLIB.LST, from the existing MYLIB.LIB library. MYLIB.LIB is
unchanged, but NEWLIB.LIB has these changes:

¹ The contents are case-insensitive.
¹ The module TIM is deleted.
¹ The object file SIMON.OBJ is appended as an object module with the name

SIMON.
¹ The module KEHM is deleted and is replaced by a new KEHM which is

appended after SIMON.
¹ The module LAM is copied into an object file named LAM.OBJ.

658 IBM VisualAge�C++ for OS/2 User's Guide

Using ILIB

Command Line Method

At the operating system prompt, enter the following two lines.

LIB /I MYLIB, SIMON-TIM-+KEHM &
*LAM, NEWLIB.LST, NEWLIB;

ILIB Prompts Method

To have ILIB prompt you for input, enter ILIB with no parameters.

Library name: /I MYLIB
 Library does not exist. Create library? (y or n) y
Operations: +SIMON-TIM-+KEHM &
Operations: *LAM
List file: NEWLIB.LST
New Library Name: NEWLIB

Response File Method

First, create a response file with the following contents.

/I MYLIB
+SIMON-TIM-+KEHM &
*LAM
NEWLIB.LST
NEWLIB

Then, assuming the name of the response file is response.fil, invoke ILIB with:

 ILIB @response.fil;

Note that the lines in the response file match the entries you would have made with
the prompting method. Even the ampersand character (&), the continuation character,
is used in the same way.

Creating a New Library
To create a new library file, specify the name of the library file you want to create on
the command line (or at the Library name: prompt when using ILIB prompts).

Note: A library file is automatically created if the library file name you specify is
immediately followed by a command, comma, or semicolon. In this case, the prompt
does not appear.

If the name you specify for the new library file already exists, ILIB assumes that you
want to modify the existing file.

 Chapter 49. Using ILIB 659

Using ILIB

When you give the name of a file that does not currently exist without specifying any
operations, ILIB displays the following prompt:

Library does not exist. Create library? (y or n)

Type y to create the file; typen to terminate the ILIB run. If you specified an
extension other than .LIB, the ILIB utility will try to append the .LIB extension to the
entire file name. If a library name is not entered, ILIB will prompt you for a library
name.

Modifying a Library
You can use ILIB to alter the contents of any object code library. For example, if
you work with high level language libraries, you may want to replace a standard
routine with your own version of the routine. You may also want to add a new
routine to the standard library so that your routine is available along with the standard
routines.

To modify an existing library file, specify the name of the library file you want to
modify on the ILIB command line (or at the Library name: prompt when using ILIB
prompts).

In the commands field, enter one or more commands to add, delete, or replace
modules in the input library. Each command consists of a command character
immediately followed by the name of the module or object file. Note that the Add
command can be used to combine libraries as well as to add object files to a library.

ILIB creates a backup file of the library being modified if it already exists. This
backup file has the same name as the original library with a .BAK filename
extension.

Copying Object Modules to Object Files
To copy a module from a library file to an object file. specify the name of the
library file on the ILIB command line (or at the Library name: prompt when using
ILIB prompts).

To move or copy object modules, use the commands field on the ILIB command line:

Command Action

Copy (*) Copy the module to an object file and retain the module in the library.

Move (-*) Copy the module to an object file and delete the module from the library.

660 IBM VisualAge�C++ for OS/2 User's Guide

Using ILIB

Listing the Contents of a Library
Listings give you the exact names of modules and public symbols, allowing you to
inspect the contents within a library.

To generate a listing file, enter the following on the command line (or at the
appropriate ILIB prompt):

¹ The name of the library file in the inlibrary field.

¹ The name of the listing file in the listfile field.

When generating a listing file, the amount of detail can be varied. The level of detail
is specified with the

 /Listlevel:n

option, with three different levels available.

Level 1 is the default. It is the fastest to generate and contains the least amount of
information. All modules are listed in order of occurrence. For each module, the level
1 option:

¹ Shows the size of each module, and each module's file offset within the library.

¹ Lists all the public symbols defined in the module.

¹ Lists all external symbols referenced by the module.

Level 2 contains all the information of level 1. In addition, for each external symbol,
level 2 shows which module in the library (if any) contains the required public
symbols for resolving at link time. This can be overridden if a module is linked to
another module that already contains the symbol.

Level 3 contains all the information of level 2. In addition, Level 3 displays:

¹ The technical characteristics of the library.

¹ A dump of the extended dictionary. This is useful to determine which modules
will be implicitly linked in whenever a particular module is linked in.

¹ A dump of all browse information for each module in the library.

Note: If you are using the VisualAge C++ product, definitions with mangled names
will be listed with the demangled form in brackets.

Sample Cross Reference Listing

LIB /LISTLEVEL:2 NEWLIB, NEWLIB.LST;

 Chapter 49. Using ILIB 661

Using ILIB

The command above directs ILIB to place a listing of the contents of NEWLIB.LIB
into the file NEWLIB.LST. No path specification is given for NEWLIB.LST. By
default, the file created is put in the current directory.

 Listing Example
The syntax for generating a level 3 listing file is:

LIB /L:3 NEWLIB, NEWLIB.LST;

This command generates a listing file called NEWLIB.LST containing the following
text:

IBM (R) Library Manager Version 3.00
Copyright (C) IBM Corporation 1991, 1995. All rights reserved.

Library name : D:\TEMP\NEWLIB.LIB

Listing detail level : 3

 ┌──┐
┌─┤Number of the module within the parent library. The │
│ │first module number in the listing file is 00000. │

 │ └──┘
 │ ┌──────────────────────────────────────┐
│ │Name of the module within the library.│

 │ └──┬───────────────────────────────────┘
 6 6
00000:francis(OFFSET:0x00000010, SIZE:0x000004ca):
 & &
 │ ┌───────────┴──────────────────────────┐

│ │Size (in bytes) of the object module. │
 │ └──────────────────────────────────────┘
 ┌────────┴──┐

│Relative offset (in bytes) of the module within the library. │
 └───┘
 ┌──────────────────────────────┐
 - Public Definitions: %───────┤Symbols defined by the module │
 francis └──────────────────────────────┘

 ┌───────────────────────────┐
 - External Definitions: %─────┤Symbols not defined in any │

DosAllocMem │module in this library │
 _ilog2 └───────────────────────────┘
 _critlib_except
 _DosSelToFlat
 _DosFlatToSel

662 IBM VisualAge�C++ for OS/2 User's Guide

Using ILIB

00001:lam (OFFSET:0x000004e0, SIZE:0x000001d1):
 - Public Definitions:
 lam

 - External Definitions:
 francis <- 00000:francis
 _critlib_except &
 _DosSelToFlat ┌─────────────────────────────┴───────────────────┐

_DosFlatToSel │Number and name of the module within the library │
│that defines the corresponding public symbol. │

 └───┘

00002:hazlett (OFFSET:0x000006c0, SIZE:0x0000021a):
 - Public Definitions:
 hazlett

 - External Definitions:
 DosFreeMem
 _critlib_except
 _DosSelToFlat
 _DosFlatToSel
 _pBucketArr

00003:simon (OFFSET:0x000008e0, SIZE:0x00000428):
 - Public Definitions:
 simon

 - External Definitions:
 _ilog2
 hazlett <- 00002:hazlett
 francis <- 00000:francis
 _critlib_except
 _DosSelToFlat
 _DosFlatToSel
 _pBucketArr

00004:kehm (OFFSET:0x00000d10, SIZE:0x00000342):
 - Public Definitions:
 _kehm

 Chapter 49. Using ILIB 663

Using ILIB

 - External Definitions:
 DosFreeMem
 _critlib_except
 _DosSelToFlat
 _DosFlatToSel
 _pBucketArr

The following information describes the characteristics of the library. The Flags field
determines case sensitivity.0x1 indicates case sensitivity.0x0 indicates no case
sensitivity.

Flags = 0x0

Contains extended dictionary

Total number of modules = 5

Total bytes for modules = 4592

Total number of symbols in dictionary = 10

Maximum number of symbols in dictionary = 74

Total number of pages for the dictionary = 2

The following is the extended dictionary information. For each module, the listing
provides the following information:

¹ The total number of modules in the library that contain definitions for external
references in the current module. This number is listed in parenthese ().

¹ A list of the identifying module numbers for each of these modules.

In this case, modules 0, 2, and 4 have no dependencies, module 1 is dependent on
module 0, and module 3 is dependent on modules 0 and 2.

======== Dependencies by Module ========
Module 00000 : (00000)
Module 00001 : (00001) 00000
Module 00002 : (00000)
Module 00003 : (00002) 00000 00002
Module 00004 : (00000)

664 IBM VisualAge�C++ for OS/2 User's Guide

Using ILIB

 ILIB Commands
ILIB commands are used to manipulate modules in a library. When you run ILIB,
you can specify multiple commands in any order.

Each command consists of a one- or two-character command symbol immediately
followed by the name of the module or file that is the subject of the command. For
example,

+LEMKE.OBJ

adds the LEMKE.OBJ object file to a library as LEMKE.

Command Action

[+] Adds an object file or library to a library

- Deletes a module from a library

-+ Replaces a module in a library

* Copies a module from a library to an object file

-* Moves a module (copies the module and then deletes it)

Notes:

¹ If you want to enter more commands than can be conveniently entered on one
line, type an ampersand (&) and press Enter at the end of the line. This extends
the command field to the next line.

¹ When processing commands, ILIB processes all copy commands first. ILIB
processes the deletions next, and the additions last.

¹ ILIB never makes changes to your input library while it runs; it copies the library
and makes changes to the copy. However, if you do not specify an output
library, ILIB overwrites the input library with the modified copy at the end of
normal processing. See “Using the Command Line” on page 656 for more
information.

Add Command (+)

Syntax: Default:
[+]filename +filename

Use the add command to add an object module or library to a library. The add
command is issued by using the plus (+) sign or by leaving a blank space.

 Chapter 49. Using ILIB 665

Using ILIB

Adding an Object Module to a Library

Type the name of the object file to be added immediately after the plus sign. The
.OBJ extension may be omitted.

ILIB uses the base name of the object file as the name of the object module in the
library. For example, if the object file B:\CURSOR.OBJ is added to a library file, the
name of the corresponding object module is CURSOR.

Object modules are always added to the end of a library file.

Combining Two Libraries

Specify the name of the library file to be added, including the .LIB extension,
immediately after the plus sign (+). A copy of the contents of that library is added to
the library file being modified. If both libraries contain a module with the same
name, ILIB generates a warning message (LIB0003), and uses only the first module
with that name.

ILIB adds the modules of the library to the end of the library being changed. Note
that the added library still exists as an independent library because ILIB copies the
modules without deleting them.

Examples

ILIB MYLIB +EFREM;

The command above adds the file EFREM.OBJ to the library MYLIB.LIB.

ILIB NEWLIB +KAREN.LIB;

The command above adds the contents of the library KAREN.LIB to the library
NEWLIB.LIB. The library KAREN.LIB is unchanged after this command is
executed.

Delete Command (−)

Syntax: Default:
[−]filename When no command, assumes +

Use the delete command (−) to delete an object module from a library. After the
minus sign, specify the name of the module to be deleted. Module names do not have
path names or extensions.

666 IBM VisualAge�C++ for OS/2 User's Guide

Using ILIB

Example

ILIB MYLIB -EFREM;

The command above deletes the module EFREM from the library MYLIB.LIB.

Replace Command (−+)

Syntax: Default:
[−+]filename When no command, assumes +

Use the replace command (−+) to replace a module in a library. Following the
symbol, specify the name of the module to be replaced.

To replace a module, ILIB performs the following steps:

1. Deletes the existing module

2. Searches the current directory for the .OBJ file with the same file name as the
deleted module

3. Appends to the library a copy of the object file with the original module name

Example

LIB MYLIB -+EFREM;

The command above replaces the module EFREM in the MYLIB.LIB library with the
contents of EFREM.OBJ from the current directory. The file EFREM.OBJ in the
current directory is not altered.

Copy Command (*)

Syntax: Default:
[*]filename When no command, assumes +

Use the copy command (*) to copy a module from the library into an object file of
the same name. The module remains in the library.

When ILIB copies the module to an object file, it adds the .OBJ extension to the
module name and places the file in the current directory. If a file with this name
already exists, ILIB overwrites the existing .OBJ file.

 Chapter 49. Using ILIB 667

Using ILIB

Example

LIB MYLIB *EFREM;

The command above copies the module EFREM from the MYLIB.LIB library to a
file called EFREM.OBJ in the current directory. The module EFREM in MYLIB.LIB
is not altered.

Move Command (−*)

Syntax: Default:
[−*]filename When no command, assumes +

Use the move command (−*) to copy an object module from the library file to an
object file. The object module is then deleted from the library file. This operation is
equivalent to copying the module to an object file, then deleting the module from the
library.

Example

LIB MYLIB -*KEELING;

The command above moves the module KEELING from the MYLIB.LIB library to a
file called KEELING.OBJ in the current directory. Upon completion of this process,
MYLIB.LIB no longer contains the module KEELING.

668 IBM VisualAge�C++ for OS/2 User's Guide

Using ILIB

 ILIB Options
Usage Notes:

¹ Option characters are not case sensitive; /H and /h are equivalent.
¹ The characters in brackets can be omitted; /H and /HELP are equivalent.
¹ Unless otherwise specified, most options and commands need only the first letter

of their names to be used.

The following is a summary of ILIB options:

Option Action

/C[ONVFORMAT] Convert input library to the new ILIB format

/H[ELP] or /? or ? Display Help

/I[GNORECASE] Turn case sensitivity off

/NOBA[CKUP] Do not create backup copy of library

/NOBR[OWSE] Do not create browse information, remove any existing
browse information

/NOE[XTDICTIONARY] Do not generate extended dictionary

/NOI[GNORECASE] Turn case sensitivity on

/NOL[OGO] Suppress ILIB banner

/Q[UIET] Suppress ILIB banner

/L[ISTLEVEL] List current contents of library

/CONVFORMAT (Convert to New Format)

Syntax: Default:
/C[ONVFORMAT] Do not convert input libraries

Use /CONVFORMAT to convert an existing library to the new ILIB format used by the
VisualAge C++ linker.

ILIB only produces libraries in the new format; the VisualAge C++ linker accepts
libraries in both the new format and in older formats, but will link faster with
libraries in the newer ILIB format.

To take advantage of the faster linking, you can convert a library to the new format
using the/CONVFORMAT option.

 Chapter 49. Using ILIB 669

Using ILIB

Note: When you use /CONVFORMAT, you should also specify /NOBROWSE to exclude
browse information because libraries in the old format do not include browse
information.

Example

The following example converts the library OLDLIB.LIB from the previous LIB
format to the new ILIB format:

ILIB OLDLIB.LIB /C

/HELP (Display Help)

Syntax: Default:
/H[ELP] None
/?
?

Use /HELP to display a brief summary of ILIB syntax.

/IGNORECASE (Turn Case Sensitivity Off)

Syntax: Default:
/I[GNORECASE] /I

Use /IGNORECASE to turn off case sensitivity for symbols.

By default, case sensitivity is off. Use this option when you are combining a library
that was created with case sensitivity on (using the /NOI option) with others that are
not case sensitive. The resulting library is not case sensitive.

/LISTLEVEL (Set Detail Level of Listing)

Syntax: Default:
/L[ISTLEVEL][:level] /L:1

Use /LISTLEVEL to set the detail level of an ILIB listing. You can set the detail
level as follows:

Level 1 Is the default. It is the fastest to generate and contains the least amount of
information. All modules are listed in order of occurrence. For each
module, the level 1 option:

1. Shows the relative position and size of each module.

670 IBM VisualAge�C++ for OS/2 User's Guide

Using ILIB

2. Lists all the public symbols defined in the module, and their attributes.

3. Lists all external symbols which must be resolved at link time.

Level 2 Contains all the information of level 1. In addition, for each external
symbol, level 2 shows which module in the library contains the required
public symbols for resolving at link time. This can be overridden if a
module is linked to another module that already contains the symbol.

Level 3 Contains all the information of level 2. In addition, Level 3 displays the
technical characteristics of the library, and all browse information. This
option also contains a dump of the extended dictionary. This is useful to
determine which modules will be implicitly linked in whenever a particular
module is linked in.

Note: If you are using the VisualAge C++ product, definitions with mangled names
will be listed with the demangled form in brackets.

Sample Cross Reference Listing

LIB /LISTLEVEL:2 NEWLIB, NEWLIB.LST;

The command above directs ILIB to place a listing of the contents of NEWLIB.LIB
into the file NEWLIB.LST. No path specification is given for NEWLIB.LST. By
default, the file created is put in the current directory.

/NOBACKUP (Do Not Create Backup)

Syntax: Default:
/NOBA[CKUP] Create backup of library

Use /NOBACKUP to prevent ILIB from creating a backup of the library.

By default, ILIB creates a backup of the library before it is modified.

/NOBROWSE (Do Not Include Browse Information)

Syntax: Default:
/NOBR[OWSE] Include browse information in output

library

Use /NOBROWSE to exclude browse information from the output library. The
VisualAge C++ Browser can browse libraries and executable files that contain browse
information. If you exclude browse information from the library, it cannot be
browsed.

 Chapter 49. Using ILIB 671

Using ILIB

By default, ILIB adds or updates browse information in the output library, as follows:

¹ For all object files you use as input
¹ For library files you use as input, if they contain browse information

/NOEXTDICTIONARY (Do Not Generate Extended Dictionary)

Syntax: Default:
/NOE[XTDICTIONARY] Generate extended dictionary

Use /NOEXTDICTIONARY to disable generation of the extended dictionary.

The extended dictionary is an optional part of the library that increases linking speed.
However, using an extended dictionary requires more memory. The space reserved
for the extended dictionary is limited to 64K, no more can be allocated. If ILIB
reports an out-of-memory error, you may want to use this option. As an alternative,
you can split large libraries into smaller libraries to use in linking.

/NOIGNORECASE (Turn Case Sensitivity On)

Syntax: Default:
/NOI[GNORECASE] Ignore case of symbol names

Use /NOIGNORECASE to turn on case sensitivity.

By default, case sensitivity is off (/I option). Using this option allows symbols that
differ only in case, such as Sine and SINE, to be included as separate symbols in the
same library.

Note that when you create a library with the /NOI option, ILIBmarks the library
internally to indicate that /NOI is in effect. If you combine multiple libraries, and
any one of them is marked /NOI, then the output library is marked /NOI.

/NOLOGO|/QUIET (Supress Banner)

Syntax: Default:
/NOL[OGO] Suppress ILIB banner
/QUIET

Use /NOLOGO to suppress the ILIB copyright notice.

672 IBM VisualAge�C++ for OS/2 User's Guide

Using ILIB

This option suppresses the banner message when ILIB is started. It can be used in
batch files.

 Chapter 49. Using ILIB 673

Using ILIB

674 IBM VisualAge�C++ for OS/2 User's Guide

Packaging the Runtime DLLs

50 Packaging the VisualAge C ++ Runtime DLLs

If your application uses functions from the VisualAge C++ libraries, you need to
ensure the code for those libraries is always available to your application. You
cannot ship the VisualAge C++ DLLs themselves with your application because of
the product licensing agreement and because if more than one application included
the VisualAge C++ DLLs, but at different levels, at least one application would be
using the wrong level.

If you are shipping your application to other users who do not have access to the
library DLLs, you can use one of three methods to include the VisualAge C++ library
code:

1. Statically bind every module to the library (.LIB) files. Compile with /Gd-,
which is the default.

This method increases the size of your modules and slows the performance
because the library environment has to be initialized for each module. Having
multiple library environments also makes signal handling, file I/O, and other
operations more complicated.

2. Create your own runtime DLLs.

This method provides one common runtime environment for your entire
application. It also lets you apply changes to the runtime library without
relinking your application, meaning that if the VisualAge C++ DLLs change, you
need to rebuild only your DLL.

For a description of how to build your own runtime DLL, or subsystem runtime
DLL, see the Programming Guide.

3. Use the DLL rename utility, DLLRNAME, to rename the VisualAge C++ library
DLLs. This utility also changes the names in your executable files that call the
DLLs. DLLRNAME is part of the VisualAge C++ product, and is described
in “Using the DLLRNAME Utility” on page 676.

 Copyright IBM Corp. 1992, 1995 675

Packaging the Runtime DLLs

Using the DLLRNAME Utility
To use the DLL rename utility, build your application using the import libraries
provided with VisualAge C++ (compiling with the /Gd+ option). Then, before you
ship your application:

1. Copy the VisualAge C++ DLLs that your application uses into a working
directory.

2. Run the DLL rename utility, DLLRNAME, against your executable files and
your working copies of the VisualAge C++ DLLs. The utility will rename the
DLLs as well as all internal names that need to be changed as a result.

The syntax for the dllrname command is:

 ┌ ┐───────────────── ┌ ┐───────────────────── ┌ ┐─────────────
55──dllrname─ ───6 ┴┬ ┬───────────── ───6 ┴┬ ┬───────────────── ───6 ┴┬ ┬───────── ─5%
 └ ┘ ─Module-name─ └ ┘─Oldname=Newname─ └ ┘──/Option

Module
Names

The list of module names includes the VisualAge C++ library DLLs your
application uses, along with the EXEs and DLLs that reference them. They must be
present in the current directory, unless their paths are specified.

Note: It is important that you include all the modules in your application in this list,
since the names by which the modules reference the VisualAge C++ library
DLLs must also be changed in the modules themselves.

Name
Changes

You specify the list of the name changes to be made by indicating
Oldname=Newname on the DLLRNAME command line.

Oldname is the name of the VisualAge C++ library DLL as it was shipped with
VisualAge C++.

Newname is the name under which you will be shipping the VisualAge C++ library
DLL with your application.

Note: The DLLRNAME utility requires thatOldname and Newname have the same
number of characters.

For example, to rename the VisualAge C++ library DLL CPPOS30.DLL to
MYLIBRY.DLL in the modules myprog.exe and mydll.dll, specify the following
on the DLLRNAME command line:

DLLRNAME myprog.exe mydll.dll CPP0S30=MYLIBRY

676 IBM VisualAge�C++ for OS/2 User's Guide

Packaging the Runtime DLLs

How DLLRNAME Works
All modules (.EXE and .DLL files) that use other DLLs contain records specifying a
set of external file names that are needed to run the module. The DLLRNAME
utility manipulates only these records; it does not modify your executable code.

One of the external names specified in a module is the name of the module itself.
The name of module, as it appears in its own internal records, is called its internal
name. You specify this name with theNAME or LIBRARY record in a DLL module
definition (.DEF) file when you link the module. In the case of an .EXE file, the
loader essentially ignores the internal name. For a .DLL, its internal name must
match its filename otherwise the loader will refuse to load the DLL. By default,
DLLRNAME will also change the filename of a DLL if it changed its internal name.

The rest of the external names specified in a module are the names of the DLLs to be
loaded when the OS/2 loader loads the module. All of these DLLs must be loaded
for the OS/2 loader to successfully load the module. If you specify any of these
required DLLs for rename on the DLLRNAME command line, DLLRNAME also
changes the names of the required DLLs in the module itself.

The DLLRNAME utility accepts 16- or 32-bit OS/2 protected mode executables. It
will not change DOS or Windows executables, or any other file with a different
format.

What DLLRNAME Will Not Do
The DLLRNAME utility will not:

¹ Modify DLLs named explicitly in your executable code. This is important to
remember if you use the OS/2DosLoadModule() API or the VisualAge C++
_loadmod function to load a required DLL. You must modify your code to load
the DLL using its modified name.

¹ Modify DOS or Windows executables.

¹ Change the name of a DLL to a name of different length.

Other Uses for DLLRNAME
The DLLRNAME utility can also be used to:

¹ Rename your own DLLs so that you can have multiple versions of your
application resident on the same machine for testing purposes.

¹ Obtain a report that lists all the DLLs used by a module. Simply invoke the
DLLRNAME utility without specifying any DLL name changes.

 Chapter 50. Packaging the VisualAge C++ Runtime DLLs 677

Packaging the Runtime DLLs

 DLLRNAME Options
The following options control the operation of the DLLRNAME utility:

/H or /? Display help
/N Do not rename DLL
/Q Suppress display of logo
/R Do not generate report

Note: You can specify options using the slash form (/R) or the dash form (-R).

 /H (Help)

Syntax: Default:
/H None
/?

Specify the/H or /? option on the DLLRNAME command line to see a short online
help on the dllrname command syntax and options.

If you do not specify this option, the default is not to display any online help.

/N (Do Not Rename DLL)

Syntax: Default:
/N Rename all DLLs

Specify the/N option on the DLLRNAME command line to instruct the
DLLRNAME utility not to rename any DLLs that appear in both the modules list and
the list of name changes.

If you do not specify this option, the default is to rename any DLLs that appear in
both the modules list and the list of name changes.

/Q (Do Not Display Logo)

Syntax: Default:
/Q Display logo and copyright notice

Specify the/Q option on the DLLRNAME command line to suppress the display of
the logo and copyright notice for the DLLRNAME utility.

678 IBM VisualAge�C++ for OS/2 User's Guide

Packaging the Runtime DLLs

If you do not specify this option, the default is to display the logo and copyright
notice.

/R (Do Not Generate Report)

Syntax: Default:
/R Generate report

Specify the/R option on the DLLRNAME command line to suppress the generation
of a report detailing the name changes.

If you do not specify this option, the default is to generate a report detailing the name
changes.

 An Example
If you compiled your application using the following command lines:

ICC /Gd+ /Ge- /FeA.DLL A.C B.C C.C D.C A.DEF

IMPLIB A.LIB A.DLL

ILIB /CONV /NOE /NOBR A.LIB

ICC /Gd+ /FeE.EXE E.C F.C G.C H.C A.LIB

your application would be made up of the files A.DLL and E.EXE. Since you
specified the /Gd+ compile option, your application also requires the file
CPPOS30.DLL from VisualAge C++.

To obtain a renamed copy of CPPOS30.DLL which you may ship with your
application, use the following set of commands:

REM Get a working copy of the VisualAge C++ library DLL
COPY D:\IBMCPP\DLL\CPPOS30.DLL

REM Change all the names
DLLRNAME A.DLL E.EXE CPPOS30=MYS30LB

DLLRNAME CPPOS30.DLL CPPOS30=MYS30LB

These commands will change A.DLL and E.EXE so that they will now require
MYS30LB.DLL instead of CPPOS30.DLL. DLLRNAME will also rename
CPPOS30.DLL to MYS30LB.DLL.

 Chapter 50. Packaging the VisualAge C++ Runtime DLLs 679

Packaging the Runtime DLLs

The following is the text of the report generated by the DLLRNAME utility:

> DLLRNAME A.DLL E.EXE CPPOS30.DLL CPPOS30=MYS30LB

Licensed Materials - Property of IBM
IBM VisualAge C++ Version 2.01 - DLL Rename Utility
(C) Copyright IBM Corp., 1993, All Rights Reserved
US Government Users Restricted Rights - Use, duplication or disclosure
restricted by GSA ADP Schedule Contract with IBM Corp.

Processing file A.DLL.
1 external names in file A.DLL have been left unchanged.
2 names found in file A.DLL.
Executable name A has been left unchanged.
Imported DLL name CPPOS30 has been changed to MYS30LB.

Processing file E.EXE.
2 external names in file E.EXE have been left unchanged.
3 names found in file E.EXE.
Executable name e has been left unchanged.
Imported DLL name A has been left unchanged.
Imported DLL name CPPOS30 has been changed to MYS30LB.

Processing file cppos30.dll.
5 external names in file CPPOS30.DLL have been left unchanged.
6 names found in file CPPOS30.DLL.
Executable name CPPOS30 has been changed to MYS30LB.
Imported DLL name DOSCALLS has been left unchanged.
Imported DLL name KBDCALLS has been left unchanged.
Imported DLL name VIOCALLS has been left unchanged.
Imported DLL name NLS has been left unchanged.
Imported DLL name MSG has been left unchanged.
File CPPOS30.DLL has been renamed to MYS30LB.DLL to match internal DLL name.

Complete. 0 error(s) detected.

680 IBM VisualAge�C++ for OS/2 User's Guide

FWDSTAMP

51 Forwarded Entry Point (FWDSTAMP)

FWDSTAMP adds entry points, called forwarders, to a dynamic link library file
(.DLL). Forwarders point to API functions or other exported code or data. They
contain an import reference so that the final target address of the forwarded entry is
contained in a different module. A forwarder might be called an imported export.

When a file has a fix-up to a forwarded entry point, the loader resolves that fix-up to
the address of the entry point that the forwarder imports, by traversing the chain of
forwarders until the end of the chain (a nonforwarded export) is reached. All
forwarders are implicitly exported.

The imported entry point that a forwarder refers to may itself be another forwarder.
The loader will process a chain of forwarders until a nonforwarder entry point is
encountered.

There is no run-time cost to forwarders; however, there is a slight load-time cost as
the loader resolves forwarder chains with their final addresses.

 Using Forwarders
You use forwarders to combine several DLLs into one without having to relink old
applications. For example, if MOUCALLS and VIOCALLS were combined into a
single DLL called NEWLIB.DLL, then MOUCALLS and VIOCALLS could be
replaced with special DLLs containing forwarders to NEWLIB.DLL.

Important Notes

¹ FWDSTAMP parses only the IMPORTS and EXPORTS section of the module
definition file. FWDSTAMP does not verify the syntax of the other sections.

¹ When exported names already exist in the input file, their attributes are kept,
such as resident or nonresident names table, and ordinal numbers. Any new
conflicting attributes are ignored.

¹ If there is no exported name, FWDSTAMP adds the one defined by the
EXPORTS statement in the module definition file.

 Copyright IBM Corp. 1992, 1995 681

FWDSTAMP

 Starting FWDSTAMP
You can start FWDSTAMP and specify all input from the command line. The syntax
is:

FWDSTAMP [options] infile deffile outfile

[options] Specifies one of the following:

/? Displays FWDSTAMP help panel.

/V Increases the level of information FWDSTAMP should
output.

infile Specifies the name of the dynamic link library file that the linker
created. Use the file-name extension .DLL.

deffile Specifies the name of the module definition file (.DEF) that contains
the forwarders. (See “Example”).

outfile Specifies the name of the .DLL file that will contain the added
forwarders.

 Example
Forwarders are specified in the module definition file so that an exported name,
which is also imported, is a forwarder. For example:

 IMPORTS
 VIOMODEWAIT=NEWLIB.123
 EXPORTS

VIOMODEWAIT @ 25

In the example, a forwarder entry point for VIOMODEWAIT is created and contains
an import reference to NEWLIB.123.

682 IBM VisualAge�C++ for OS/2 User's Guide

Part 10. Defining National Characteristics

When you create applications for international markets, you can define nation- or
locale-specific characteristics of the application separately, and then bind different sets
of characteristics to your application for the different locales it will be used in.

This part of the User's Guide describes three utilities you can use in this process:

ICONV, GENXLT Convert a file from one code set to another
LOCALDEF Define a locale

For more information on binding resources to your application, see Part 11,
“Adding Application Resources” on page 693.

Chapter 52. Code Set Conversion Utilities 685
ICONV Utility .685
GENXLT Utility .687

Chapter 53. LOCALDEF Utility .689
LOCALDEF Options .690
LOCALDEF Return Codes . 691
Locale Build Process . 691

 Copyright IBM Corp. 1992, 1995 683

684 IBM VisualAge�C++ for OS/2 User's Guide

Code Set Conversion Utilities

52 Code Set Conversion Utilities

This chapter describes the code set conversion utilities that help you convert a file
from one code set to another.

ICONV Converts a file from one code set encoding to another. It can be used to
convert C source code before compilation or to convert input files.

GENXLT Generates a translate table for use by the ICONV utility and iconv
functions to perform code set conversion.

The ICONV utility calls the iconv_open, iconv, and iconv_close functions to
perform the code set translation. set translation. These functions can be called from
any program requiring code set translation. For more information on these functions,
see the C Library Reference.

 ICONV Utility
The ICONV utility converts the characters from the input file from one coded
character set (code set) definition to another code set definition, and writes the
characters to the output file (or stdout if no file is specified).

The ICONV utility uses the iconv_open, iconv, and iconv_close functions to
convert the input file records from the coded character set definition for the input
code page to the coded character set definition for the output code page. There is one
record in the output file for each record in the input file. No padding or truncation of
records is performed.

When conversions are performed between single-byte code pages, the output records
are the same length as the input records. When conversions are performed between
double-byte code pages, the output records may be longer or shorter than the input
records because the shift-out and shift-in characters may be added or removed.

 Copyright IBM Corp. 1992, 1995 685

Code Set Conversion Utilities

The syntax of the iconv command is as follows:

55──iconv─ ─/F──fromcode─ ─/T──tocode─ ──┬ ┬────────── ─5%
 └ ┘─Filename─

where the options are:

/F Specify the input code set as fromcode

/T Specify the output code set as tocode

and you are converting code sets in Filename. If you do not specify Filename,
ICONV reads from standard in (stdin). The converted file is sent to standard output
(stdout).

If Filename contains codes that are not included in the fromcode code set, ICONV
stops translating.

If fromcode specifies characters that do not exist in tocode, the characters are
translated to a default character defined by the particular conversion taking place.

The values for fromcode and tocode identify either a converter within the converter
DLL, or a conversion table created with GENXLT.

The function iconv_open is used to find a converter that matches the fromcode and
tocode names.

ICONV opens the input and output files as binary. All characters from the input file
(including any trailing cntrl-Z character) are converted from the input codepage to the
output codepage and written to the output file.

Return Codes The ICONV utility has the following return codes.

0 No errors were detected and the file was converted successfully.
1 An error occurred and the file was not converted.
2 An encoding error was encountered in the input file.

686 IBM VisualAge�C++ for OS/2 User's Guide

Code Set Conversion Utilities

 GENXLT Utility
Use the GENXLT utility to create a conversion table that you can use with ICONV to
convert a file from one code set to another.

The syntax of the genxlt command is as follows:

55──genxlt─ ──┬ ┬──────────────── ──┬ ┬─────────── ─5%
 └ ┘ ─/f──outputfile─ └ ┘─inputfile─

GENXLT reads a source translation file frominputfile and writes the compiled
version tooutputfile. If you do not specify an input file, GENXLT uses standard
input (stdin). If you do not specify an output file, GENXLT uses standard output
(stdout).

Format of the Translation Source File
The translation source file can contain comment lines and directives. Start comment
lines with the number sign (#). Directive lines have the following format:

source target comment

where:

source Specify the source bytes to be translated to target. Use hexadecimal
values.

target Specify the value want source translated to. Use either a hexadecimal
value, or the keyword invalid to indicate that there is no valid target for
the specified source.

comment Any additional text on the line is considered a comment, and ignored.

If you provide multiple assignments for the same source, only the last assignment is
used.

Separate the source, target, and comment parameters with space or tab characters.

GENXLT
Return Codes

The GENXLT utility has the following return codes:

0 No errors were detected and the file was converted successfully.
1 An error occurred and the translation table was not successfully built.

 Chapter 52. Code Set Conversion Utilities687

Code Set Conversion Utilities

688 IBM VisualAge�C++ for OS/2 User's Guide

LOCALDEF Utility

53 LOCALDEF Utility

A locale is the definition of the subset of the user's environment that depends on
language and cultural conventions. The locale object contains the rules and pointers
to methods to implement the language and cultural conventions. A locale object is
made up of a number of categories, identified by name, that control specific aspects
of the behavior of components of the system.

The locale object is generated by the LOCALDEF utility according to the rules
defined in the locale definition file. The locale object is implemented as a dynamic
link library (DLL), but with the extension .LCL instead of .DLL. The locale can be
loaded using the setlocale() function. Each .LCL file contains only one locale.

The LOCALDEF utility reads the locale source and produces a locale object that can
be used by the locale-specific library functions.

 Using LOCALDEF
Run the LOCALDEF utility with localdef command. The syntax of the localdef
command is as follows:

 ┌ ┐────────────────────────────────────
55──localdef─ ───6 ┴┬ ┬──────────────────────────────── ─────────────5
 ├ ┤─/c─────────────────────────────
 ├ ┤ ─/f──charmap filename───────────
 ├ ┤─/i──locale definition filename─
 └ ┘ ─/W─ ──┬ ┬─1─ ─────────────────────
 └ ┘─2─

5──localename──5%

where localename specifies the name of the output file for the locale generated. If
you do not specify an extension for localename, LOCALDEF assumes the extension
.LCL. If you do not qualify localename with a path, the locale is written to the
current directory.

You can use the following options:

/C Generate locale even if there are errors
/F Specify file that maps symbols to character encodings
/I Specify locale source file
/W Control messages produced

 Copyright IBM Corp. 1992, 1995 689

LOCALDEF Utility

 LOCALDEF Options

/C (Continue If Errors)

Syntax: Default:
/C Stop process when error encountered.

Use /C to generate a locale object even if LOCALDEF encounters an error during the
locale definition process.

By default, LOCALDEF does not generate a locale object if there are errors.

/F (Character Map)

Syntax: Default:
/F filename /F IBM-850.CM

Use /F to specify the name of the file that maps character symbols and collating
element symbols to actual character encodings. If you do not specify an extension for
the file name, LOCALDEF assumes .CM.

By default, LOCALDEF uses IBM-850.CM.

If you specify the file without including its path, LOCALDEF searches for it in the
following places:

1. The current directory

2. The directories listed in the DPATH environment variable

/I (Locale Source File)

Syntax: Default:
/I Standard input (stdin)

Use /I to specify the source file for the locale. If you do not specify an extension,
LOCALDEF assumes the extension.LOC.

If you specify the file without including its path, LOCALDEF searches for it in the
following places:

1. The current directory

690 IBM VisualAge�C++ for OS/2 User's Guide

LOCALDEF Utility

2. The directories listed in the DPATH environment variable

/W (Control Warnings)

Syntax: Default:
/W[1|2] /W2

Use /W to control the type of message LOCALDEF produces.

/W1 Produce severe errors and errors
/W2 Produce severe errors, errors, and warnings

By default, LOCALDEF produces all three kinds of messages.

LOCALDEF Return Codes
The LOCALDEF utility has the following return codes.

0 No errors were detected and the locale was generated successfully.
1 Warning messages were issued and the locale was generated successfully.
2 The locale specification exceeded implementation limits or the coded character

set or sets used were not supported by the implementation. The locale was not
generated.

>3 Warnings or errors were detected and the locale was not generated.

Locale Build Process
To build the locale object, LOCALDEF performs the following steps:

1. Reads the locale source (from stdin, or from the file specified with the /I
option).

2. Writes a temporary file that contains C source code.

Note: Temporary files are written to the directory specified by the TMP
environment variable. If the TMP variable does not exist, the files are written to
the current directory.

 Chapter 53. LOCALDEF Utility 691

LOCALDEF Utility

3. Invokes the VisualAge C++ compiler to compile the C source code, with the
following compiler options:

/C+ Compile without linking.
/Gd- Statically link the run-time library.
/Ge- Compile a dynamic link library (DLL).
/Rn Generate subsystem code.
/Q+ Do not display logo.
/NdLOCALE Rename the data and const segments.
/Fotmpobjname Specify the temporary object file name.

4. Builds a module definition file for ILINK to use, as follows:

LIBRARY INITINSTANCE TERMINSTANCE
EXPORTS
 instantiate
SEGMENTS
 LOCALEDATA32 CLASS 'DATA' READONLY SHARED

LOCALECONST32 CLASS 'CONST' READONLY SHARED

5. Invokes the VisualAge C++ linker linker with the following parameters:

/NOE Specify the /NOEXTDICTIONARY option, because LOCALDEF
uses the _DLL_InitTerm() function built into the locale source
and not listed in the extended dictionary.

/NOFR Specify the /NOFREE option, to use LINK386-compatible
command-line syntax.

/NOI Specify the /NOIGNORECASE option, to respect capitalization in
identifiers.

/NOL Specify the /NOLOGO option, to suppress display of logo.

object Specify the name of the temporary object file created by the
compiler.

target Specify the name of the output DLL (as defined when you
invoked LOCALDEF)

library Specify CPPOMTHI.LIB as an additional library to be searched

def_file Specify the name of the temporary module definition file
created by LOCALDEF in the previous step.

6. Deletes the temporary files.

692 IBM VisualAge�C++ for OS/2 User's Guide

Part 11. Adding Application Resources

To make your application customisable, you can maintain some resources (such as
dialogs and message strings) in separate files, that you then bind to your application
with the Resource Compiler.

This part of the User's Guide describes the use of the following utilities:

Resource Compiler Allows you to define or modify application resources without
recompiling the application.

Dialog Editor Allows you create and modify dialog boxes.
Font Editor Allows you to create and modify fonts.
Icon Editor Allows you to create and modify icons.

Chapter 54. Resource Compiler .695
Command-Line Options .695
Resource Script Files . 698
Directives .699
Defining Constants .701
Statements and Directives. 707

Chapter 55. Dialog Editor .781
Designing Dialog Boxes . 782
Creating a Dialog Box . 782
Changing the Dialog Box . 790
Dialog Templates .791

Chapter 56. Font Editor .797
Using the Font Editor . 797

Chapter 57. Icon Editor .801
Using the Icon Editor . 801
Editing Palette Colors . 807
Using a Command Line. 810

 Copyright IBM Corp. 1992, 1995 693

694 IBM VisualAge�C++ for OS/2 User's Guide

Resource Compiler

54 Resource Compiler

The OS/2 Resource Compiler (RC) is an application-development tool that lets you
add application resources, such as message strings, pointers, menus, and dialog boxes,
to the executable file of your application. The Resource Compiler is primarily
intended to prepare data for OS/2 applications that use functions such as
WinLoadString, WinLoadPointer, WinLoadMenu, and WinLoadDlg. These functions
load resources from the executable file of your application or another specified
executable file. The application can then use the loaded resources as needed.

The Resource Compiler and the resource functions let you quickly define and/or
modify application resources without recompiling the application itself. That is, RC
can modify the resources in an executable file at any time without affecting the rest
of the file. This means that you can create custom applications from a single
executable file — you just use RC to add the custom resources you need to each
application.

The Resource Compiler is especially important for international applications because
it lets you define all language-dependent data, such as message strings, as resources.
Preparing the application for a new language is simply a matter of adding new
resources to the existing executable file.

Note: Make sure the file RCPP.EXE (the Resource Compiler preprocessor) is
available for the use of the Resource Compiler. It can be in the current
directory, or in a directory to which there is a path.

 Command-Line Options
The following options can be specified on the Resource Compiler command line:

-d<defname>[=<value>]
Define macro to preprocessor

-i <pathspec> Include file path
-r Create .res file
-p Pack - 386 resources will not cross 64K boundaries.
-cp (or -k) {<codepage>|<lbs,lbe>...}

-DBCS code page or lead byte information
-x[{1|2}] Exepack - compress resources, using method 1 or 2.
-cc <countrycode> Country code
-h Access Help

 Copyright IBM Corp. 1992, 1995 695

Resource Compiler

Leave a blank after the letter when using option -cc, -D, -I , -cp or -k. Upper or
lowercase can be used.

Explanation of Command-Line Options
The -D option is useful for passing conditional-compilation flags to the preprocessor.
The <defname> is a sequence of letters, underscore symbols, and digits which does
not begin with a digit. The <value> is a sequence of symbols which you want to
substitute for the <defname> wherever it appears in the input script file. If you omit
the =<value>, the <defname> will be set to the default value 1. For example, the
option -D_3d is equivalent to including at the beginning of the input file this line:

 #define _3d 1

You can use the -D option up to eight times to define different macros from the
command line.

The -I option defines paths for files to be included with the source file. The
<pathspec> is any path where you want RC to search for files included by the
preprocessor #include directive. The <pathspec> must not contain embedded blanks.
To include more than one path, code the -I option once for each path. The
preprocessor reads paths from the INCLUDE environment after reading the paths you
provide with -I options.

The -R switch will create in your current directory a binary resource file containing
the resources you compile. The -R switch takes no argument. The name given to
this binary resource file will be the same as the name of the input resource script file
except that the extension will be .RES instead of .RC. When you use -R, you do not
bind resources to an executable file.

The -P switch is used only when binding resources to an executable. It positions
resources so that they do not cross 64K boundaries.

The -CP or -K option is used to specify code page information for the resource script
file to be compiled. The <codepage> is a numeric code page value from the
“Code Page Table” on page 701. Instead of specifying a code page, you may
provide a sequence of pairs of DBCS lead byte code points. Each pair of numbers
gives the lower and upper limit of a range of code points which are to be interpreted
as DBCS lead bytes. The code page must be valid for the country code in effect:
either the default country code or the country specified using the -CC option.

The -CC option allows you to specify a country code for the resource script file to be
compiled. The <countrycode> is a number from the table. For more information
see “Code Page Table” on page 701.

696 IBM VisualAge�C++ for OS/2 User's Guide

Resource Compiler

The -X option is used only when binding resources to an executable. It causes
resources to be compressed. These resources will be decompressed automatically
when the resource is accessed.

The -X1 option causes Resource Compiler to use the compression algorithm that is
compatible with OS/2 2.0, 2.1, and 2.11.

The -X2 option causes Resource Compiler to use a compression algorithm that is
incompatible with OS/2 2.0, 2.1 and 2.11. The -X2 option will produce smaller
executable files that can access resources faster.

-X with no number defaults to -X1.

When you use the -H switch, Resource Compiler displays on your screen a summary
of the available options and environment variables that it uses. When you specify -H,
the resource compiler does not read any input files. This is equivalent to entering on
the command line "RC" with no operands.

 Help
To display Resource Compiler help, typeRC at the prompt, with no parameters. The
appropriate copyright statement will be displayed, along with a list of Resource
Compiler options. You can also display this list by using the command-line option
-h.

Usage: rc [<options>] <.RC input file>[<.EXE output file>]

-d defname - Preprocessor define
-Ddefname - Preprocessor define
-i - Include file path
-r - Create .res file
-x[1|2] - Exepack-compress resources using method 1or 2
-cc cc - country code
-p - Pack - 386 resources will not cross 64K boundaries
-cp cp | lb,tb,...- DBCS codepage or lead/trail byte information
-h - Access Help

Environment variables:
DBCS=cp | lb,tb,...
TMP=temporary file path
TEMP=temporary file path
INCLUDE=include file path

Note: Option -X2 will produce executable files that are incompatible with OS/2 2.0,
2.1, and 2.11.

 Chapter 54. Resource Compiler697

Resource Compiler

Resource Script Files
This topic describes the resource script file used to define your application resources
and explains how to compile the file and add the resources to your executable file.

Use the Resource Compiler to perform the following actions:

¹ Create a resource script file.

¹ Compile the file.

¹ Add the file to the executable file of your application (optional).

The following sections describe the resource script file and the RC program.

Resource Script Files

A resource script file consists of one or more resource statements that define the type,
identifier, and data for each resource. For example, the following multiple-line
resource statement defines a menu to be used with an application:

 MENU 1
 BEGIN

MENUITEM "Alpha", 101
MENUITEM "Beta", 102

 END

A resource script file is a text file you can create by using an ordinary text editor.
Since some resources may contain binary data that cannot be created using a text
editor, many resource statements let you specify additional files to include when
compiling the resource script file. For example, the following statement defines an
icon and specifies the file MYICON.ICO as containing the icon data:

ICON 1 myicon.ico

Directives

A resource script file can also contain directives. For example, the following
directive includes the header file OS2.H when RC processes the resource script file:

 #include <os2.h>

Resource script files typically have the .RC filename extension. .RC is the default
extension; use it for all your resource script files.

Note: Although the Resource Compiler is C-like in syntax, it is not a C compiler.
Use only the Resource Compiler statements.

698 IBM VisualAge�C++ for OS/2 User's Guide

Resource Compiler

 Directives
A directive is a Resource Compiler statement that carries out a task such as including
a header file, defining constants, or conditionally compiling portions of the resource
script file.

Directives

 elif Directive
 else Directive
 endif Directive
 if Directive
 ifdef Directive
 ifndef Directive

Using the Resource Compiler
The Resource Compiler (RC) compiles a resource script file to create a new file
called a binary resource file.

The binary resource file can be added to the executable file of the application,
replacing any existing resources in that file.

You can start RC in any of three ways.

¹ Compile and add a resource definition file to an executable file
¹ Compile a resource script file
¹ Add a binary resource file to an executable file

The RC command line has the following three basic forms:

rc resource-script-file [executable-file]

rc resource-file [executable-file]

 rc -r resource-script-file [resource-file]

Note: The third option does not add to the executable file.

The resource-script-file field must be the filename of the resource script file to be
compiled. If the file is not in the current directory, you must provide a full path. If
you provide a filename without specifying a filename extension, RC automatically
appends the .RC extension to the name.

 Chapter 54. Resource Compiler699

Resource Compiler

The executable-file field must be the name of the executable file to receive the
compiled resources. This is a file having a filename extension of either .EXE or
.DLL. If the file is not in the current directory, you must provide a full path. If you
omit the executable-file field, RC adds the compiled resources to the executable file
that has the same name as the resource script file but which has the .EXE filename
extension. If you specify the executable-file field but omit the filename extension,
RC will append the .EXE extension. If this executable file does not exist, RC
displays an error message.

The -r option directs RC to compile the resource script file without adding it to an
executable file. You can use this option to prepare a binary resource file that you can
add to an executable file at a later time. If you do not explicitly name a binary
resource file along with the -r option, RC uses the same name as the resource script
file but with the .RES filename extension.

The resource-file field must be the name of the binary resource file to be added to
the executable file. If the binary resource file does not already exist, RC creates it;
otherwise, RC replaces the existing file. If the file is not in the current directory, you
must provide a full path. The binary resource file must have the .RES filename
extension.

For example, to compile the resource script file EXAMPLE.RC, and add the result to
the executable file EXAMPLE.EXE, use the following command:

 rc example

You do not need to specify the .RC extension. RC creates the binary resource file
EXAMPLE.RES and adds the compiled resource to the executable file
EXAMPLE.EXE.

To compile the resource script file EXAMPLE.RC into a binary resource file without
adding the resources to an executable file, use the following command:

rc -r example

The compiler creates the binary resource file EXAMPLE.RES. To create a binary
resource file that has a name different from the resource script file, use the following
command:

rc -r example newfile.res

To add the compiled resources in the binary resource file EXAMPLE.RES to an
executable file, use the following command:

 rc example.res

700 IBM VisualAge�C++ for OS/2 User's Guide

Resource Compiler

To specify the name of the executable file, if the name is different from the resource
file, use the following command:

rc example.res newfile.exe

To add the compiled resources to a dynamic-link-library (.DLL) file, use the
following command:

rc example.res dynalink.dll

In addition to -r, RC offers two other command-line options: -cp and -cc. The -cp
option lets you specify a code-page identifier or DBCS lead byte information. The
-cc option lets you specify a country code. The syntax is as follows:

-cp {codepage-id | lead-byte-start, lead-byte-end,...}
 -cc country-code

The lead-byte-start and lead-byte-end fields give the upper and lower limits of each
interval of DBCS lead bytes which you are defining for the code page. You may
specify these values instead of a codepage-id.

The codepage-id or country-code field contains one of the valid code page or country
codes, for example:

Code Page Table

CODE PAGE COUNTRY CODE MEANING

932 81 Japan

934 82 Korea

936 86 China

938 88 Taiwan

 Defining Constants
The –d option lets you define up to eight symbolic constants on the command line.
The syntax is as follows:

 -d defname[=value]

In the previous example, defname is a name, and value is an integer constant, or an
expression. The -d option is useful for passing conditional-compilation flags to the
RC preprocessor.

 Chapter 54. Resource Compiler701

Resource Compiler

The following example specifies a Japanese code-page identifier and also defines two
symbolic constants to be passed to the preprocessor as conditional-compilation flags.

rc -cp 932 -d DEBUG -d VERSION=2 example

Note: To process directives in the resource script file, RC uses the files RCPP.EXE
and RCPP.ERR. Be sure that these files are in the current directory or in a directory
specified by your PATH environment variable. RC creates many temporary files and
writes them to the directory indicated by the TMP or TEMP environment variable. If
RC cannot write these temporary files to this directory, it writes them to the current
directory.

About Resource Statements
Each resource statement consists of one or more keywords, numbers, character
strings, constants, or filenames. You combine these to define the resource type,
identifier, and data.

Keywords are words that have a special meaning to the Resource Compiler. In a
statement, keywords specify the resource type, the load and memory options, and the
beginning and end of nested statements. You can use the RC keywords only as
specified in the statement syntax.

Keywords, except for those specifying directives, can be any combination of
uppercase and lowercase letters. Note that the curly braces, { and }, are reserved
characters. You can use them in place of the BEGIN and END keywords.

Numbers are integers that represent coordinates, dimensions, styles, and other numeric
data. You can specify numbers in decimal, octal, or hexadecimal notation:

Decimal numbers must contain decimal digits but can start with a minus sign (-)
when they represent a negative number.
Hexadecimal numbers must contain hexadecimal digits (uppercase or lowercase)
and must start with the characters0x.
Octal numbers are similar to hexadecimal numbers, except that a lowercase letter
o replaces the x.

702 IBM VisualAge�C++ for OS/2 User's Guide

Resource Compiler

The following example shows several numbers represented in decimal, octal, and
hexadecimal notation:

Statements that create controls in dialog windows and menu items in menus require
that you specify an identifier for each control or menu item. Statements that create
controls also require you to specify coordinates and dimensions. You specify
identifiers, coordinates, and dimensions using integers in the range -32768 through
32767. Optionally, you can use simple expressions that evaluate to integers from 0
through 65535; this lets you specify identifiers, dimensions, and coordinates that are
relative to those of the corresponding dialog window or menu.

Character strings represent names, labels, titles, and messages. A character string
consists of one or more characters enclosed in double quotation marks. Character
values must be in the range 1 through 255. If a double quotation mark (") is required
in a string, you must include the double quotation mark twice. The meaning of each
character value (that is, the character each value represents) depends on the code page
(character set) defined for the resource script file.

The Resource Compiler interprets the backslash (\) as an escape character in character
strings. You can include any ASCII character in a character string by specifying
either \xdd, where dd is the hexadecimal representation of an ASCII character, or
\nnn, where nnn is the octal representation of an ASCII character. If a backslash is
required in a string, you must include the backslash twice.

Constants are names that have been assigned values by using the define directive. A
constant can represent a number, a character string, or other data. Most resource
statements in a resource script file use constants, and many use the constants defined
in the OS/2 header files (for example, os2.h). For this reason, you should always use
the include directive to include OS2.H in your resource script file.

Filenames are OS/2 filenames. If the specified file is not in the current directory, you
must specify the drive, directory, and filename.

DECIMAL OCTAL HEXADECIMAL

1 0o1 0x1

10 0o12 0xA

255 0o377 0xFF

-1 0o177777 0xFFFF

65535 0o177777 0xFFFF

 Chapter 54. Resource Compiler703

Resource Compiler

Resource statements have three basic forms:

 Single-line statements
 Multiple-line statements
 Directives

Single-line statements consist of a keyword identifying the resource type, a constant
or number specifying the resource identifier, and a filename specifying the file
containing the resource data. For example, this ICON statement defines an icon
resource:

ICON 1 myicon.ico

The icon resource has the icon identifier 1. The file MYICON.ICO contains the icon
data.

Multiple-line statements consist of a keyword identifying the resource type, a constant
or number specifying the resource identifier, and, between the BEGIN and END
keywords, additional resource statements that define the resource data. For example,
this MENU statement defines a menu resource:

 MENU 1
 BEGIN

MENUITEM "Alpha", 101
 MENUITEM "Beta", 102
 END

The menu identifier is 1. The menu contains two MENUITEM statements that define
the contents of the menu.

In multiple-line statements such as DLGTEMPLATE and WINDOWTEMPLATE, RC
allows any level of nested statements. For example, the DLGTEMPLATE and
WINDOWTEMPLATE statements typically contain a single DIALOG or FRAME
statement. These statements can contain any number of WINDOW and CONTROL
statements; the WINDOW and CONTROL statements can contain additional
WINDOW and CONTROL statements; and so on. The nested statements let you
define controls and other child windows for the dialog boxes and windows. If a
nested statement creates a child window or control, the parent and owner of the new
window is the window created by the containing statement. (FRAME statements
occasionally create frame controls whose parent and owner windows are not the
same.)

Directives consist of the reserved character # in the first column of a line, followed
by the directive keyword and any additional numbers, character strings, or filenames.

704 IBM VisualAge�C++ for OS/2 User's Guide

Resource Compiler

Binary Resource Files
The binary resource file created by the Resource Compiler consists of one or more
resource entries, each in the following form:

 struct {
 UCHAR fResType;
 USHORT usResType;
 UCHAR fResID;
 USHORT resid;
 USHORT fsOptions;
 ULONG cb;
 BYTE bytes[1];
 };

The fields in each entry have the following meanings:

fRestype Specifies whether the resource-type identifier is a string or
an integer. For OS/2, the resource type is always an
integer and this field is set to 0xFF.

usResType Specifies the resource-type identifier. This value is an
integer in the range -32768 through 32767. The following
resource types are predefined:

RT_ACCELTABLE Accelerator table

RT_BITMAP Bitmap

RT_CHARTBL Character table

RT_DIALOG Dialog template

RT_DISPLAYINFO Display information

RT_DLGINCLUDE Dialog include-file name

RT_FKALONG Long-form function-key area

RT_FKASHORT Short-form function-key area

RT_FONT Font

RT_FONTDIR Font directory

RT_HELPSUBTABLE Help subtable

RT_HELPTABLE Help table

RT_KEYTBL Key table

RT_MENU Menu template

RT_MESSAGE Error-message table

 Chapter 54. Resource Compiler705

Resource Compiler

RT_POINTER Mouse-pointer shape

RT_RCDATA Binary data

RT_STRING String table

RT_VKEYTBL Virtual key table

fResID Specifies whether the resource identifier is a string or an
integer. For OS/2, the resource identifier is always an
integer and this field is set to 0xFF.

resid Specifies the resource identifier. This value is an integer
in the range -32768 through 32767.

fsOptions Specifies the load and memory options. This value can be
a combination of the following:

0x0010 MOVEABLE resource. If not given, the
resource is FIXED.

0x0040 PRELOAD resource. If not given, the
resource is LOADONCALL.

0x1000 DISCARDABLE resource.

cb Specifies the size of the resource (in bytes).

bytes Contains the resource.

Note: There is a size limitation of 65,280 bytes for a binary resource file.

706 IBM VisualAge�C++ for OS/2 User's Guide

Resource Compiler

Statements and Directives
The following statements and directives are used by the Resource Compiler (RC):

 ACCELTABLE Statement
 ASSOCTABLE Statement
 AUTOCHECKBOX Statement
 AUTORADIOBUTTON Statement
 BITMAP Statement
 CHECKBOX Statement
 CODEPAGE Statement
 COMBOBOX Statement
 CONTAINER Statement
 CONTROL Statement
 CTEXT Statement
 CTLDATA Statement
 DEFAULTICON Statement
 define Directive
 DEFPUSHBUTTON Statement
 DIALOG Statement
 DLGINCLUDE Statement
 DLGTEMPLATE Statement
 EDITTEXT Statement
 elif Directive
 else Directive
 endif Directive
 ENTRYFIELD Statement
 FONT Statement
 FRAME Statement
 GROUPBOX Statement
 HELPITEM Statement
 HELPSUBITEM Statement
 HELPSUBTABLE Statement
 HELPTABLE Statement

ICON Statement (Resource)
ICON Statement (Control)

 if Directive
 ifdef Directive
 ifndef Directive
 include Directive
 LISTBOX Statement
 LTEXT Statement
 MENU Statement
 MENUITEM Statement

 Chapter 54. Resource Compiler707

ACCELTABLE Statement

 MESSAGETABLE Statement
 MLE Statement
 NOTEBOOK Statement
 POINTER Statement
 PRESPARAMS Statement
 PUSHBUTTON Statement
 RADIOBUTTON Statement
 RCDATA Statement
 RCINCLUDE Statement
 RESOURCE Statement
 RTEXT Statement
 SLIDER Statement
 SPINBUTTON Statement
 STRINGTABLE Statement
 SUBITEMSIZE Statement
 SUBMENU Statement
 undef Directive
 VALUESET Statement
 WINDOW Statement
 WINDOWTEMPLATE Statement

 ACCELTABLE Statement
Syntax:

ACCELTABLE acceltable-id [mem-option][code-page]
 BEGIN
key-value, command[, accelerator-options]...

 .
 .
 .
 END

Description

The ACCELTABLE statement creates a table of accelerators for an application. An
accelerator is a keystroke that gives the user a quick way to choose a command from
a menu or carry out some other task. An accelerator table can be loaded when
needed from the executable file by using the WinLoadAccelTable function.

You can provide any number of ACCELTABLE statements in a resource script file.
Each statement must specify a unique table identifier. You can provide any number
of accelerator definitions in an accelerator table; however, no two definitions in a
table can specify the same key.

708 IBM VisualAge�C++ for OS/2 User's Guide

ACCELTABLE Statement

Each accelerator definition must specify a key value and command. The
WinSetAccelTable function used in the application translates the accelerator keystroke
into a WM_COMMAND, WM_HELP, or WM_SYSCOMMAND message that has
the corresponding command value. The message type depends on the
accelerator-option field.

acceltable-id Specifies the accelerator-table identifier. This value must be an
integer in the range -32768 through 32767, or a simple
expression that evaluates to a value in that range. Each
accelerator table in a resource script file must have a unique
identifier.

mem-option Specifies how the system manages the resource when it is in
memory. This value must be one of the following:
OPTION Meaning
FIXED System keeps the resource at a fixed memory

location.
MOVEABLE System moves the resource as necessary to

compact memory. This is the default option.
DISCARDABLE System discards the resource if it is no longer

needed.
code-page Specifies a code page value. For a list of valid code pages

see “CODEPAGE Statement” on page 718.
key-value Specifies the character, scan, or virtual-key code of the

accelerator key. The meaning depends on the
accelerator-options field. The key-value field must be a single
character enclosed in double-quotation marks or an integer in
the range 0 through 255. If you specify an integer, you must
specify the CHAR, SCANCODE, or VIRTUALKEY accelerator
option; otherwise, the default option is CHAR. Integers must
be in decimal or hexadecimal notation.

command Specifies the command value for the corresponding
WM_COMMAND, WM_HELP, or WM_SYSCOMMAND
message. This value must be an integer in the range -32768
through 32767, or a simple expression that evaluates to an
integer in that range.

 Chapter 54. Resource Compiler709

ACCELTABLE Statement

accelerator-options Specifies the accelerator type. This value can be a combination
of the following:
VIRTUALKEY Specifies that the key-value field is a

virtual-key code.
SCANCODE Specifies that the key-value field is a

keyboard scan code.
CHAR Specifies that the key-value field is a

character code.
SHIFT Specifies that the user must press the Shift

key and the key corresponding to the
key-value field to generate the accelerator.

CONTROL Specifies that the user must press the Ctrl
key and the key corresponding to the
key-value field to generate the accelerator.

ALT Specifies that the user must press the Alt
key and the key corresponding to the
key-value field to generate the accelerator.

LONEKEY Specifies that the user needs to press only
the key corresponding to the key-value field
to generate the accelerator.

SYSCOMMAND Specifies that the accelerator translates to a
WM_SYSCOMMAND message. If you do
not include this option, the accelerator
translates to a WM_COMMAND message.

HELP Specifies that the accelerator translates to a
WM_HELP message. If you do not include
this option, the accelerator translates to a
WM_COMMAND message.

Note: VIRTUALKEY, SCANCODE, and CHAR are mutually exclusive.
SYSCOMMAND and HELP are also mutually exclusive.

Comments

If two accelerators use the same key with different Shift, Control, or ALT options,
you should specify the more restrictive accelerator first in the table. For example,
you should place Shift+Enter before Enter.

710 IBM VisualAge�C++ for OS/2 User's Guide

ASSOCTABLE Statement

If you include the <os2.h> header file, you can use the following constants to specify
the accelerator options:

To combine these constants, you must use the bitwise OR (|) operator.

Example

This example creates an accelerator table whose accelerator-table identifier is 1. The
table contains two accelerators: Ctrl+S and Ctrl+G. These accelerators generate
WM_COMMAND messages with values of 101 and 102, respectively, when the user
presses the corresponding keys.

 ACCELTABLE 1
 BEGIN

"S", 101, CONTROL
"G", 102, CONTROL

 END

AF_ALT AF_CHAR AF_CONTROL
AF_HELP AF_LONEKEY AF_SCANCODE
AF_SHIFT AF_SYSCOMMAND AF_VIRTUALKEY

 ASSOCTABLE Statement
Syntax:

ASSOCTABLE assoctable-id [load-option][mem-option][code-page]
 BEGIN
association-name, file-match-string[, extended-attribute-flag]

 [, icon-filename]
 .
 .
 .
 END

Description

The ASSOCTABLE statement defines a file-association table for an application. This
table associates the data files that an application creates with the executable file of the
application. When the user selects one of these data files from File Manager, the
associated application begins executing.

A file-association table can also associate icons with the data files that an application
creates. The shell uses these icons to identify the data files graphically. Because a
file-association table associates icons by file type, all data files having the same file
type have the same icon.

 Chapter 54. Resource Compiler711

ASSOCTABLE Statement

You can provide any number of ASSOCTABLE statements in a resource script file,
but each statement must specify a unique assoctable-id value. The file-association
tables are written not only to the resources within your executable file, but also to the
.ASSOC extended attribute. However, only the last file-association table specified in
the resource script file is actually written to the extended attribute.

assoctable-id Specifies the association-table identifier. This value must be an
integer in the range -32768 through 32767, or a simple
expression that evaluates to a value in that range.

load-option Specifies when the system loads the resource from the
executable file into memory. This value must be one of the
following:
PRELOAD System loads the resource when the

application starts.
LOADONCALL System loads the resource when the

application calls the DosGetResource or
DosGetResource2 function. This is the
default option.

mem-option Specifies how the system manages the resource when it is in
memory. This value must be one of the following:
FIXED System keeps the resource at a fixed memory

location.
MOVEABLE System moves the resource as necessary to

compact memory. This is the default option.
DISCARDABLE System discards the resource if it is no longer

needed.
code-page Specifies a code page value. For a list of valid code pages

see “CODEPAGE Statement” on page 718.
association-name Specifies the name of the file type the application recognizes.

This field must contain zero or more characters enclosed in
double quotation marks.

Character values must be in the range 1 through 255. If a
double quotation mark is required in the name, you must
include the double quotation mark twice.

file-match-string Specifies the file-matching string of a particular type of data file
that the application creates. This field must contain zero or
more characters enclosed in double quotation marks. You can
only use characters that are valid in OS/2 filenames and
extensions and the OS/2 wildcard characters question mark (?)
and asterisk (*).

712 IBM VisualAge�C++ for OS/2 User's Guide

AUTOCHECKBOX Statement

extended-attribute-flag
Specifies the extended-attribute options. This value can be a
combination of the following:
EAF_DEFAULTOWNER

Specifies that the application
containing the file-association table
starts when the user selects any file
matching the file-match-string field
from File Manager.

EAF_REUSEICON Specifies that the icon defined in the
previous entry of the file-association
table is used as the icon for the
current data-file type.

EAF_UNCHANGEABLE
Specifies that the entry should not be
edited.

icon-filename Specifies the name of the file containing an icon. File Manager
uses this icon to represent all application-created data files
matching the file-match-string field. The file must be in the
current directory.

 AUTOCHECKBOX Statement
Syntax:

AUTOCHECKBOX text, id, x, y, width, height[, style]

The AUTOCHECKBOX statement creates an automatic-check-box control. The
control is a small rectangle (check box) that contains an X when the user selects it.
The specified text is displayed to the right of the check box. An X appears in the
square when the user first selects the control and disappears the next time the user
selects it. The AUTOCHECKBOX statement, which you can use only in a DIALOG
or WINDOW statement, defines the text, identifier, dimensions, and attributes of a
control window. The predefined class for this control is WC_BUTTON. If you do
not specify the style, the default style is BS_AUTOCHECKBOX and WS_TABSTOP.

text Specifies text that is displayed to the right of the control. This field must
contain zero or more characters enclosed in double quotation marks.
Character values must be in the range 1 through 255. If a double quotation
mark is required in the text, you must include the double quotation mark
twice. A tilde (˜) character in the text indicates that the following
character is used as a mnemonic character for the control. When the control
is displayed, the tilde is not shown, but the mnemonic character is
underlined. The user can choose the control by pressing the key
corresponding to the underlined mnemonic character.

 Chapter 54. Resource Compiler713

AUTORADIOBUTTON Statement

id Specifies the control identifier. This value must be an integer in the range
-32768 through 32767, or a simple expression that evaluates to a value in
that range.

x Specifies the x-coordinate of the lower-left corner of the control. This value
must be an integer in the range -32768 through 32767 or an expression
consisting of integers and the addition (+) or subtraction (-) operator. The
coordinate is assumed to be in dialog units and is relative to the origin of
the dialog box, window, or control containing the specified control.

y Specifies the y-coordinate of the lower-left corner of the control. This value
must be an integer in the range -32768 through 32767 or an expression
consisting of integers and the addition (+) or subtraction (-) operator. The
coordinate is assumed to be in dialog units and is relative to the origin of
the dialog box, window, or control containing the specified control.

width Specifies the width of the control. This value must be an integer in the
range 0 through 65535 or an expression consisting of integers and the
addition (+) or subtraction (-) operator. The width is in n-character units.

height Specifies the height of the control. This value must be an integer in the
range 0 through 65535 or an expression consisting of integers and the
addition (+) or subtraction (-) operator. The height is in 1/8-character units.

style Specifies the control styles. This value can be a combination of the styles
specified for WC_BUTTON. You can use the bitwise OR (|) operator to
combine styles.

Example

This example creates an automatic-check-box control that is labeled "Italic."

AUTOCHECKBOX "Italic", 101, 10, 10, 100, 100

 AUTORADIOBUTTON Statement
Syntax:

AUTORADIOBUTTON text, id, x, y, width, height[, style]

The AUTORADIOBUTTON statement creates an automatic-radio-button control.
This control is a small circle with the given text displayed to its right. The control
highlights the circle and sends a message to its parent window when the user selects
the button. The control also removes the selection from any other
automatic-radio-button controls in the same group. When the user selects the button
again, the control removes the highlight before sending a message. The
AUTORADIOBUTTON statement, which you can use only in a DIALOG or
WINDOW statement, defines the text, identifier, dimensions, and attributes of a
control window. The predefined class for this control is WC_BUTTON. If you do
not specify a style, the default style is BS_AUTORADIOBUTTON.

714 IBM VisualAge�C++ for OS/2 User's Guide

AUTORADIOBUTTON Statement

text Specifies text that is displayed to the right of the control. This field must
contain zero or more characters enclosed in double quotation marks.
Character values must be in the range 1 through 255. If a double quotation
mark is required in the text, you must include the double quotation mark
twice. A tilde (˜) character in the text indicates that the following
character is used as a mnemonic character for the control. When the control
is displayed, the tilde is not shown, but the mnemonic character is
underlined. The user can choose the control by pressing the key
corresponding to the underlined mnemonic character.

id Specifies the control identifier. This value must be an integer in the range
-32768 through 32767, or a simple expression that evaluates to a value in
that range.

x Specifies the x-coordinate of the lower-left corner of the control. This value
must be an integer in the range 32768 through 32767 or an expression
consisting of integers and the addition (+) or subtraction (-) operator. The
coordinate is assumed to be in dialog units and is relative to the origin of
the dialog box, window, or control containing the specified control.

y This value must be an integer in the range -32768 through 32767 or an
expression consisting of integers and the addition (+) or subtraction (-)
operator. The coordinate is assumed to be in dialog units and is relative to
the origin of the dialog box, window, or control containing the specified
control.

width Specifies the width of the control. This value must be an integer in the
range 0 through 65535 or an expression consisting of integers and the
addition (+) or subtraction (-) operator. The width is in n-character units.

height Specifies the height of the control. This value must be an integer in the
range 0 through 65535 or an expression consisting of integers and the
addition (+) or subtraction (-) operator. The height is in 1/8-character units.

style Specifies the control styles. This value can be a combination of the styles
specified for WC_BUTTON. You can use the bitwise OR (|) operator to
combine styles.

Example

This example creates an automatic-radio-button control that is labeled "Italic."

AUTORADIOBUTTON "Italic", 101, 10, 10, 24, 50

 Chapter 54. Resource Compiler715

BITMAP Statement

 BITMAP Statement
Syntax:

BITMAP bitmap-id [load-option] [mem-option] [codepage] filename

The BITMAP statement defines a bit map resource for an application. A bit map
resource, typically created using the Icon Editor, is a custom bit map that an
application uses in its display or as an item in a menu. The BITMAP statement
copies the bit-map resource from the file specified in the filename field and adds it to
the application's other resources. A bit-map resource can be loaded from the
executable file when needed by using the GpiLoadBitmap function.

You can provide any number of BITMAP statements in a resource script file, but
each statement must specify a unique bitmap-id value.

bitmap-id Specifies the bit-map-resource identifier. This value must be an
integer in the range -32768 through 32767 or a simple
expression that evaluates to a value in that range.

load-option Specifies when the system loads the resource from the
executable file into memory. This value must be one of the
following:
PRELOAD System loads the resource when the

application starts.
LOADONCALL System loads the resource when the

application calls the GpiLoadBitmap function.
This is the default option.

mem-option Specifies how the system manages the resource when it is in
memory. This value must be one of the following:
FIXED System keeps the resource at a fixed memory

location.
MOVEABLE System moves the resource as necessary to

compact memory. This is the default option.
DISCARDABLE System discards the resource if it is no longer

needed.
codepage Specifies a code page value. For a list of valid code pages

see “CODEPAGE Statement” on page 718.
filename Specifies the name of the file containing the icon resource. If

the file is not in the current directory, filename must be
preceded by a full path.

Example

This example defines a bit map whose bit-map identifier is 12. The bit-map resource
is copied from the file CUSTOM.BMP.

BITMAP 12 custom.bmp

716 IBM VisualAge�C++ for OS/2 User's Guide

CHECKBOX Statement

 CHECKBOX Statement
Syntax:

CHECKBOX text, id, x, y, width, height[, style]

The CHECKBOX statement creates a check-box control. The control is a small
rectangle (check box) that has the specified text displayed to the right. The control
highlights the rectangle and sends a message to its parent window when the user
selects the control. The CHECKBOX statement, which you can use only in a
DIALOG or WINDOW statement, defines the text, identifier, dimensions, and
attributes of a control window. The predefined class for this control is
WC_BUTTON. If you do not specify a style, the default style is BS_CHECKBOX
and WS_TABSTOP.

text Specifies text that is displayed to the right of the control. This field must
contain zero or more characters enclosed in double quotation marks.
Character values must be in the range 1 through 255. If a double quotation
mark is required in the text, you must include the double quotation mark
twice. A tilde (˜) character in the text indicates that the following
character is used as a mnemonic character for the control. When the control
is displayed, the tilde is not shown, but the mnemonic character is
underlined. The user can choose the control by pressing the key
corresponding to the underlined mnemonic character.

id Specifies the control identifier. This value must be an integer in the range
-32768 through 32767, or a simple expression that evaluates to a value in
that range.

x Specifies the x-coordinate of the lower-left corner of the control. This value
must be an integer in the range -32768 through 32767 or an expression
consisting of integers and the addition (+) or subtraction (-) operator. The
coordinate is assumed to be in dialog units and is relative to the origin of
the dialog box, window, or control containing the specified control.

y Specifies the y-coordinate of the lower-left corner of the control. This value
must be an integer in the range -32768 through 32767 or an expression
consisting of integers and the addition (+) or subtraction (-) operator. The
coordinate is assumed to be in dialog units and is relative to the origin of
the dialog box, window, or control containing the specified control.

width Specifies the width of the control. This value must be an integer in the
range 0 through 65535 or an expression consisting of integers and the
addition (+) or subtraction (-) operator. The width is in n-character units.

height Specifies the height of the control. This value must be an integer in the
range 0 through 65535 or an expression consisting of integers and the
addition (+) or subtraction (-) operator. The height is in 1/8-character units.

style Specifies the control styles. This value can be a combination of the styles
specified for WC_BUTTON. You can use the bitwise OR (|) operator to
combine styles.

 Chapter 54. Resource Compiler717

CODEPAGE Statement

Example

This example creates a check-box control that is labeled "Italic."

CHECKBOX "Italic", 101, 10, 10, 100, 100

 CODEPAGE Statement
Syntax:

CODEPAGE codepage-id

The CODEPAGE statement sets the code page for all subsequent resources. The
code page specifies the character set used for characters in the resource.

If the CODEPAGE statement is not given in a resource script file, RC uses the code
page set up for the individual system. If more than one CODEPAGE statement is
given in the file, each CODEPAGE statement applies to the resource statements
between it and the next CODEPAGE statement.

codepage-id Identifies the code page to be used for subsequent resources.
This value can be one of the following:
437 United States
850 Multilingual
860 Portuguese
863 Canadian French
865 Norwegian
932 Japanese
934 Korean
936 Chinese
938 Taiwan

Comments

You may also specify a code page by placing a code-page identifier in the
load-options or memory-options field of any RC statement that uses those fields.

Example

In this example, the code page for the character-string resources is set to Portuguese
(860).

718 IBM VisualAge�C++ for OS/2 User's Guide

COMBOBOX Statement

 CODEPAGE 860

 STRINGTABLE
 BEGIN

1 "Filename not found"
2 "Cannot open file for reading"

 END

 COMBOBOX Statement
Syntax:

COMBOBOX text, id, x, y, width, height[, style]

The COMBOBOX statement creates a combination-box control. This control
combines a list-box control with an entry-field control. It allows the user to place the
selected item from a list box into an entry field.

The COMBOBOX statement, which you can use only in a DIALOG or WINDOW
statement, defines the text, identifier, dimensions, and attributes of a control window.
The predefined class for this control is WC_COMBOBOX. If you do not specify a
style, the default style is CBS_SIMPLE, WS_GROUP, WS_TABSTOP, and
WS_VISIBLE.

text Specifies text that is displayed in the entry field of the control. This field
must contain zero or more characters enclosed in double quotation marks.
Character values must be in the range 1 through 255. If a double quotation
mark is required in the text, you must include the double quotation mark
twice.

id Specifies the control identifier. This value must be an integer in the range
-32768 through 32767, or a simple expression that evaluates to a value in
that range.

x Specifies the x-coordinate of the lower-left corner of the control This value
must be an integer in the range -32768 through 32767 or an expression
consisting of integers and the addition (+) or subtraction (-) operator. The
coordinate is assumed to be in dialog units and is relative to the origin of
the dialog box, window, or control containing the specified control.

y Specifies the y-coordinate of the lower-left corner of the control This value
must be an integer in the range -32768 through 32767 or an expression
consisting of integers and the addition (+) or subtraction (-) operator. The
coordinate is assumed to be in dialog units and is relative to the origin of
the dialog box, window, or control containing the specified control.

width Specifies the width of the control. This value must be an integer in the
range 0 through 65535 or an expression consisting of integers and the
addition (+) or subtraction (-) operator. The width is in n-character units.

 Chapter 54. Resource Compiler719

CONTAINER Statement

height Specifies the height of the control. This value must be an integer in the
range 0 through 65535 or an expression consisting of integers and the
addition (+) or subtraction (-) operator. The height is in 1/8-character units.

style Specifies the control styles. This value can be a combination of the styles
specified for WC_COMBOBOX. You can use the bitwise OR (|) operator
to combine styles.

Example

This example creates a combination-box control.

COMBOBOX "", 101, 10, 10, 24, 50

 CONTAINER Statement
Syntax:

CONTAINER id, x, y, width, height [,style]

The CONTAINER statement creates a container control within a dialog window. The
container control is a visual component that holds objects. The CONTAINER
statement defines the identifier, position, dimensions, and attributes of a container
control. The predefined class for this control is WC_CONTAINER. If you do not
specify a style, the default style is WS_TABSTOP, WS_VISIBLE, and
CCS_SINGLESEL.

id Specifies the control identifier. This value is any integer -32768 through
32767, or a simple expression that evaluates to a value in that range.

x Specifies the x-coordinate of the lower-left corner of the control. This value
is any integer -32768 through 32767 or an expression consisting of integers
and the addition (+) or subtraction (-) operator. The coordinate is assumed
to be in dialog units and is relative to the origin of the dialog window
containing the container control.

y Specifies the y-coordinate of the lower-left corner of the control. This value
is any integer -32768 through 32767 or an expression consisting of integers
and the addition (+) or subtraction (-) operator. The coordinate is assumed
to be in dialog units and is relative to the origin of the dialog window
containing the container control.

width Specifies the width of the control. This value is any integer 0 through
65535, or an expression consisting of integers and the addition (+) or
subtraction (-) operator. The width is in n-character units.

height Specifies the height of the control. This value is any integer 0 through
65535, or an expression consisting of integers and the addition (+) or
subtraction (-) operator. The height is in 1/8-character units.

style Specifies the control styles. This value can be a combination of the styles
specified for WC_CONTAINER. Use the bitwise OR (|) operator to
combine styles.

720 IBM VisualAge�C++ for OS/2 User's Guide

CONTROL Statement

Comments

A CONTAINER statement is only used in a DIALOG or WINDOW statement.

Example

This example creates a container control at position (30,30) within the dialog window.
The container has a width of 70 character units and a height of 25 character units. Its
resource ID is 301. The default style CCS_SINGLESEL has been overridden by the
style specification CCS_MULTIPLESEL. The default styles WS_TABSTOP and
WS_GROUP are both in effect, though only the latter is specified.

#define IDC_CONTAINER 301
#define IDD_CONTAINERDLG 504
DIALOG "Container", IDD_CONTAINERDLG, 23, 6, 120, 280, FS_NOBYTEALIGN |

WS_VISIBLE, FCF_SYSMENU | FCF_TITLEBAR
 BEGIN

CONTAINER IDC_CONTAINER, 30, 30, 70, 200, CCS_MULTIPLESEL |
 WS_GROUP
 END

 CONTROL Statement
Syntax:

CONTROL text, id, x, y, width, height, class[, style]
[data-definitions]

 [BEGIN
 control-definition
 .
 .
 .
 END]

The CONTROL statement defines a control as belonging to the specified class. The
statement defines the position and dimensions of the control within the parent
window, as well as the control style. The CONTROL statement is most often used in
a DIALOG or WINDOW statement.

Typically, several CONTROL statements are used in each DIALOG statement, and
each CONTROL statement must have a unique id value. The optional BEGIN and
END statements enclose any CONTROL statements that may be given with the
control. CONTROL statements given in this manner represent child windows
belonging to the control created by the CONTROL statement.

text Specifies text that is displayed to the right of the control. This field must
contain zero or more characters enclosed in double quotation marks.
Character values must be in the range 1 through 255. If a double quotation

 Chapter 54. Resource Compiler721

CONTROL Statement

mark is required in the text, you must include the double quotation mark
twice. In the appropriate styles, a tilde (˜) character in the text indicates
that the following character is used as a mnemonic character for the control.
When the control is displayed, the tilde is not shown, but the mnemonic
character is underlined. The user can choose the control by pressing the
key corresponding to the underlined mnemonic character.

id Specifies the control identifier. This value must be an integer in the range
-32768 through 32767, or a simple expression that evaluates to a value in
that range.

x Specifies the x-coordinate of the lower-left corner of the control. This value
must be an integer in the range -32768 through 32767 or an expression
consisting of integers and the addition (+) or subtraction (-) operator. The
coordinate is assumed to be in dialog units and is relative to the origin of
the parent window.

y Specifies the y-coordinate of the lower-left corner of the control. This value
must be an integer in the range -32768 through 32767 or an expression
consisting of integers and the addition (+) or subtraction (-) operator. The
coordinate is assumed to be in dialog units and is relative to the origin of
the parent window.

width Specifies the width of the control. This value must be an integer in the
range 0 through 65535 or an expression consisting of integers and the
addition (+) or subtraction (-) operator. The value is in n-character units.

height Specifies the height of the control. This value must be an integer in the
range 0 through 65535 or an expression consisting of integers and the
addition (+) or subtraction (-) operator. The value is in 1/8-character units.

class Specifies the control class. This value can be one of the control classes
specified in the “Control Classes” table, in the Presentation Manager
Programming Reference, or the name of the control class, enclosed in
double quotation marks.

style Specifies the control style. This value can be a combination of control
styles. You can use the bitwise OR (|) operator to combine styles.

data-definitions
Specifies a CTLDATA and/or PRESPARAMS statement. These statements
define control and presentation data for the control. For more information,

see “CTLDATA Statement” on page 724 and “PRESPARAMS
Statement” on page 762.

control-definition
Specifies a CONTROL statement or any one of several predefined control
statements. These statements define the style, position, and dimensions of
controls in the control.

722 IBM VisualAge�C++ for OS/2 User's Guide

CTEXT Statement

Comments

The CONTROL statement can actually contain any combination of CONTROL,
DIALOG, and WINDOW statements. But typically, a CONTROL statement contains
no such statements.

Example

This example creates a pushbutton control with the WS_TABSTOP and
WS_VISIBLE styles.

CONTROL "OK", 101, 10, 10, 20, 50, WC_BUTTON, BS_PUSHBUTTON |
 WS_TABSTOP |
 WS_VISIBLE

 CTEXT Statement
Syntax:

CTEXT text, id, x, y, width, height[, style]

The CTEXT statement creates a centered-text control. The control is a simple
rectangle displaying the given text centered in the rectangle. The text is formatted
before it is displayed. Words that would extend past the end of a line are
automatically wrapped to the beginning of the next line. The CTEXT statement,
which you can use only in a DIALOG or WINDOW statement, defines the text,
identifier, dimensions, and attributes of the control. The predefined class for this
control is WC_STATIC. If you do not specify a style, the default style is SS_TEXT,
DT_CENTER, and WS_GROUP.

text Specifies text that is centered in the rectangular area of the control. This
field must contain zero or more characters enclosed in double quotation
marks. Character values must be in the range 1 through 255. If a double
quotation mark is required in the text, you must include the double
quotation mark twice.

id Specifies the control identifier. This value must be an integer in the range
-32768 through 32767, or a simple expression that evaluates to a value in
that range.

x Specifies the x-coordinate of the lower-left corner of the control. This value
must be an integer in the range -32768 through 32767 or an expression
consisting of integers and the addition (+) or subtraction (-) operator. The
coordinate is assumed to be in dialog units and is relative to the origin of
the dialog box, window, or control containing the specified control.

 Chapter 54. Resource Compiler723

CTLDATA Statement

y Specifies the y-coordinate of the lower-left corner of the control. This value
must be an integer in the range -32768 through 32767 or an expression
consisting of integers and the addition (+) or subtraction (-) operator. The
coordinate is assumed to be in dialog units and is relative to the origin of
the dialog box, window, or control containing the specified control.

width Specifies the width of the control. This value must be an integer in the
range 0 through 65 535 or an expression consisting of integers and the
addition (+) or subtraction (-) operator. The width is in n-character units.

height Specifies the height of the control. This value must be an integer in the
range 0 through 65 535 or an expression consisting of integers and the
addition (+) or subtraction (-) operator. The height is in 1/8-character units.

style Specifies the control styles. This value can be a combination of the styles
specified for WC_STATIC. You can use the bitwise OR (|) operator to
combine styles.

Example

This example creates a centered-text control that is labeled "Filename."

CTEXT "Filename", 101, 10, 10, 100, 100

 CTLDATA Statement
Syntax:

CTLDATA word-value[, word-value][...]

 CTLDATA string

 CTLDATA MENU
 BEGIN
 menuitem-definition
 .
 .
 .
 END

The CTLDATA statement defines control data for a custom dialog box, window, or
control. The statement has three basic forms to permit specifying a menu or
specifying data in words or characters. The data can be in any format, since only
your window procedure will use it. The window procedure of the dialog box,
window, or control receives this data when the item is created. It is up to the
window procedure to process the data.

word-value Specifies a 16-bit value. This value must be an integer in the range
-32768 through 32767. It must be in decimal notation.

724 IBM VisualAge�C++ for OS/2 User's Guide

CTLDATA Statement

string Specifies a string of 8-bit characters. This field must contain zero
or more characters enclosed in double quotation marks. Character
values must be in the range 1 through 255. If a double quotation
mark is required in the string, you must include the double
quotation mark twice.

menuitem-definition
Specifies a MENUITEM or SUBMENU statement. These
statements define the individual commands or submenus in the
given menu. For details about these statements, see
“MENUITEM Statement” on page 753 and “SUBMENU
Statement” on page 774.

Comments

CTLDATA is often used to supply data that controls the subsequent operation of the
custom window. For example, the CTLDATA statement may contain extended style
bits — that is, style bits designed specifically for your customized window.

You should reserve the CTLDATA statement for window classes that you create
yourself.

Example

This example creates a menu for the window created with the WINDOW statement.

 WINDOWTEMPLATE 1
 BEGIN

WINDOW "Sample", 1, 0, 0, 100, 100, "MYCLASS", 0, FCF_STANDARD
 CTLDATA MENU
 BEGIN

MENUITEM "Exit", 101
 END
 END

 Chapter 54. Resource Compiler725

DEFAULTICON Statement ¹DEFPUSHBUTTON Statement

 DEFAULTICON Statement
This statement installs the named icon file definition under the ICON Extended
Attribute of the program file. An icon with an icon-id of 1 is the default icon by
default, unless you supply a different icon.

Example DEFAULTICON filename.ico

 define Directive
Syntax:

define name value

The define directive assigns the given value to the specified name. All subsequent
occurrences of the name are replaced by the value.

name Specifies the name to be defined. This value is any combination of letters,
digits, and punctuation.

value Specifies any integer, character string, or line of text. This value can
contain another defined name, which creates a level of nested defines. You
are limited to 64 levels of nested defines.

Example

This example assigns values to the names "NONZERO" and "USERCLASS".

#define NONZERO 1
 #define USERCLASS "MyControlClass"

 DEFPUSHBUTTON Statement
Syntax:

DEFPUSHBUTTON text, id, x, y, width, height[, style]

The DEFPUSHBUTTON statement creates a default pushbutton control. The control
is a round-cornered rectangle containing the given text. The rectangle has a bold
outline to represent that it is the default response for the user. The control sends a
message to its parent window when the user chooses the control. The
DEFPUSHBUTTON statement, which you can use only in a DIALOG or WINDOW
statement, defines the text, identifier, dimensions, and attributes of the control. The
predefined class for this control is WC_BUTTON. If you do not specify a style, the
default style is BS_PUSHBUTTON, BS_DEFAULT, and WS_TABSTOP.

text Specifies text that is centered in the rectangular area of the control. This
field must contain zero or more characters enclosed in double quotation
marks. Character values must be in the range 1 through 255. If a double
quotation mark is required in the text, you must include the double
quotation mark twice. A tilde (˜) character in the text indicates that the

726 IBM VisualAge�C++ for OS/2 User's Guide

DEFPUSHBUTTON Statement

following character is used as a mnemonic character for the control. When
the control is displayed, the tilde is not shown, but the mnemonic character
is underlined. The user can choose the control by pressing the key
corresponding to the underlined mnemonic character.

id Specifies the control identifier. This value must be an integer in the range
-32768 through 32767, or a simple expression that evaluates to a value in
that range.

x Specifies the x-coordinate of the lower-left corner of the control. This value
must be an integer in the range -32768 through 32767 or an expression
consisting of integers and the addition (+) or subtraction (-) operator. The
coordinate is assumed to be in dialog units and is relative to the origin of
the dialog box, window, or control containing the specified control.

y Specifies the y-coordinate of the lower-left corner of the control. This value
must be an integer in the range -32768 through 32767 or an expression
consisting of integers and the addition (+) or subtraction (-) operator. The
coordinate is assumed to be in dialog units and is relative to the origin of
the dialog box, window, or control containing the specified control.

width Specifies the width of the control. This value must be an integer in the
range 0 through 65 535 or an expression consisting of integers and the
addition (+) or subtraction (-) operator. The width is in n-character units.

height Specifies the height of the control. This value must be an integer in the
range 0 through 65 535 or an expression consisting of integers and the
addition (+) or subtraction (-) operator. The height is in 1/8-character units.

style Specifies the control styles. This value can be a combination of the styles
specified for WC_BUTTON. You can use the bitwise OR (|) operator to
combine styles.

Example

This example creates a default pushbutton control that is labeled "Cancel."

DEFPUSHBUTTON "Cancel", 101, 10, 10, 24, 50

 Chapter 54. Resource Compiler727

DIALOG Statement

 DIALOG Statement
Syntax:

DIALOG text, id, x, y, width, height[, style[,
framectl]][data-definitions]
BEGIN
control-definition
 .
 .
 .
END

The DIALOG statement defines a window that an application can use to create dialog
boxes. The statement defines the position and dimensions of the dialog box on the
screen, as well as the dialog-box style. The DIALOG statement is most often used in
a DLGTEMPLATE statement.

Typically, you use only one DIALOG statement in each DLGTEMPLATE statement,
and the DIALOG statement contains at least one control definition.

text Specifies the dialog-box title if the style specifies a title bar. This field
must contain zero or more characters enclosed in double quotation
marks. Character values must be in the range 1 through 255. If a
double quotation mark is required in the title, you must include the
double quotation mark twice.

id Specifies the dialog-box identifier. This value must be an integer in
the range -32768 through 32767, or a simple expression that evaluates
to a value in that range.

x Specifies the x-coordinate of the lower-left corner of the dialog box.
This value must be an integer in the range -32768 through 32767 or an
expression consisting of integers and the addition (+) or subtraction (-)
operator. The value is in dialog units, but its exact meaning depends
on the dialog style. See the "Comments" section for details.

y Specifies the y-coordinate of the lower-left corner of the dialog box.
This value must be an integer in the range -32768 through 32767 or an
expression consisting of integers and the addition (+) or subtraction (-)
operator. The value is in dialog units, but its exact meaning depends
on the dialog style. See the "Comments" section for details.

width Specifies the width of the dialog box. This value must be an integer in
the range 0 through 65 535 or an expression consisting of integers and
the addition (+) or subtraction (-) operator. The value is in n-character
units.

728 IBM VisualAge�C++ for OS/2 User's Guide

DIALOG Statement

height Specifies the height of the dialog box. This value must be an integer
in the range 0 through 65 535 or an expression consisting of integers
and the addition (+) or subtraction (-) operator. The value is in
1/8-character units.

style Specifies the dialog-box style. This value can be any of the window,
dialog-box, or frame styles. You can use the bitwise OR (|) operator to
combine styles.

framectl Specifies the styles for frame controls belonging to the dialog box.
This value can be any of the frame-control styles specified in the
“Frame-Control Flags” table in the Presentation Manager Programming
Reference. You can use the bitwise OR (|) operator to combine styles.

data-definitions
Specifies a CTLDATA and/or PRESPARAMS statement. These
statements define control and presentation data for the dialog box. For
more information, see “CTLDATA Statement” on page 724 and
“PRESPARAMS Statement” on page 762.

control-definition
Specifies a CONTROL statement or any one of several predefined
control statements. These statements define the style, position, and
dimensions of controls in the dialog box.

Comments

The exact meaning of the coordinates depends on the style defined by the style field.
For dialog boxes with FS_SCREENALIGN style, the coordinates are relative to the
origin of the display screen. For dialog boxes with the style FS_MOUSEALIGN, the
coordinates are relative to the position of the mouse pointer at the time the dialog box
is created. For all other dialog boxes, the coordinates are relative to the origin of the
parent window.

The DIALOG statement can actually contain any combination of CONTROL,
DIALOG, and WINDOW statements. Typically, a DIALOG statement contains one
or more CONTROL statements.

Example

This example creates a dialog box that is labeled "Disk Error."

 Chapter 54. Resource Compiler729

DLGINCLUDE Statement

DLGTEMPLATE 1
BEGIN

DIALOG "Disk Error", 100, 10, 10, 300, 110
 BEGIN

CTEXT "Select One:", 1, 10, 80, 280, 12
RADIOBUTTON "Retry", 2, 75, 50, 60, 12
RADIOBUTTON "Abort", 3, 75, 30, 60, 12
RADIOBUTTON "Ignore", 4, 75, 10, 60, 12

 END
END

 DLGINCLUDE Statement
Syntax:

DLGINCLUDE id filename

The DLGINCLUDE statement adds the specified filename to the resource file. The
DLGINCLUDE statement is typically used to let the application access the definitions
file for the dialog box with the corresponding identifier. The file named by filename
must contain the define directives used by the dialog box.

You can provide any number of DLGINCLUDE statements in a resource script file,
but each must have a unique identifier.

id Specifies the dialog-box identifier. This value must be an integer in
the range -32768 through 32767, or a simple expression that evaluates
to a value in that range.

filename Specifies the name of the file containing the define directives. If the
file is not in the current directory, filename must be preceded by a full
path.

Example

This example includes the name of the definition file dlgdef.h. The dialog-box
identifier is 5.

DLGINCLUDE 5 \\INCLUDE\\DLGREF.H

730 IBM VisualAge�C++ for OS/2 User's Guide

DLGTEMPLATE Statement

 DLGTEMPLATE Statement
Syntax:

DLGTEMPLATE dialog-id [load-option] [mem-option][codepage]
BEGIN
dialog-definition
 .
 .
 .
END

The DLGTEMPLATE statement creates a dialog-box template. A dialog-box
template consists of a series of statements that define the identifier, load and memory
options, dialog-box dimensions, and controls in the dialog box. The dialog-box
template can be loaded from the executable file by using the WinLoadDlg function.

You can provide any number of dialog-box templates in a resource script file, but
each template must have a unique dialog-id value.

dialog-id Specifies the dialog-box identifier. This value must be an
integer in the range -32768 through 32767, or a simple
expression that evaluates to a value in that range.

load-option Specifies when the system loads the resource from the
executable file into memory. This value must be one of the
following:
PRELOAD System loads the resource when the

application starts.
LOADONCALL System loads the resource when the

application calls the WinLoadDlg function.
This is the default option.

mem-option Specifies how the system manages the resource when it is in
memory. This value must be one or more of the following:
FIXED System keeps the resource at a fixed memory

location.
MOVEABLE System moves the resource as necessary to

compact memory.
DISCARDABLE System discards the resource if it is no longer

needed.
The default setting is MOVEABLE and DISCARDABLE.

codepage Specifies a code-page value. For a list of valid code pages
see “CODEPAGE Statement” on page 718.

dialog-definition Specifies a DIALOG statement. The statement defines the
dimensions and style of the given dialog box. For details about
the statement, see “DIALOG Statement” on page 728.

 Chapter 54. Resource Compiler731

EDITTEXT Statement

Comments

A DLGTEMPLATE statement can actually contain DIALOG, CONTROL, and
WINDOW statements. Typically, you include only one DIALOG statement.

Example

This example uses a DLGTEMPLATE statement to create a dialog box.

DLGTEMPLATE ID_GETTIMER
BEGIN

DIALOG "Timer", 1, 10, 10, 100, 40
 BEGIN

LTEXT "Time (0 - 15):", 4, 8, 24, 72, 12
ENTRYFIELD "0", ID_TIME, 80, 28, 16, 8, ES_MARGIN
DEFPUSHBUTTON "Enter", ID_TIMEOK, 10, 6, 36, 12
PUSHBUTTON "Cancel", ID_TIMECANCEL, 52, 6, 40, 12

 END
END

 EDITTEXT Statement
Syntax:

EDITTEXT text, id, x, y, width, height [,style]

The EDITTEXT statement creates an entry-field control. This control is a rectangle
in which the user can type and edit text. The control displays a pointer when the user
selects the control. The user can then use the keyboard to enter text or edit the
existing text. Editing keys include the BACKSPACE and DELETE keys. By using
the mouse or the DIRECTION keys, the user can select the character or characters to
delete or select the place to insert new characters.

The EDITTEXT statement defines the text, identifier, dimensions, and attributes of a
control window. The predefined class for this control is WC_ENTRYFIELD. If you
do not specify a style, the default style is ES_AUTOSCROLL and WS_TABSTOP.

text Specifies text that is displayed in the rectangular area of the control. This
field must contain zero or more characters enclosed in double quotation
marks. Character values must be in the range 1 through 255. If a double
quotation mark is required in the text, you must include the double
quotation mark twice.

id Specifies the control identifier. This value is any integer -32768 through
32767, or a simple expression that evaluates to a value in that range.

732 IBM VisualAge�C++ for OS/2 User's Guide

elif Directive

x Specifies the x-coordinate of the lower-left corner of the control. This value
is any integer -32768 through 32767, or an expression consisting of integers
and the addition (+) or subtraction (-) operator. The coordinate is assumed
to be in dialog units and is relative to the origin of the dialog window.

y Specifies the y-coordinate of the lower-left corner of the control. This value
is any integer -32768 through 32767, or an expression consisting of integers
and the addition (+) or subtraction (-) operator. The coordinate is assumed
to be in dialog units and is relative to the origin of the dialog window.

width Specifies the width of the control. This value is any integer 0 through
65 535, or an expression consisting of integers and the addition (+) or
subtraction (-) operator. The width is in n-character units.

height Specifies the height of the control. This value is any integer 0 through
65 535, or an expression consisting of integers and the addition (+) or
subtraction (-) operator. The height is in 1/8-character units.

style Specifies the control styles. This value can be a combination of the styles
specified for WC_ENTRYFIELD. You can use the bitwise OR (|)
operator to combine styles.

Comments

The EDITTEXT control statement is identical to the ENTRYFIELD control statement.

Use the EDITTEXT statement only in a DIALOG or WINDOW statement.

Example

This example creates an entry-field control that is not labeled.

EDITTEXT "", 101, 10, 10, 24, 50

 elif Directive
Syntax:

elif constant-expression

The elif directive marks an optional clause of a conditional-compilation block defined
by a ifdef, ifndef, or if directive. The directive controls conditional compilation of
the resource file by checking the specified constant expression. If the constant
expression is nonzero, elif directs the compiler to continue processing statements up
to the next endif, else, or elif directive and then skip to the statement after endif. If
the constant expression is zero, elif directs the compiler to skip to the next endif, else,
or elif directive. You can use any number of elif directives in a conditional block.

 Chapter 54. Resource Compiler733

else Directive

constant-expression Specifies the expression to be checked. This value is a
defined name, an integer constant, or an expression
consisting of names, integers, and arithmetic and relational
operators.

Example

In this example, elif directs the compiler to process the second BITMAP statement
only if the value assigned to the name "Version" is less than 7. The elif directive
itself is processed only if Version is greater than or equal to 3.

#if Version < 3
BITMAP 1 errbox.bmp
#elif Version < 7
BITMAP 1 userbox.bmp
#endif

 else Directive
Syntax: else

The else directive marks an optional clause of a conditional-compilation block defined
by a ifdef, ifndef, or if directive. The else directive must be the last directive before
the endif directive.

This directive has no arguments.

Example

This example compiles the second BITMAP statement only if the name "DEBUG" is
not defined.

 #ifdef DEBUG
BITMAP 1 errbox.bmp

 #else
BITMAP 1 userbox.bmp

 #endif

734 IBM VisualAge�C++ for OS/2 User's Guide

endif Directive ¹ENTRYFIELD Statement

 endif Directive
Syntax: endif

The endif directive marks the end of a conditional-compilation block defined by a
ifdef directive. One endif is required for each if, ifdef, or ifndef directive.

This directive has no arguments.

 ENTRYFIELD Statement
ENTRYFIELD text, id, x, y, width, height , [style]

The ENTRYFIELD statement creates an entry-field control. This control is a
rectangle in which the user can type and edit text. The control displays a pointer
when the user selects the control. The user can then use the keyboard to enter text or
edit the existing text. Editing keys include the BACKSPACE and DELETE keys.
By using the mouse or the DIRECTION keys, the user can select the character or
characters to delete or select the place to insert new characters. The ENTRYFIELD
statement, which you can use only in a DIALOG or WINDOW statement, defines the
text, identifier, dimensions, and attributes of a control window. The predefined class
for this control is WC_ENTRYFIELD. If you do not specify a style, the default style
is ES_AUTOSCROLL and WS_TABSTOP.

text Specifies text that is displayed in the rectangular area of the control. This
field must contain zero or more characters enclosed in double quotation
marks. Character values must be in the range 1 through 255. If a double
quotation mark is required in the text, you must include the double
quotation mark twice.

id Specifies the control identifier. This value must be an integer in the range
-32768 through 32767, or a simple expression that evaluates to a value in
that range.

x Specifies the x-coordinate of the lower-left corner of the control. This value
must be an integer in the range -32768 through 32767 or an expression
consisting of integers and the addition (+) or subtraction (-) operator. The
coordinate is assumed to be in dialog units and is relative to the origin of
the dialog box, window, or control containing the specified control.

y Specifies the y-coordinate of the lower-left corner of the control. This value
must be an integer in the range -32768 through 32767 or an expression
consisting of integers and the addition (+) or subtraction (-) operator. The
coordinate is assumed to be in dialog units and is relative to the origin of
the dialog box, window, or control containing the specified control.

width Specifies the width of the control. This value must be an integer in the
range 0 through 65 535 or an expression consisting of integers and the
addition (+) or subtraction (-) operator. The width is in n-character units.

 Chapter 54. Resource Compiler735

FONT Statement

height Specifies the height of the control. This value must be an integer in the
range 0 through 65 535 or an expression consisting of integers and the
addition (+) or subtraction (-) operator. The height is in 1/8-character units.

style Specifies the control styles. This value can be a combination of the styles
specified for WC_ENTRYFIELD. You can use the bitwise OR (|) operator
to combine styles.

Example

This example creates an entry-field control that is not labeled.

ENTRYFIELD "", 101, 10, 10, 24, 50

 FONT Statement
Syntax:

FONT font-id [load-option][mem-option] [codepage] filename

The FONT statement defines a font resource for an application. A font resource,
typically created by using the OS/2 Font Editor, is a bit map defining the shape of the
individual characters in a character set. The FONT statement copies the font resource
from the file specified in the filename field and adds it to the other resources of the
application. A font resource can be loaded from the executable file when needed by
using the GpiLoadFonts function.

You can provide any number of FONT statements in a resource script file, but each
statement must specify a unique font-id value.

font-id Specifies the font-resource identifier. This value must be an
integer in the range -32768 through 32767, or a simple
expression that evaluates to a value in that range.

load-option Specifies when the system loads the resource from the
executable file into memory. This value must be one of the
following:
PRELOAD System loads the resource when the

application starts.
LOADONCALL System loads the resource when the

application calls the GpiLoadFonts function.
This is the default option.

mem-option Specifies how the system manages the resource when it is i
memory. This value must be one or more of the following:
FIXED System keeps the resource at a fixed memory

location.
MOVEABLE System moves the resource as necessary to

compact memory.

736 IBM VisualAge�C++ for OS/2 User's Guide

FRAME Statement

DISCARDABLE System discards the resource if it is no longer
needed.

The default setting is MOVEABLE and DISCARDABLE.
codepage Specifies a code page value. For a list of valid code pages

see “CODEPAGE Statement” on page 718.
filename Specifies the name of the file containing the font resource. If

the file is not in the current directory, filename must be
preceded by a full path.

Example

This example defines a font whose font identifier is 5. The font resource is copied
from the file cmroman.fon.

FONT 5 cmroman.fon

 FRAME Statement
Syntax:

FRAME text, id, x, y, width, height[, style[, framectl]]
 data-definitions
[BEGIN
window-definition
 .
 .
 .
END]

The FRAME statement defines a frame window. The statement defines the title,
identifier, position, and dimensions of the frame window, as well as the window style.
The FRAME statement is most often used in a WINDOWTEMPLATE statement, and
typically, only one FRAME statement is used. The FRAME statement, in turn,
typically contains at least one WINDOW statement that defines the client window
belonging to the frame window.

The frame window has no default style. You must use the framectl field to define
additional frame controls, such as a title bar and system menu, to be created when the
frame window is created. If the text field is not empty, the statement automatically
adds a title-bar control to the frame window, whether or not you specify the
FCF_TITLEBAR style. Frame controls are given default styles and control identifiers
depending on their class. For example, a title-bar control receives the identifier
FID_TITLEBAR.

text Specifies the title of the frame window. This field must contain zero
or more characters enclosed in double quotation marks. Character
values must be in the range 1 through 255. If a double quotation mark

 Chapter 54. Resource Compiler737

FRAME Statement

is required in the name, you must include the double quotation mark
twice.

id Specifies the window identifier. This value must be an integer in the
range -32768 through 32767, or a simple expression that evaluates to a
value in that range.

x Specifies the x-coordinate of the lower-left corner of the window. This
value must be an integer in the range -32768 through 32767 or an
expression consisting of integers and the addition (+) or subtraction (-)
operator. The coordinate is assumed to be in dialog units and is
relative to the origin of the dialog box, window, or control containing
the specified window.

y Specifies the y-coordinate of the lower-left corner of the window. This
value must be an integer in the range -32768 through 32767 or an
expression consisting of integers and the addition (+) or subtraction (-)
operator. The coordinate is assumed to be in dialog units and is
relative to the origin of the dialog box, window, or control containing
the specified window.

width Specifies the width of the window. This value must be an integer in
the range 0 through 65 535 or an expression consisting of integers and
the addition (+) or subtraction (-) operator. The width is in n-character
units.

height Specifies the height of the window. This value must be a integer in
the range 0 through 65 535 or an expression consisting of integers and
the addition (+) or subtraction (-) operator. The height is in
1/8-character units.

style Specifies the frame and window styles. This value can be a
combination of frame styles. You can use the bitwise OR (|) operator
to combine styles.

framectl Specifies the styles of frame controls belonging to the frame window.
This value can be a combination of the styles specified in the
“Frame-Control Styles” table in the Presentation Manager Programmers
Reference. You can use the bitwise OR (|) operator to combine styles.

data-definitions
Specifies a CTLDATA and/or PRESPARAMS statement. These
statements define control and presentation data for the frame window.
For more information, see “CTLDATA Statement” on page 724 and
“PRESPARAMS Statement” on page 762.

window-definition
Specifies a WINDOW statement or any one of several predefined
control statements. These statements define the style, position, and
dimensions of windows or controls in the frame window.

Comments

738 IBM VisualAge�C++ for OS/2 User's Guide

GROUPBOX Statement

The FRAME statement can actually contain any combination of CONTROL,
DIALOG, and WINDOW statements. Typically, a FRAME statement contains one
WINDOW statement.

Example

This example creates a standard frame window, with a title bar, a system menu,
minimize and maximize boxes, and a vertical scroll bar. The FRAME statement
contains a WINDOW statement defining the client window belonging to the frame
window.

WINDOWTEMPLATE 1
BEGIN

FRAME "My Window", 1, 10, 10, 320, 130, 0,
FCF_STANDARD | FCF_VERTSCROLL

 BEGIN
WINDOW "", FID_CLIENT, 0, 0, 0, 0, "MyClientClass"

 END
END

 GROUPBOX Statement
Syntax:

GROUPBOX text, id, x, y, width, height [, style]

The GROUPBOX statement creates a group-box control. The control is a rectangle
that groups other controls together. The controls are grouped by drawing a border
around them and displaying the given text in the upper-left corner. The GROUPBOX
statement, which you can use only in a DIALOG or WINDOW statement, defines the
text, identifier, dimensions, and attributes of a control window. The predefined class
for this control is WC_STATIC. If you do not specify a style, the default style is
SS_GROUPBOX and WS_TABSTOP.

text Specifies text that appears in the upper-left corner of the control. This field
must contain zero or more characters enclosed in double quotation marks.
Character values must be in the range 1 through 255. If a double quotation
mark is required in the text, you must include the double quotation mark
twice.

id Specifies the control identifier. This value must be an integer in the range
-32768 through 32767, or a simple expression that evaluates to a value in
that range.

x Specifies the x-coordinate of the lower-left corner of the control. This value
must be an integer in the range -32768 through 32767 or an expression
consisting of integers and the addition (+) or subtraction (-) operator. The
coordinate is assumed to be in dialog units and is relative to the origin of
the dialog box, window, or control containing the specified control.

 Chapter 54. Resource Compiler739

HELPITEM Statement

y Specifies the y-coordinate of the lower-left corner of the control. This value
must be an integer in the range -32768 through 32767 or an expression
consisting of integers and the addition (+) or subtraction (-) operator. The
coordinate is assumed to be in dialog units and is relative to the origin of
the dialog box, window, or control containing the specified control.

width Specifies the width of the control. This value must be an integer in the
range 0 through 65 535 or an expression consisting of integers and the
addition (+) or subtraction (-) operator. The width is in n-character units.

height Specifies the height of the control. This value must be an integer in the
range 0 through 65 535 or an expression consisting of integers and the
addition (+) or subtraction (-) operator. The height is in 1/8-character units.

style Specifies the control styles. This value can be a combination of the styles
specified for WC_STATIC. You can use the bitwise OR (|) operator to
combine styles.

Example

This example creates a group-box control that is labeled "Options."

GROUPBOX "Options", 101, 10, 10, 100, 100

 HELPITEM Statement
Syntax:

HELPITEM application-window-id, help-subtable-id, extended-helppanel-id

The HELPITEM statement defines the help items in a help table. The statement,
permitted only in a HELPTABLE statement, specifies the resource identifier of an
application window for which help is provided, and the resource identifiers of the
help subtable and extended help panel associated with the application window.

You can provide any number of HELPITEM statements in a HELPTABLE statement.
You should provide one HELPITEM statement for each application window for
which help is provided.

application-window-id Specifies the resource identifier of an application
window for which help is provided.

help-subtable-id Specifies the resource identifier of the help subtable
associated with the specified application window.

extended-helppanel-id Specifies the resource identifier of the extended help
panel associated with the specified application window.

Example

740 IBM VisualAge�C++ for OS/2 User's Guide

HELPSUBITEM Statement

This example defines a help item that associates a help subtable called
IDSUB_FILEMENU and an extended help panel called IDEXT_APPHLP with an
application window called IDWIN_FILEMENU.

HELPITEM IDWIN_FILEMENU, IDSUB_FILEMENU, IDEXT_APPHLP

 HELPSUBITEM Statement
Syntax:

HELPSUBITEM child-window-id, helppanel-id [, integer...]

The HELPSUBITEM statement defines the help subitems in a help subtable. This
statement, which is permitted only in a HELPSUBTABLE statement, specifies the
identifier of a child window for which help is provided, the identifier of the help
panel associated with the child window, and one or more optional, application-defined
integers.

You can provide any number of HELPSUBITEM statements in a HELPSUBTABLE
statement. You should provide one HELPSUBITEM statement for each child window
for which help is provided.

child-window-id Specifies the resource identifier of the child window for
which help is provided.

helppanel-id Specifies the resource identifier of the help panel associated
with the specified child window.

integer Specifies optional, application-defined integers. If you use
this field, you must include the SUBITEMSIZE statement in
the help subtable to specify the size, in words, of each help
subitem in the help subtable. For details about this statement,

 see “SUBITEMSIZE Statement” on page 773.

Example

This example defines a help subitem that associates a child window called
IDCLD_FILEMENU with a help panel called IDHP_FILEMENU.

HELPSUBITEM IDCLD_FILEMENU, IDHP_FILEMENU

 Chapter 54. Resource Compiler741

HELPSUBTABLE Statement

 HELPSUBTABLE Statement
Syntax:

HELPSUBTABLE helpsubtable-id
 SUBITEMSIZE size
BEGIN
helpsubitem-definition
 .
 .
 .
END

The HELPSUBTABLE statement defines the contents of a help-subtable resource. A
help-subtable resource contains a help-subitem entry for each item that can be
selected in an application window. Each of these items should be a child window of
the application window specified in the help-table resource. The help subtable should
contain a help subitem for each control, child window, and menu item in the
application window.

You can provide any number of HELPSUBTABLE statements in a resource script
file, but each statement must specify a unique helpsubtable-id value. You can also
provide any number of helpsubitem-definition statements in the help subtable. These
specify the child window for which help is provided, the help panel containing the
help text for the child window, and one or more application-defined integers.

If you include optional integers in the helpsubitem-definition statements, you must
also include a SUBITEMSIZE statement to specify the size, in words, of each help
subitem. All help subitems in a help subtable must be the same size. The default
size is two words per help subitem.

helpsubtable-id
Specifies the resource identifier of the help subtable. This value must be an
integer in the range -32768 through 32767, or a simple expression that
evaluates to a value in that range.

helpsubitem-definition
Specifies a HELPSUBITEM statement. A HELPSUBITEM statement specifies
a child window, the help panel associated with the child window, and one or
more optional, application-defined integers. For details about this statement,

see “HELPSUBITEM Statement” on page 741.

742 IBM VisualAge�C++ for OS/2 User's Guide

HELPTABLE Statement

Example

This example creates a help-subtable resource whose help-subtable identifier is
IDSUB_FILEMENU. Each HELPSUBITEM statement specifies a child window and
a help panel.

HELPSUBTABLE IDSUB_FILEMENU
BEGIN

HELPSUBITEM IDCLD_OPEN, IDPNL_OPEN
HELPSUBITEM IDCLD_SAVE, IDPNL_SAVE

END

 HELPTABLE Statement
Syntax:

HELPTABLE helptable-id
BEGIN
helpitem-definition
 .
 .
 .
END

The HELPTABLE statement defines the contents of a help-table resource. A
help-table resource contains a help-item entry for each application window, dialog
box, and message box for which help is provided.

You can provide any number of HELPTABLE statements in a resource script file, but
each statement must specify a unique helptable-id value. You can also provide any
number of helpitem-definition statements in the help table. These specify the
application windows for which help is provided, the help subtables associated with
each application window, and the extended help panels associated with each
application window.

helptable-id Specifies the resource identifier of the help table. This
value must be an integer in the range -32768 through
32767, or a simple expression that evaluates to a value in
that range.

helpitem-definition Specifies a HELPITEM statement. A HELPITEM
statement specifies an application window and the
associated help subtable and extended help panel. For
details about this statement, see “HELPITEM
Statement” on page 740.

 Chapter 54. Resource Compiler743

ICON Statement (Resource)

Example

This example creates a help-table resource whose help-table identifier is 1. Each
HELPITEM statement specifies an application window, a help subtable, and an
extended help panel.

HELPTABLE 1
BEGIN

HELPITEM IDWIN_FILEMENU, IDSUB_FILEMENU, IDEXT_APPHLP
HELPITEM IDWIN_EDITMENU, IDSUB_EDITMENU, IDEXT_APPHLP

END

ICON Statement (Resource)
Syntax:

ICON icon-id [load-option] [mem-option] [codepage] filename

This form of the ICON statement defines an icon resource for an application. An
icon resource, typically created by using Icon Editor, is a bit map defining the shape
of the icon to be used for a given application. The ICON statement copies the icon
resource from the file specified in the filename field and adds it to the application's
other resources. An icon resource can be loaded when creating a window by using
the WinCreateStdWindow function with the FS_ICON style.

You can provide any number of ICON statements in a resource script file, but each
statement must specify a unique icon-id value.

icon-id Specifies the icon-resource identifier. This value must be an
integer in the range -32768 through 32767, or a simple
expression that evaluates to a value in that range. A icon-id of
1 has a special meaning; for details, see the "Comment" section.

load-option Specifies when the system loads the resource from the
executable file into memory. This value must be one of the
following:
PRELOAD System loads the resource when the

application starts.
LOADONCALL System loads the resource when the

application calls the WinCreateStdWindow
function. This is the default option.

mem-option Specifies how the system manages the resource when it is in
memory. This value must be one or more of the following:
FIXED System keeps the resource at a fixed memory

location.
MOVEABLE System moves the resource as necessary to

compact memory.

744 IBM VisualAge�C++ for OS/2 User's Guide

ICON Statement (Control)

DISCARDABLE System discards the resource if it is no longer
needed.

The default setting is MOVEABLE and DISCARDABLE.
codepage Specifies a code page value. For a list of valid code pages

see “CODEPAGE Statement” on page 718.
filename Specifies the name of the file containing the icon resource. If

the file is not in the current directory, filename must be
preceded by a full path.

Comments

An icon with an icon-id of 1 is the default icon. The RC program writes the icon not
only to the resources in your executable file, but also as the .ICON extended attribute.
File Manager will display this icon next to the name of the executable file.

Example

This example defines an icon whose icon identifier is 11. The icon resource is copied
from the file custom.ico.

ICON 11 custom.ico

ICON Statement (Control)
Syntax:

ICON icon-id, id, x, y, width, height , [style]

This form of the ICON statement creates an icon control. This control is an icon
displayed in a dialog box. The ICON statement, which you can use only in a
DIALOG or WINDOW statement, defines the icon-resource identifier, icon-control
identifier, position, and attributes of a control window. The predefined class for this
control is WC_STATIC. If you do not specify a style, the default style is SS_ICON.
For the ICON statement, the width and height fields are ignored; the icon
automatically sizes itself.

icon-id Specifies the resource identifier of an icon that is defined elsewhere in
the resource file.

id Specifies the control identifier. This value must be an integer in the
range -32768 through 32767, or a simple expression that evaluates to a
value in that range.

x Specifies the x-coordinate of the lower-left corner of the control. This
value must be an integer in the range -32768 through 32767 or an
expression consisting of integers and the addition (+) or subtraction (-)
operator. The coordinate is assumed to be in dialog units and is relative
to the origin of the dialog box, window, or control containing the
specified control.

 Chapter 54. Resource Compiler745

if Directive

y Specifies the y-coordinate of the lower-left corner of the control. This
value must be an integer in the range -32768 through 32767 or an
expression consisting of integers and the addition (+) or subtraction (-)
operator. The coordinate is assumed to be in dialog units and is relative
to the origin of the dialog box, window, or control containing the
specified control.

width Specifies a reserved value. Can be set to zero.
height Specifies a reserved value. Can be set to zero.
style Specifies the control styles. This value can be a combination of the

styles specified for WC_STATIC. You can use the bitwise OR (|)
operator to combine styles.

Example

This example creates an icon control whose icon identifier is 99.

ICON 99, 101, 10, 10, 0, 0

 if Directive
Syntax:

if constant-expression

The if directive controls conditional compilation of the resource file by checking the
specified constant expression. If the constant expression is nonzero, if directs the
compiler to continue processing statements up to the next endif, else, or elif directive
and then skip to the statement after the endif directive. If the constant expression is
zero, if directs the compiler to skip to the next endif, else, or elif directive.

constant-expression Specifies the expression to be checked. This value is a
defined name, an integer constant, or an expression
consisting of names, integers, and arithmetic and relational
operators.

Example

This example compiles the BITMAP statement only if the value assigned to the name
"Version" is less than 3.

#if Version < 3
BITMAP 1 errbox.bmp
#endif

746 IBM VisualAge�C++ for OS/2 User's Guide

ifdef Directive ¹ifndef Directive

 ifdef Directive
Syntax: ifdef name

The ifdef directive controls conditional compilation of the resource file by checking
the specified name. If the name has been defined by using a define directive or by
using the -d command-line option of rc, ifdef directs the compiler to continue with
the statement immediately after the ifdef directive. If the name has not been defined,
ifdef directs the compiler to skip all statements up to the next endif directive.

name Specifies the name to be checked by the directive.

Example

This example compiles the BITMAP statement only if the name "Debug" is defined.

#ifdef Debug
BITMAP 1 errbox.bmp
#endif

 ifndef Directive
Syntax: ifndef name

The ifndef directive controls conditional compilation of the resource file by checking
the specified name. If the name has not been defined or if its definition has been
removed by using the undef directive, ifndef directs the compiler to continue
processing statements up to the next endif, else, or elif directive and then skip to the
statement after the endif directive. If the name is defined, ifndef directs the compiler
to skip to the next endif, else, or elif directive.

name Specifies the name to be checked by the directive.

Example

This example compiles the BITMAP statement only if the name "Optimize" is not
defined.

#ifndef Optimize
BITMAP 1 errbox.bmp
#endif

 Chapter 54. Resource Compiler747

include Directive

 include Directive
Syntax:

include filename

The include directive causes RC to process the file specified in the filename field.
This file should be a header file that defines the constants used in the resource script
file. Only the define directives in the specified file are processed; all other statements
are ignored.

filename Specifies the OS/2 name of the file to be included. This value must be
an ASCII string enclosed either in double quotation marks (if the file is
in the current directory) or in less-than and greater-than characters (<>)
(if the file is in the directory specified by -i command-line options or
by the INCLUDE environment variable). You must give a full path
enclosed in double quotation marks if the file is not in the current
directory or in the directory specified by -i command-line
 options or by the INCLUDE environment variable.

Comments

The filename field is handled as a C string. Therefore, you must include two
backslashes wherever one is required in the path. (As an alternative, you can use a
single forward slash (/) instead of two backslashes.)

Example

This example processes the header files<os2.h> and <HEADERS\MYDEFS.H> while
compiling the resource script file.

#include <os2.h>
#include "headers\\\\mydefs.h"

748 IBM VisualAge�C++ for OS/2 User's Guide

LISTBOX Statement

 LISTBOX Statement
Syntax:

LISTBOX id, x, y, width, height[, style]

The LISTBOX statement creates commonly used controls for a dialog box or
window. The control is a rectangle containing a list of user-selectable strings, such as
filenames.

The LISTBOX statement, which you can use only in a DIALOG or WINDOW
statement, defines the identifier, dimensions, and attributes of a control window. The
predefined class for this control is WC_LISTBOX. If you do not specify a style, the
default style is WS_TABSTOP.

id Specifies the control identifier. This value must be an integer in the range
-32768 through 32767, or a simple expression that evaluates to a value in
that range.

x Specifies the x-coordinate of the lower-left corner of the control. This value
must be an integer in the range -32768 through 32767 or an expression
consisting of integers and the addition (+) or subtraction (-) operator. The
coordinate is assumed to be in dialog units and is relative to the origin of
the dialog box, window, or control containing the specified control.

y Specifies the y-coordinate of the lower-left corner of the control. This value
must be an integer in the range -32768 through 32767 or an expression
consisting of integers and the addition (+) or subtraction (-) operator. The
coordinate is assumed to be in dialog units and is relative to the origin of
the dialog box, window, or control containing the specified control.

width Specifies the width of the control. This value must be an integer in the
range 0 through 65 535 or an expression consisting of integers and the
addition (+) or subtraction (-) operator. The width is in n-character units.

height Specifies the height of the control. This value must be an integer in the
range 0 through 65 535 or an expression consisting of integers and the
addition (+) or subtraction (-) operator. The height is in 1/8-character units.

style Specifies the control styles. This value can be a combination of the styles
specified for WC_LISTBOX. You can use the bitwise OR (|) operator to
combine styles.

Example

This example creates a list-box control whose identifier is 101.

LISTBOX 101, 10, 10, 100, 100

 Chapter 54. Resource Compiler749

LTEXT Statement

 LTEXT Statement
Syntax:

LTEXT text, id, x, y, width, height[, style]

The LTEXT statement creates a left-aligned text control. The control is a simple
rectangle displaying the given text left-aligned in the rectangle. The text is formatted
before it is displayed. Words that would extend past the end of a line are
automatically wrapped to the beginning of the next line. The LTEXT statement,
which you can use only in a DIALOG or WINDOW statement, defines the text,
identifier, dimensions, and attributes of the control. The predefined class for this
control is WC_STATIC. If you do not specify a style, the default style is SS_TEXT,
DT_LEFT, and WS_GROUP.

text Specifies text that is left-aligned in the rectangular area of the control. This
field must contain zero or more characters enclosed in double quotation
marks. Character values must be in the range 1 through 255. If a double
quotation mark is required in the text, you must include the double
quotation mark twice.

id Specifies the control identifier. This value must be an integer in the range
-32768 through 32767, or a simple expression that evaluates to a value in
that range.

x Specifies the x-coordinate of the lower-left corner of the control. This value
must be an integer in the range -32768 through 32767 or an expression
consisting of integers and the addition (+) or subtraction (-) operator. The
coordinate is assumed to be in dialog units and is relative to the origin of
the dialog box, window, or control containing the specified control.

y Specifies the y-coordinate of the lower-left corner of the control. This value
must be an integer in the range -32768 through 32767 or an expression
consisting of integers and the addition (+) or subtraction (-) operator. The
coordinate is assumed to be in dialog units and is relative to the origin of
the dialog box, window, or control containing the specified control.

width Specifies the width of the control. This value must be an integer in the
range 0 through 65 535 or an expression consisting of integers and the
addition (+) or subtraction (-) operator. The width is in n-character units.

height Specifies the height of the control. This value must be an integer in the
range 0 through 65 535 or an expression consisting of integers and the
addition (+) or subtraction (-) operator. The height is in 1/8-character units.

style Specifies the control styles. This value can be a combination of the styles
specified for WC_STATIC. You can use the bitwise OR (|) operator to
combine styles.

750 IBM VisualAge�C++ for OS/2 User's Guide

MENU Statement

Example

This example creates a left-aligned text control that is labeled "Filename."

LTEXT "Filename", 101, 10, 10, 100, 100

 MENU Statement
Syntax:

MENU menu-id [load-option][mem-option][codepage]
BEGIN
menuitem-definition
 .
 .
 .
END

The MENU statement defines the contents of a menu resource. A menu resource is a
collection of information that defines the appearance and function of an application
menu. A menu is a special input tool that lets a user choose commands from a list of
command names. A menu resource can be loaded from the executable file when
needed by using the WinLoadMenu function.

You can provide any number of MENU statements in a resource script file, but each
statement must specify a unique menu-id value. You can provide any number of
menuitem-definition statements in the menu. These define the submenus and menu
items (commands) in the menu. The order of the statements defines the order of the
menu items.

menu-id Specifies the menu-resource identifier. This value must be
an integer in the range -32768 through 32767, or a simple
expression that evaluates to a value in that range.

load-option Specifies when the system loads the resource from the
executable file into memory. This value must be one of
the following:
PRELOAD System loads the resource when the

application starts.
LOADONCALL System loads the resource when the

application calls the WinLoadMenu
function. This is the default option.

mem-option Specifies how the system manages the resource when it is
in memory. This value must be one or more of the
following:
FIXED System keeps the resource at a fixed

memory location.

 Chapter 54. Resource Compiler751

MENU Statement

MOVEABLE System moves the resource as necessary
to compact memory.

DISCARDABLE System discards the resource if it is no
longer needed.

The default setting is MOVEABLE and DISCARDABLE.
codepage Specifies a codepage value. For a list of valid code pages

see “CODEPAGE Statement” on page 718.
menuitem-definition Specifies a PRESPARAMS, MENUITEM, or SUBMENU

statement. You can use one or more PRESPARAMS
statements to control the appearance of a menu, such as the
font and the foreground and background colors. If used,
PRESPARAMS statements must be the first statements
following the BEGIN keyword. For details about the
PRESPARAMS statement, see “PRESPARAMS
Statement” on page 762.

MENUITEM and SUBMENU statements define the
individual commands or submenus in the given menu. For
details about these statements, see “MENUITEM
Statement” on page 753 and “SUBMENU Statement” on
page 774.

Example

This example creates a menu resource whose menu identifier is 1. The menu
contains a menu item named Alpha and a submenu named Beta. The submenu
contains two menu items, Item 1 and Item 2.

MENU 1
BEGIN

MENUITEM "Alpha", 100
SUBMENU "Beta", 101

 BEGIN
MENUITEM "Item 1", 200
MENUITEM "Item 2", 201, , MIA_CHECKED

 END
END

752 IBM VisualAge�C++ for OS/2 User's Guide

MENUITEM Statement

 MENUITEM Statement
Syntax:

MENUITEM text, menu-id[, menuitem-style][,menuitem-attribute]

MENUITEM SEPARATOR

The MENUITEM statement creates a menu item for a menu. The statement,
permitted only in a MENU or SUBMENU statement, defines the text, identifier, and
attributes of a menu item. The system displays the text when it displays the
corresponding menu. If the user chooses the menu item, the system generates a
WM_COMMAND message that includes the specified menu-item identifier and sends
it to the window owning the menu.

You can provide any number of MENUITEM statements, but each must have a
unique menu-id value.

The alternative form of the MENUITEM statement, MENUITEM SEPARATOR,
creates a menu separator. A menu separator is a horizontal dividing bar between two
menu items in a submenu. The separator is not active — that is, the user cannot
choose it, it has no text associated with it, and it has no identifier.

text Specifies the text of the menu item. This field must contain
zero or more characters enclosed in double quotation marks.
Character values must be in the range 1 through 255. If a
double quotation mark is required in the string, you must
include the double quotation mark twice. The tilde character (˜
) and the \t and \a character combinations have special
meanings in the string; for details, see the "Comments" section.

If the menuitem-style field is MIS_BITMAP, item-name must
be a bit-map identifier instead of a name. The bit-map
identifier must have been previously defined using a BITMAP
statement, must be preceded by the \b character, and must be
enclosed in double quotation marks.

menu-id Specifies the menu-item identifier. This value must be an
integer in the range -32768 through 32767, or a simple
expression that evaluates to a value in that range. Each
identifier must be unique.

menuitem-style

 Chapter 54. Resource Compiler753

MENUITEM Statement

Specifies the menu-item style. This value can be a combination
of the following:
MIS_BITMAP Specifies that item-name is a bit map

identifier.
MIS_BREAK Specifies that the menu has multiple

columns of items in one pull-down
menu or multiple lines of menus in the
top-level menu.

MIS_BREAKSEPARATOR
Specifies that the menu has a vertical
line between the columns in a
pull-down menu.

MIS_BUTTONSEPARATOR
Specifies that the user can activate the
menu item only by using the mouse.
The text is centered in the item, rather
than left justified. This option is used
for the Help item on the right side of
the menu bar.

MIS_HELP Specifies that the menu item generates
a WM_HELP message.

MIS_OWNERDRAW Specifies that the menu item is drawn
by the owner window.

MIS_SEPARATOR Specifies that the menu item is a menu
separator. Although the item-name and
menu-id fields are ignored, you must
still give values if you specify this
style.

MIS_STATIC Specifies that the user cannot choose
the menu item.

MIS_SUBMENU Specifies that the MENUITEM
statement is to be treated as a
SUBMENU statement. When you
specify this option, you must follow the
MENUITEM statement with a BEGIN
and END clause, as in a SUBMENU
statement. You may include a
PRESPARAMS statement immediately
after the BEGIN keyword.

MIS_SYSCOMMAND
Specifies that the menu item generates
a WM_SYSCOMMAND message.

754 IBM VisualAge�C++ for OS/2 User's Guide

MENUITEM Statement

MIS_TEXT Specifies that item-name is a character
string. This is the default option.

menuitem-attribute Specifies the menu-item attributes. This value can be a
combination of the following:
MIA_CHECKED Places a check mark next to the

menu-item name.
MIA_DISABLED Disables the menu item, preventing the

system from generating a message
when the user chooses the command.

MIA_FRAMED Places a frame (heavy border) around
the menu item.

MIA_HILITED Places a highlight on the menu-item
name when it is displayed, by inverting
the name and background.

MIA_NODISMISS Causes a submenu or menu item to
remain displayed after the user chooses
an item.

Comments

You can use the \t or \a character combination in any item name. The \t character
inserts a tab when the name is displayed and is typically used to separate the
menu-item name from the name of an accelerator key. The \a character aligns to the
right all text that follows it. These characters are intended to be used for menu items
in submenus only. The width of the displayed submenu is always adjusted so that
there is at least one space (and usually more) between any pieces of text separated by
a \t or a \a. (When compiling the menu resource, the compiler stores the \t and \a
characters as control characters. For example, the \t is stored as 0x09.)

A tilde (˜) character in the item name indicates that the following character is used
as a mnemonic character for the item. When the menu is displayed, the tilde is not
shown, but the mnemonic character is underlined. The user can choose the menu
item by pressing the key corresponding to the underlined mnemonic character.

Example

This example creates a menu item named Alpha. The item identifier is 101.

MENUITEM "Alpha", 101

 Chapter 54. Resource Compiler755

MESSAGETABLE Statement

This example creates a menu item named Beta. The item identifier is 102. The
menu item has a text style and a checked attribute.

MENUITEM "Beta", 102, MIS_TEXT, MIA_CHECKED

This example creates a menu separator between menu items named Gamma and
Delta.

MENUITEM "Gamma", 103
MENUITEM SEPARATOR
MENUITEM "Delta", 104

This example creates a menu item that has a bit map instead of a name. The bit-map
identifier, 1, is first defined using a BITMAP statement. The identifier for the menu
item is 301. Note that a sign must be placed in front of the bit map identifier in the
MENUITEM statement.

BITMAP 1 mybitmap.bmp

MENUITEM "#1", 301, MIS_BITMAP

 MESSAGETABLE Statement
Syntax:

MESSAGETABLE [load-option] [mem-option][codepage]
BEGIN
string-id string-definition
 .
 .
 .
END

The MESSAGETABLE statement creates one or more string resources for an
application. A string resource is a null-terminated character string that has a unique
string identifier. A string resource can be loaded from the executable file when
needed by using the DosGetResource function with the RT_MESSAGE resource type.
RT_MESSAGE resources are bundled together in groups of 16, with any missing IDs
replaced with zero length strings. Each group, or bundle, is assigned a unique
sequential ID. The resource string ID is not necessarily the same as the ID specified
when using DosGetResource. The formula for calculating the ID of the resource
bundle, for use in DosGetResource, is as follows:

bundle ID = (id / 16) +1,

where id is the string ID assigned in the RC file.

Thus, bundle 1 contains strings 0 to 15, bundle 2 contains strings 16 to 31, and so on.
Once the address of the bundle has been returned by DosGetResource (using the

756 IBM VisualAge�C++ for OS/2 User's Guide

MESSAGETABLE Statement

calculated ID), the buffer can be parsed to locate the particular string within the
bundle. The number of the string is calculated by the formula:

string = id % 16

(string = remainder for id/16).

The buffer returned consists of the CodePage of the strings in the first USHORT,
followed by the 16 strings in the bundle. The first BYTE of each string is the length
of the string (including the null terminator), followed by the string and the terminator.
A zero length string is represented by two bytes: 01 (string length) followed by the
null terminator.

You can provide any number of MESSAGETABLE statements in a resource script
file. The compiler treats all the strings from the various MESSAGETABLE
statements as if they belonged to a single statement. This means that no two strings
in a resource script file can have the same string identifier.

Although the MESSAGETABLE and STRINGTABLE statements are nearly identical,
most applications use the STRINGTABLE statement instead of the
MESSAGETABLE statement to create string resources.

load-option Specifies when the system loads the resource from the executable
file into memory. This value must be one of the following:
PRELOAD System loads the resource when the application

starts.
LOADONCALL System loads the resource when the application

calls the DosGetResource or DosGetResource2
function. This is the default option.

mem-option Specifies how the system manages the resource when it is in
memory. This value must be one or more of the following:
FIXED System keeps the resource at a fixed memory

location.
MOVEABLE System moves the resource as necessary to

compact memory.
DISCARDABLE System discards the resource if it is no longer

needed.
The default setting is MOVEABLE and DISCARDABLE.

codepage Specifies a code page value. See “CODEPAGE Statement” on
page 718 for a list of valid code pages.

string-id Specifies the character-string identifier. This value must be an
integer in the range -32768 through 32767, or a simple expression
that evaluates to a value in that range. The value can be specified
in decimal or hexadecimal notation. Each string identifier in a
resource script file must be unique.

 Chapter 54. Resource Compiler757

MLE Statement

string-definition Specifies a character string. This field must contain zero or more
characters enclosed in double quotation marks. Character values
must be in the range 1 through 255. If a double quotation mark is
required in the string, you must provide the double quotation mark
twice.

Comments

You can continue a string on multiple lines by terminating the line with a backslash
(\) or by terminating the line with a double quotation mark (") and then starting the
next line with a double quotation mark.

Example

This example creates two string resources whose string identifiers are 1 and 2.

MESSAGETABLE
BEGIN

1 "Filename not found"
2 "Cannot open file for reading"

END

 MLE Statement
Syntax:

MLE text, id, x, y, width, height[, style]

The MLE statement creates a multiple-line entry-field control. The control is a
rectangle in which the user can type and edit multiple lines of text. The control
displays a pointer when the user selects it. The user can then use the keyboard to
enter text or edit the existing text. Editing keys include the BACKSPACE and
DELETE keys. By using the mouse or the DIRECTION keys, the user can select the
character or characters to delete or select the place to insert new characters. The
MLE statement, which you can use only in a DIALOG or WINDOW statement,
defines the text, identifier, dimensions, and attributes of a control window. The
predefined class for this control is WC_MLE. If you do not specify a style, the
default style is MLS_BORDER, WS_GROUP, and WS_TABSTOP.

text Specifies text that is displayed in the rectangular area of the control. If the
MLS_READONLY style is not specified, the user can edit the text. This
field must contain zero or more characters enclosed in double quotation
marks. Character values must be in the range 1 through 255. If a double
quotation mark is required in the text, you must include the double
quotation mark twice.

758 IBM VisualAge�C++ for OS/2 User's Guide

NOTEBOOK Statement

id Specifies the control identifier. This value must be an integer in the range
-32768 through 32767, or a simple expression that evaluates to a value in
that range.

x Specifies the x-coordinate of the lower-left corner of the control. This value
must be an integer in the range -32768 through 32767 or an expression
consisting of integers and the addition (+) or subtraction (-) operator. The
coordinate is assumed to be in dialog units and is relative to the origin of
the dialog box, window, or control containing the specified control.

y Specifies the y-coordinate of the lower-left corner of the control. This value
must be an integer in the range -32768 through 32767 or an expression
consisting of integers and the addition (+) or subtraction (-) operator. The
coordinate is assumed to be in dialog units and is relative to the origin of
the dialog box, window, or control containing the specified control.

width Specifies the width of the control. This value must be an integer in the
range 0 through 65 535 or an expression consisting of integers and the
addition (+) or subtraction (-) operator. The width is in n-character units.

height Specifies the height of the control. This value must be an integer in the
range 0 through 65 535 or an expression consisting of integers and the
addition (+) or subtraction (-) operator. The height is in 1/8-character units.

style Specifies the control styles. This value can be a combination of the styles
specified for WC_MLE. You can use the bitwise OR (|) operator to
combine styles.

Example

This example creates a multiple-line entry-field control that is not labeled.

MLE "", 101, 10, 10, 50, 100

 NOTEBOOK Statement
Syntax:

NOTEBOOK id, x, y, width, height[, style]

The NOTEBOOK statement creates a notebook control within the dialog window.
This control is used to organize information on individual pages so that it can be
located and displayed easily. The NOTEBOOK statement defines the identifier,
position, dimensions, and attributes of a notebook control. The predefined class for
this control is WC_NOTEBOOK. If you do not specify a style, the default style is
WS_TABSTOP and WS_VISIBLE.

id Specifies the control identifier. The value is any integer -32768 through
32767, or a simple expression that evaluates to a value in that range.

 Chapter 54. Resource Compiler759

NOTEBOOK Statement

x Specifies the x-coordinate of the lower-left corner of the control. The value
is any integer -32768 through 32767 or an expression consisting of integers
and the addition (+) or subtraction (-) operator. The coordinate is assumed
to be in dialog units and is relative to the origin of the dialog window.

y Specifies the y-coordinate of the lower-left corner of the control. The value
is any integer -32768 through 32767 or an expression consisting of integers
and the addition (+) or subtraction (-) operator. The coordinate is assumed
to be in dialog units and is relative to the origin of the dialog window.

width Specifies the width of the control. The value is any integer 0 through
65 535 or an expression consisting of integers and the addition (+) or
subtraction (-) operator. The width is in n-character units.

height Specifies the height of the control. The value is any integer 0 through
65535 or an expression consisting of integers and the addition (+) or
subtraction (-) operator. The height is in 1/8-character units.

style Specifies the control styles. This value can be a combination of the styles
specified for WC_NOTEBOOK. You can use the bitwise OR (|) operator
to combine styles.

Comments

The NOTEBOOK statement is used only in a DIALOG or WINDOW statement.

Example

This example creates a notebook control at position (20, 20) within the dialog
window. The notebook has a width of 200 character units and a height of 50
character units. Its resource ID is 201. The tabs style BKS_ROUNDEDTABS
specification overrides the notebook default style of square tabs. The default styles
WS_TABSTOP and WS_GROUP are both in effect, though only the latter is
specified.

#define IDC_NOTEBOOK 201
#define IDD_NOTEBOOKDLG 503
DIALOG "Notebook", IDD_NOTEBOOKDLG, 11, 11, 420, 420, FS_NOBYTEALIGN |

WS_VISIBLE, FCF_SYSMENU | FCF_TITLEBAR
 BEGIN

NOTEBOOK IDC_NOTEBOOK, 20, 20, 200, 400, BKS_ROUNDEDTABS | WS_GROUP
 END

760 IBM VisualAge�C++ for OS/2 User's Guide

POINTER Statement

 POINTER Statement
Syntax:

POINTER pointer-id [load-option] [mem-option]
[codepage] filename

The POINTER statement defines a pointer resource for an application. A pointer
resource, typically created by using the OS/2 Icon Editor, is a bit map defining the
shape of the mouse pointer on the screen. The POINTER statement copies the
pointer resource from the file specified in the filename field and adds it to the
application's other resources. A pointer resource can be loaded from the executable
file when needed by using the WinLoadPointer function.

You can provide any number of POINTER statements in a resource script file, but
each statement must specify a unique pointer-id value.

pointer-id Specifies the pointer-resource identifier. This value must be an
integer in the range -32768 through 32767, or a simple
expression that evaluates to a value in that range.

load-option Specifies when the system loads the resource from the
executable file into memory. This value must be one of the
following:
PRELOAD System loads the resource when the

application starts.
LOADONCALL System loads the resource when the

application calls the WinLoadPointer function.
This is the default option.

mem-option Specifies how the system manages the resource when it is in
memory. This value must be one or more of the following:
FIXED System keeps the resource at a fixed memory

location.
MOVEABLE System moves the resource as necessary to

compact memory.
DISCARDABLE System discards the resource if it is no longer

needed.
The default setting is MOVEABLE and DISCARDABLE.

codepage Specifies a code page value. See “CODEPAGE Statement”
on page 718 for a list of valid code pages.

filename Specifies the name of the file containing the pointer resource.
If the file is not in the current directory, filename must be
preceded by a full path.

Example

 Chapter 54. Resource Compiler761

PRESPARAMS Statement

This example defines a pointer whose pointer identifier is 10. The pointer resource is
copied from the file custom.cur.

POINTER 10 custom.cur

 PRESPARAMS Statement
Syntax:

PRESPARAMS presparam, value, presparam, value, ...

The PRESPARAMS statement defines presentation fields that customize a ;i2
refid=control.customizing presentation fields dialog box, menu, window, or control.
PRESPARAMS data is a series of types and values. The window procedure of the
dialog box, menu, window or control receives and processes this data when the item
is created. The data for custom controls can be in any format.

presparam Specifies a presentation-field type.
value Specifies the presentation-field value.

Comments

PRESPARAMS is often used to supply data to control the appearance of the
customized window when it is first created. For example, the PRESPARAMS
statement may specify the colors to be used in the window.

Example

This example creates a menu resource with a menu identifier of 1. The
PRESPARAMS statement specifies that the following three menu items be displayed
in the 12-point Helvetica font.

MENU 1
BEGIN

PRESPARAMS PP_FONTNAMESIZE, "12.Helv"
MENUITEM "New", 100
MENUITEM "Open", 101
MENUITEM "Save", 102

END

762 IBM VisualAge�C++ for OS/2 User's Guide

PUSHBUTTON Statement

 PUSHBUTTON Statement
Syntax:

PUSHBUTTON text, id, x, y, width, height[, style]

The PUSHBUTTON statement creates a pushbutton control. The control is a
round-cornered rectangle containing the given text. The control sends a message to
its parent whenever the user chooses the control. The PUSHBUTTON statement,
which you can use only in a DIALOG or WINDOW statement, defines the text,
identifier, dimensions, and attributes of a control window. The predefined class for
this control is WC_BUTTON. If you do not specify a style, the default style is
BS_PUSHBUTTON and WS_TABSTOP.

text Specifies text that is centered in the rectangular area of the control. This
field must contain zero or more characters enclosed in double quotation
marks. Character values must be in the range 1 through 255. If a double
quotation mark is required in the text, you must include the double
quotation mark twice. A tilde (˜) character in the text indicates that the
following character is used as a mnemonic character for the control. When
the control is displayed, the tilde is not shown, but the mnemonic character
is underlined. The user can choose the control by pressing the key
corresponding to the underlined mnemonic character.

id Specifies the control identifier. This value must be an integer in the range
-32768 through 32767, or a simple expression that evaluates to a value in
that range.

x Specifies the x-coordinate of the lower-left corner of the control. This value
must be an integer in the range -32768 through 32767 or an expression
consisting of integers and the addition (+) or subtraction (-) operator. The
coordinate is assumed to be in dialog units and is relative to the origin of
the dialog box, window, or control containing the specified control.

y Specifies the y-coordinate of the lower-left corner of the control. This value
must be an integer in the range -32768 through 32767 or an expression
consisting of integers and the addition (+) or subtraction (-) operator. The
coordinate is assumed to be in dialog units and is relative to the origin of
the dialog box, window, or control containing the specified control.

width Specifies the width of the control. This value must be an integer in the
range 0 through 65 535 or an expression consisting of integers and the
addition (+) or subtraction (-) operator. The width is in n-character units.

height Specifies the height of the control. This value must be an integer in the
range 0 through 65 535 or an expression consisting of integers and the
addition (+) or subtraction (-) operator. The height is in 1/8-character units.

style Specifies the control styles. This value can be a combination of the styles
specified for WC_BUTTON. You can use the bitwise OR (|) operator to
combine styles.

 Chapter 54. Resource Compiler763

RADIOBUTTON Statement

Example

This example creates a pushbutton control that is labeled "OK."

PUSHBUTTON "OK", 101, 10, 10, 100, 100

 RADIOBUTTON Statement
Syntax:

RADIOBUTTON text, id, x, y, width, height[, style]

The RADIOBUTTON statement creates a radio-button control. The control is a small
circle that has the given text displayed to its right. The control highlights the circle
and sends a message to its parent window when the user selects the button. The
control removes the highlight and sends a message when the button is next selected.
The RADIOBUTTON statement, which you can use only in a DIALOG or WINDOW
statement, defines the text, identifier, dimensions, and attributes of a control window.
The predefined class for this control is WC_BUTTON. If you do not specify a style,
the default style is BS_RADIOBUTTON.

text Specifies text that is displayed to the right of the control. This field must
contain zero or more characters enclosed in double quotation marks.
Character values must be in the range 1 through 255. If a double quotation
mark is required in the text, you must include the double quotation mark
twice. A tilde (˜) character in the text indicates that the following
character is used as a mnemonic character for the control. When the control
is displayed, the tilde is not shown, but the mnemonic character is
underlined. The user can choose the control by pressing the key
corresponding to the underlined mnemonic character.

id Specifies the control identifier. This value must be an integer in the range
-32768 through 32767, or a simple expression that evaluates to a value in
that range.

x Specifies the x-coordinate of the lower-left corner of the control. This value
must be an integer in the range -32768 through 32767 or an expression
consisting of integers and the addition (+) or subtraction (-) operator. The
coordinate is assumed to be in dialog units and is relative to the origin of
the dialog box, window, or control containing the specified control.

y Specifies the y-coordinate of the lower-left corner of the control. This value
must be an integer in the range -32768 through 32767 or an expression
consisting of integers and the addition (+) or subtraction (-) operator. The
coordinate is assumed to be in dialog units and is relative to the origin of
the dialog box, window, or control containing the specified control.

width Specifies the width of the control. This value must be an integer in the
range 0 through 65 535 or an expression consisting of integers and the
addition (+) or subtraction (-) operator. The width is in n-character units.

764 IBM VisualAge�C++ for OS/2 User's Guide

RCDATA Statement

height Specifies the height of the control. This value must be an integer in the
range 0 through 65 535 or an expression consisting of integers and the
addition (+) or subtraction (-) operator. The height is in 1/8-character units.

style Specifies the control styles. This value can be a combination of the styles
specified for WC_BUTTON. You can use the bitwise OR (|) operator to
combine styles.

Example

This example creates a radio-button control that is labeled "Italic."

RADIOBUTTON "Italic", 101, 10, 10, 24, 50

 RCDATA Statement
Syntax:

RCDATA resource-id
BEGIN
data-definition , data-definition ...
 .
 .
 .
END

The RCDATA statement defines a custom-data resource for an application. The
custom data can be in whatever format the application requires. You can provide any
number of RCDATA statements in a resource script file, but each statement must
specify a unique resource-id value. A custom-data resource can be loaded from the
executable file when needed by using the DosGetResource or DosGetResource2
functions with the RT_RCDATA resource type.

resource-id Specifies the custom-data identifier. This value must be an
integer in the range -32768 through 32767, or a simple
expression that evaluates to a value in that range.

data-definition Specifies the custom data. The data may be simple expressions
or strings.

Example

This example defines custom data that has a resource identifier of 5.

RCDATA 5
BEGIN

"E. A. Poe", 1849, -32, 3L, 0x8000000l, 3+4+5
END

 Chapter 54. Resource Compiler765

RCINCLUDE Statement

 RCINCLUDE Statement
Syntax:

RCINCLUDE filename

The RCINCLUDE statement causes RC to process the resource script file specified in
the filename field along with the current resource script file. The contents of both
files are compiled by RC and the results are placed in one binary resource file and/or
executable file.

filename Specifies the name of the resource script file to be included. If the file
is not in the current directory, filename must be preceded by a full
path.

Comments

RCINCLUDE statements are processed before any other processing is done, including
preprocessing by RCPP.EXE, which removes comments, replaces values in the define
directives, and so on.

When specifying a high performance file system (HPFS) file name on an
RCINCLUDE statement, enclose the path and file name in double quotes; for
example:

RCINCLUDE “d:\project\long dialog.dlg”

Double quotes enables the Resource Compiler to recognize a name containing
embedded blank characters.

Example

This example includes the file DIALOGS.RC as part of the current resource script
file.

RCINCLUDE dialogs.rc

766 IBM VisualAge�C++ for OS/2 User's Guide

RESOURCE Statement

 RESOURCE Statement
Syntax:

RESOURCE type-id resource-id [load-option]
[mem-option][code page] filename

The RESOURCE statement defines a custom resource for an application. A custom
resource can be any data in any format. The RESOURCE statement copies the
custom resource from the specified file and adds it to the application's other
resources. A custom resource can be loaded from the executable file when needed by
using the DosGetResource or DosGetResource2 function and specifying the resource's
type and resource identifier.

You can provide any number of RESOURCE statements in a resource script file, but
each statement must specify a unique combination of type-id and resource-id values.
That is, RESOURCE statements having the same type-id value are permitted as long
as the resource-id value for each is unique.

type-id Specifies the custom-resource type. This value must be an
integer in the range 256 through 65 535, or a simple expression
that evaluates to a value in that range. (Values 0 through 255
are reserved.)

resource-id Specifies the custom-resource identifier. This value must be an
integer in the range -32768 through 32767, or a simple
expression that evaluates to a value in that range.

load-option Specifies when the system loads the resource from the
executable file into memory. This value must be one of the
following:
PRELOAD System loads the resource when the

application starts.
LOADONCALL System loads the resource when the

application calls the DosGetResource or
DosGetResource2 function. This is the
default option.

mem-option Specifies how the system manages the resource when it is in
memory. This value must be one or more of the following:
FIXED System keeps the resource at a fixed memory

location.
MOVEABLE System moves the resource as necessary to

compact memory.
DISCARDABLE System discards the resource if it is no longer

needed.
The default setting is MOVEABLE and DISCARDABLE.

codepage Specifies a code page value. See “CODEPAGE Statement”
on page 718. for a list of valid code pages.

 Chapter 54. Resource Compiler767

RTEXT Statement

filename Specifies the name of the file containing the custom resource.
If the file is not in the current directory, filename must be
preceded by a full path.

Example

This example defines a custom resource whose type identifier is 300 and whose
resource identifier is 14. The custom resource is copied from the file CUSTOM.RES.

RESOURCE 300 14 custom.res

 RTEXT Statement
Syntax:

RTEXT text, id, x, y, width, height[, style]

The RTEXT statement creates a right-aligned text control. The control is a simple
rectangle displaying the given text right-aligned in the rectangle. The text is
formatted before it is displayed. Words that would extend past the end of a line are
automatically wrapped to the beginning of the next line. The RTEXT statement,
which you can use only in a DIALOG or WINDOW statement, defines the text,
identifier, dimensions, and attributes of the control. The predefined class for the
control is WC_STATIC. If you do not specify a style, the default style is SS_TEXT,
DT_RIGHT, and WS_GROUP.

text Specifies text that is right-aligned in the rectangular area of the control.
This field must contain zero or more characters enclosed in double
quotation marks. Character values must be in the range 1 through 255. If a
double quotation mark is required in the text, you must include the double
quotation mark twice.

id Specifies the control identifier. This value must be an integer in the range
-32768 through 32767, or a simple expression that evaluates to a value in
that range.

x Specifies the x-coordinate of the lower-left corner of the control. This value
must be an integer in the range -32768 through 32767 or an expression
consisting of integers and the addition (+) or subtraction (-) operator. The
coordinate is assumed to be in dialog units and is relative to the origin of
the dialog box, window, or control containing the specified control.

y Specifies the y-coordinate of the lower-left corner of the control. This value
must be an integer in the range -32768 through 32767 or an expression
consisting of integers and the addition (+) or subtraction (-) operator. The
coordinate is assumed to be in dialog units and is relative to the origin of
the dialog box, window, or control containing the specified control.

width Specifies the width of the control. This value must be an integer in the
range 0 through 65 535 or an expression consisting of integers and the
addition (+) or subtraction (-) operator. The width is in n-character units.

768 IBM VisualAge�C++ for OS/2 User's Guide

SLIDER Statement

height Specifies the height of the control. This value must be an integer in the
range 0 through 65 535 or an expression consisting of integers and the
addition (+) or subtraction (-) operator. The height is in 1/8-character units.

style Specifies the control styles. This value can be a combination of the styles
specified for WC_STATIC. You can use the bitwise OR (|) operator to
combine styles.

Example

This example creates a right-aligned text control that is labeled "Filename."

RTEXT "Filename", 101, 10, 10, 100, 100

 SLIDER Statement
Syntax:

SLIDER id, x, y, width, height[, style]

The SLIDER statement creates a slider control within the dialog window. This
control lets the user set, display, or modify a value by moving a slider arm along a
slider shaft. The SLIDER statement defines the identifier, position, dimensions, and
attributes of a slider control. The predefined class for this control is WC_SLIDER.
If you do not specify a style, the default style is WS_TABSTOP and WS_VISIBLE.

id Specifies the control identifier. The value is any integer -32768 through
32767, or a simple expression that evaluates to a value in that range.

x Specifies the x-coordinate of the lower-left corner of the control. The value
is any integer -32768 through 32767 or an expression consisting of integers
and the addition (+) or subtraction (-) operator. The coordinate is assumed
to be in dialog units and is relative to the origin of the dialog window.

y Specifies the y-coordinate of the lower-left corner of the control. The value
is any integer -32768 through 32767 or an expression consisting of integers
and the addition (+) or subtraction (-) operator. The coordinate is assumed
to be in dialog units and is relative to the origin of the dialog window.

width Specifies the width of the control. The value is any integer 0 through
65 535 or an expression consisting of integers and the addition (+) or
subtraction (-) operator. The width is in n-character units.

height Specifies the height of the control. The value is any integer 0 through
65 535 or an expression consisting of integers and the addition (+) or
subtraction (-) operator. The height is in 1/8-character units.

style Specifies the control styles. The value can be any combination of the styles
specified for WC_SLIDER. You can use the bitwise OR (|) operator to
combine styles.

 Chapter 54. Resource Compiler769

SPINBUTTON Statement

Comments

The SLIDER statement is only used in a DIALOG or WINDOW statement.

Example

This example creates a slider control at position (40, 30) within the dialog window.
The slider has a width of 120 character units and a height of 2 character units. Its
resource ID is 101. The style specification SLS_BUTTONSLEFT adds buttons to the
left of the slider shaft. The default styles WS_TABSTOP and WS_VISIBLE are both
in effect, though only the latter is specified.

#define IDC_SLIDER 101
#define IDD_SLIDERDLG 502
DIALOG "Slider", IDD_SLIDERDLG, 11, 11, 200, 240, FS_NOBYTEALIGN |

WS_VISIBLE, FCF_SYSMENU | FCF_TITLEBAR
 BEGIN

SLIDER IDC_SLIDER, 40, 30, 120, 16, SLS_BUTTONSLEFT | WS_VISIBLE
 END

 SPINBUTTON Statement
Syntax:

SPINBUTTON id, x, y, width, height[, style]

The SPINBUTTON statement creates a spinbutton control within the dialog window.
This control gives the user quick access to a finite set of data. The SPINBUTTON
statement defines the identifier, position, dimensions, and attributes of a spinbutton
control. The predefined class for this control is WC_SPINBUTTON. If you do not
specify a style, the default style is WS_TABSTOP, WS_VISIBLE, and
SPBS_MASTER.

id Specifies the control identifier. The value is any integer -32768 through
32767, or a simple expression that evaluates to a value in that range.

x Specifies the x-coordinate of the lower-left corner of the control. The value
is any integer -32768 through 32767 or an expression consisting of integers
and the addition (+) or subtraction (-) operator. The coordinate is assumed
to be in dialog units and is relative to the origin of the dialog window.

y Specifies the y-coordinate of the lower-left corner of the control. The value
is any integer -32768 through 32767 or an expression consisting of integers
and the addition (+) or subtraction (-) operator. The coordinate is assumed
to be in dialog units and is relative to the origin of the dialog window.

width Specifies the width of the control. The value is any integer 0 through
65 535 or an expression consisting of integers and the addition (+) or
subtraction (-) operator. The width is in n-character units.

770 IBM VisualAge�C++ for OS/2 User's Guide

STRINGTABLE Statement

height Specifies the height of the control. The value is any integer 0 through
65 535 or an expression consisting of integers and the addition (+) or
subtraction (-) operator. The height is in 1/8-character units.

style Specifies the control styles. The value is any combination of the styles
specified for WC_SPINBUTTON. You can use the bitwise OR (|)
operator to combine styles.

Comments

The SPINBUTTON statement is used only in a DIALOG or WINDOW statement.

Example

This example creates a spinbutton control at position (80, 20) within the dialog
window. The spinbutton has a width of 60 character units and a height of 3 character
units. Its resource ID is 302. The style specification SPBS_NUMERICONLY
creates a control which accepts only the digits 0-9 and virtual keys. The default
styles SPBS_MASTER, WS_TABSTOP, and WS_VISIBLE are all in effect, though
only WS_TABSTOP is specified.

#define IDC_SPINBUTTON 302
#define IDD_SPINDLG 502
DIALOG "Spin button", IDD_SPINDLG, 11, 11, 200, 240, FS_NOBYTEALIGN |

WS_VISIBLE, FCF_SYSMENU | FCF_TITLEBAR
 BEGIN

SPINBUTTON IDC_SPINBUTTON, 80, 20, 60, 24, SPBS_NUMERICONLY | WS_TABSTOP
 END

 STRINGTABLE Statement
Syntax:

STRINGTABLE [load-option] [mem-option][codepage]
BEGIN
string-id string-definition
 .
 .
 .
END

The STRINGTABLE statement creates one or more string resources for an
application. A string resource is a null-terminated character string that has a unique
string identifier. A string resource can be loaded from the executable file when
needed by using the WinLoadString or with DosGetResource with the RT_STRING
resource type. RT_STRING resources are bundled together in groups of 16, with any
missing IDs replaced with zero length strings. Each group, or bundle, is assigned a
unique sequential ID. The resource string ID is not necessarily the same as the ID

 Chapter 54. Resource Compiler771

STRINGTABLE Statement

specified when using DosGetResource. The formula for calculating the ID of the
resource bundle, for use in DosGetResource, is as follows:

bundle ID = (id / 16) +1

where id is the string ID assigned in the RC file.

Thus, bundle 1 contains strings 0 to 15, bundle 2 contains strings 16 to 31, and so on.
Once the address of the bundle has been returned by DosGetResource (using the
calculated ID), the buffer can be parsed to locate the particular string within the
bundle. The number of the string is calculated by the formula:

string = id % 16

(string = remainder for id/16).

The buffer returned consists of the CodePage of the strings in the first USHORT,
followed by the 16 strings in the bundle. The first BYTE of each string is the length
of the string (including the null terminator), followed by the string and the terminator.
A zero length string is represented by two bytes: 01 (string length) followed by the
null terminator.

You can provide any number of STRINGTABLE statements in a resource script file.
The compiler treats all the strings from the various STRINGTABLE statements as if
they belonged to a single statement. This means that no two strings in a resource
script file can have the same string identifier.

load-option Specifies when the system loads the resource from the executable
file into memory. This value must be one of the following:
PRELOAD System loads the resource when the application

starts.
LOADONCALL System loads the resource when the application

calls the WinLoadString function. This is the
default option.

mem-option Specifies how the system manages the resource when it is in
memory. This value must be one or more of the following:

code-page Specifies a code page value. See “CODEPAGE Statement” on
page 718 for a list of valid code page values.
FIXED System keeps the resource at a fixed memory

location.
MOVEABLE System moves the resource as necessary to

compact memory.
DISCARDABLE System discards the resource if it is no longer

needed.
The default setting is MOVEABLE and DISCARDABLE.

772 IBM VisualAge�C++ for OS/2 User's Guide

SUBITEMSIZE Statement

string-id Specifies the character-string identifier. This value must be an
integer in the range -32768 through 32767, or a simple expression
that evaluates to a value in that range. The value can be specified
in decimal or hexadecimal notation. Each string identifier in a
resource script file must be unique.

string-definition Specifies a character string. This field must contain zero or more
characters enclosed in double quotation marks. Character values
must be in the range 1 through 255. If a double quotation mark is
required in the string, you must include the double quotation mark
twice.

Comments

You can continue a string on multiple lines by terminating the line with a backslash
(\) or by terminating the line with a double quotation mark (") and then starting the
next line with a double quotation mark.

Example

This example creates two string resources whose string identifiers are 1 and 2.

#define IDS_HELLO 1
#define IDS_GOODBYE 2

STRINGTABLE
BEGIN
 IDS_HELLO "Hello"
 IDS_GOODBYE "Goodbye"
END

 SUBITEMSIZE Statement
Syntax:

SUBITEMSIZE size

The SUBITEMSIZE statement specifies the size, in words, of each help subitem in a
help subtable. The minimum size is two words, and each help subitem in a help
subtable must be the same size. When used, the SUBITEMSIZE statement must
appear after the HELPSUBTABLE statement and before the BEGIN keyword.

You do not need to use the SUBITEMSIZE statement if the help subitems are the
default size (2).

size Specifies the size of each help subitem. This value must be an integer.

 Chapter 54. Resource Compiler773

SUBMENU Statement

Example

The SUBITEMSIZE statement in this example specifies that each HELPSUBITEM
statement contains three words.

HELPSUBTABLE 1
SUBITEMSIZE 3
BEGIN

HELPSUBITEM IDCLD_FILEMENU, IDHP_FILEMENU, 5
HELPSUBITEM IDCLD_HELPMENU, IDHP_HELPMENU, 6

END

 SUBMENU Statement
Syntax:

SUBMENU text, submenu-id [, menuitem-style]
BEGIN
menuitem-definition
 .
 .
 .
END

The SUBMENU statement creates a submenu for a given menu. A submenu is a
vertical list of menu items from which the user can choose a command.

You can provide any number of SUBMENU statements in a MENU statement, but
each SUBMENU statement must specify a unique submenu-id value. You can
provide any number of menuitem-definition statements in the SUBMENU statement.
These define the menu items (commands) in the menu. The order of the statements
determines the order of the menu items.

text Specifies the text of the submenu. This field must contain
zero or more characters enclosed in double quotation
marks. Character values must be in the range 1 through
255. If a double quotation mark is required in the string,
you must include the double quotation mark twice. A tilde
(˜) character in the item name indicates that the following
character is used as a mnemonic character for the item.
When the menu is displayed, the tilde is not shown, but the
mnemonic character is underlined. The user can choose
the menu item by pressing the key corresponding to the
underlined mnemonic character.

submenu-id Specifies the submenu identifier. This value must be an
integer in the range -32768 through 32767, or a simple
expression that evaluates to a value in that range.

774 IBM VisualAge�C++ for OS/2 User's Guide

undef Directive

menuitem-style Specifies the submenu style. This value can be a
combination of MIS_ values. For details on the MIS_
values, see “MENUITEM Statement” on page 753.

menuitem-definition Specifies a PRESPARAMS or MENUITEM statement.
You can use the PRESPARAMS statement to control the
appearance of a submenu, such as the font and the
foreground and background colors. If used, the
PRESPARAMS statement must immediately follow the
BEGIN keyword. For details about the PRESPARAMS
statement, see “PRESPARAMS Statement” on
page 762.

The MENUITEM statement defines an individual
command in the given menu. For details, see
“MENUITEM Statement” on page 753.

Example

This example creates a submenu named Elements. Its identifier is 2. The submenu
contains three menu items, which are created by using MENUITEM statements.

SUBMENU "Elements", 2
BEGIN

MENUITEM "Oxygen", 200
MENUITEM "Carbon", 201, , MIA_CHECKED
MENUITEM "Hydrogen", 202

END

 undef Directive
Syntax: undef name

This directive removes the current definition of the specified name. All subsequent
occurrences of the name are processed without replacement.

name Specifies the name to be removed. This value is any combination of letters,
digits, and punctuation.

Example

This example removes the definitions for the names "nonzero" and "USERCLASS".

#undef nonzero
#undef USERCLASS

 Chapter 54. Resource Compiler775

VALUESET Statement

 VALUESET Statement
Syntax:

VALUESET id, x, y, width, height[, style]

The VALUESET statement creates a value set control within the dialog window.
This control lets a user select one choice from a group of mutually exclusive choices.
The VALUESET statement defines the identifier, position, dimensions, and attributes
of a value set control. The predefined class for this control is WC_VALUESET. If
you do not specify a style, the default style is WS_TABSTOP and WS_VISIBLE.

id Specifies the control identifier. The value is any integer -32768 through
32767, or a simple expression that evaluates to a value in that range.

x Specifies the x-coordinate of the lower-left corner of the control. The value
is any integer -32768 through 32767 or an expression consisting of integers
and the addition (+) or subtraction (-) operator. The coordinate is assumed
to be in dialog units and is relative to the origin of the dialog window.

y Specifies the y-coordinate of the lower-left corner of the control. The value
is any integer -32768 through 32767 or an expression consisting of integers
and the addition (+) or subtraction (-) operator. The coordinate is assumed
to be in dialog units and is relative to the origin of the dialog window.

width Specifies the width of the control. The value is any integer 0 through
65 535 or an expression consisting of integers and the addition (+) or
subtraction (-) operator. The width is in n-character units.

height Specifies the height of the control. The value is any integer 0 through
65 535 or an expression consisting of integers and the addition (+) or
subtraction (-) operator. The height is in 1/8-character units.

style Specifies the control styles. The value is any combination of the styles
specified for WC_VALUESET. You can use the bitwise OR (|) operator
to combine styles.

Comments

The VALUESET statement is used only in a DIALOG or WINDOW statement.

Example

This example creates a value set control at position (40, 40) within the dialog
window. The value set control has a width of 220 character and a height of 20
character units. Its resource ID is 302. The style specification VS_ICON creates a
control to show items in icon form. The default styles WS_TABSTOP and
WS_VISIBLE are both in effect, though only WS_TABSTOP is specified.

776 IBM VisualAge�C++ for OS/2 User's Guide

WINDOW Statement

#define IDC_VALUESET 302
#define IDD_VALUESETDLG 501
DIALOG "Value set", IDD_VALUESETDLG, 11, 11, 260, 240, FS_NOBYTEALIGN |

WS_VISIBLE, FCF_SYSMENU | FCF_TITLEBAR
 BEGIN

VALUESET IDC_VALUESET, 40, 40, 220, 160, VS_ICON | WS_TABSTOP
 END

 WINDOW Statement
Syntax:

WINDOW text, id, x, y, width, height, class[, style[, framectl]]
 data-definitions
[BEGIN
control-definition
 .
 .
 .
END]

The WINDOW statement creates a window of the specified class. The statement
defines the position and dimensions of the window relative to its parent window, as
well as the window-box style. The WINDOW statement is typically used in a
WINDOWTEMPLATE or FRAME statement.

Typically, only one WINDOW statement is used in a FRAME statement. It defines
the client window belonging to the corresponding frame window. The optional
BEGIN and END keywords enclose any CONTROL statements that are given with
the window. CONTROL statements given in this manner represent child windows
belonging to the window created by the WINDOW statement.

text Specifies the window title if the style specifies a title bar. This
field must contain zero or more characters enclosed in double
quotation marks. The character values must be in the range 1
through 255. If a double quotation mark is required in the title,
you must include the double quotation mark twice.

id Specifies the window identifier. This value must be an integer
in the range -32768 through 32767, or a simple expression that
evaluates to a value in that range.

x Specifies the x-coordinate of the lower-left corner of the
window. This value must be an integer in the range -32768
through 32767 or an expression consisting of integers and the
addition (+) or subtraction (-) operator. The value is in dialog
units. The position is relative to the origin of the parent
window.

 Chapter 54. Resource Compiler777

WINDOW Statement

y Specifies the y-coordinate of the lower-left corner of the
window. This value must be an integer in the range -32768
through 32767 or an expression consisting of integers and the
addition (+) or subtraction (-) operator. The value is in dialog
units. The position is relative to the origin of the parent
window.

width Specifies the width of the window. This value must be an
integer in the range 0 through 65 535 or an expression
consisting of integers and the addition (+) or subtraction (-)
operator. The value is in n-character units.

height Specifies the height of the window. This value must be an
integer in the range 0 through 65 535 or an expression
consisting of integers and the addition (+) or subtraction (-)
operator. The value is in 1/8-character units.

class Specifies the window class. This value can be one of the
control classes specified in the “Control Classes” table in the
Presentation Manager Programmer Reference or the name of
the window class, enclosed in double quotation marks.

style Specifies the window style. This value can be any of the
window, dialog box, or frame styles specified.

framectl Specifies the style of the frame controls belonging to the
window. This value can be a combination of the styles
specified in the table, “Frame-Control Styles.” You can use the
bitwise OR (|) operator to combine styles.

data-definitions Specifies a CTLDATA and/or PRESPARAMS statement.
These statements define control and presentation data for the
window. For more information, see “CTLDATA Statement”
on page 724 and “PRESPARAMS Statement” on page 762.

control-definition Specifies a CONTROL statement or any one of several
predefined control statements. These statements define the style,
position, and dimensions of controls in the window.

Comments

The WINDOW statement can actually contain any combination of CONTROL,
DIALOG, and WINDOW statements. Typically, a WINDOW statement contains one
or no such statements.

778 IBM VisualAge�C++ for OS/2 User's Guide

WINDOWTEMPLATE Statement

Example

This example creates a client window belonging to the frame window. The client
window belongs to the "MyClientClass" window class and has the standard window
identifier FID_CLIENT.

WINDOWTEMPLATE 1
BEGIN

FRAME "My Window", 1, 10, 10, 320, 130,
0, FCF_STANDARD | FCF_VERTSCROLL

 BEGIN
WINDOW "", FID_CLIENT, 0, 0, 0, 0, "MyClientClass"

 END
END

 WINDOWTEMPLATE Statement
Syntax:

WINDOWTEMPLATE window-id [load-option] [mem-option][code-page]
BEGIN
window-definition
 .
 .
 .
END

The WINDOWTEMPLATE statement creates a window template. A window
template consists of a series of statements that define the window identifier, load and
memory options, window dimensions, and controls in the window. The window
template can be loaded from the executable file by using the WinLoadDlg function.

You can provide any number of window templates in a resource script file, but each
template must have a unique window-id value.

window-id Specifies the window identifier. This value must be an
integer in the range -32768 through 32767, or a simple
expression that evaluates to a value in that range.

load-option Specifies when the system loads the resource from the
executable file into memory. This value must be one of the
following:
PRELOAD System loads the resource when the

application starts.
LOADONCALL System loads the resource when the

application calls the WinLoadDlg function.
This is the default option.

mem-option Specifies how the system manages the resource when it is in
memory. This value must be one or more of the following:

 Chapter 54. Resource Compiler779

WINDOWTEMPLATE Statement

FIXED System keeps the resource at a fixed
memory location.

MOVEABLE System moves the resource as necessary to
compact memory.

DISCARDABLE System discards the resource if it is no
longer needed.

The default setting is MOVEABLE and DISCARDABLE.
code-page Specifies a code page value. See “CODEPAGE

Statement” on page 718 for a list of valid code pages.
window-definition Specifies a WINDOW statement. The statement defines the

dimensions and style of the given window. For details about
the statement, see “WINDOW Statement” on page 777.

Comments

A WINDOWTEMPLATE statement can contain DIALOG, CONTROL, and
WINDOW statements. Typically, only one WINDOW statement is used in the
WINDOWTEMPLATE statement.

780 IBM VisualAge�C++ for OS/2 User's Guide

Dialog Editor

55 Dialog Editor

You use the Dialog Editor to create and modify dialog boxes, and to create and
modify the controls and text within dialog boxes. As you create the dialog box and
its controls, you see them on the screen as the user will see them when your program
is run. You can place each dialog box and its controls where you want them on the
screen. In addition, you can test the dialog box before you incorporate it into your
application.

Each dialog box and control can have either an integer identifier or a symbolic
identifier that equates to an integer identifier. You use the identifier in your
application to refer to the dialog box or control. If you intend to use symbolic
identifiers in your application, you must enter the symbolic and integer identifiers in
an include file. If you do not use symbolic names, the Dialog Editor supplies an
integer identifier for each control and for the dialog box itself. You can use the
Dialog Editor to create the include file, or you can use a text editor to create the
include file before using the Dialog Editor.

It is good programming practice to plan the resources that your application will use
and to choose a naming and numbering convention for the symbolic or integer
identifiersbefore you create them. Keep the include file separate from other include
files used by your application. Include files used by the Dialog Editor can contain
only #define statements that define their symbolic identifiers and equivalent integers.

Although the Dialog Editor draws dialog boxes and controls on the screen so you can
see what they look like when used by your application, it does not save them as
graphics. Instead, the Dialog Editor saves them in an ASCII-text format file that has
a .DLG extension. Refer to the dialog template section of this chapter.

The Dialog Editor also creates a compiled form of the .DLG file in a resource file
with a .RES extension. The .DLG and .RES files can contain more than one dialog
box. The resource file can contain other application resources, such as icons, bit
maps, and string tables. It is attached to the executable (.EXE) file of the application
during the compile and link process.

 Copyright IBM Corp. 1992, 1995 781

Dialog Editor

Designing Dialog Boxes
Dialog boxes should be designed to clearly identify the information that the user is
required to complete. The following are a few Common User Access guidelines:

¹ Lay out the controls in columns, starting at the upper-left corner, for left-to-right
or top-to-bottom scanning.

¹ Vertically and horizontally align selection and entry fields so that the cursor
moves in a straight line.

¹ Arrange the controls in the sequence in which the user would complete them.
¹ If there are only a few entry fields, locate them at the top of the dialog box.
¹ Make groups of controls obvious by use of group boxes and white space.
¹ Align group boxes, where possible. Group boxes can be extended to the right to

line up with other group boxes.
¹ Use field identifiers to identify the purpose of single and multiple groups of

choices.

Creating a Dialog Box
To run the Dialog Editor, select Dialog Editor from the Development Tools folder.
The main window appears, displaying the menu bar choices File, Edit , Control ,
Arrange, Options, and Help. On line help that tells you how to use the editor is
available on most Dialog Editor windows.

To create a new dialog box, start with either one of the following steps:

¹ Select New Dialog from the Edit menu. The editor opens new files with the
extensions .RES and .DLG. This also opens a new include file.

¹ Select New from the File menu. This opens new files with the extensions .RES
and .DLG. You can open a new include file or an existing one.

The above steps have the same effect.

When you edit a dialog box, the names of the resource and include files are shown in
the title bar of the Dialog Editor. If you are editing a new file that has not yet been
named or saved, (Untitled) appears in the title bar in place of a name. If (Untitled)
appears in the title bar in place of a name, there are unsaved changes.

The Dialog Box ID field appears in the status area. A default integer number is
supplied in the entry field. Type a symbolic identifier for the dialog box, such as
MYDIALOG. Tab to the integer field and type the integer number. Press Enter to
place them both in the include file.

782 IBM VisualAge�C++ for OS/2 User's Guide

Dialog Editor

The new dialog box appears in the lower-left corner of the editor screen enclosed by
a frame. The frame contains eight small squares called drag handles, which allow you
to change the width and height of the selected item. This indicates that the dialog
box is selected for editing. If you are creating a new dialog box, the dialog is
automatically selected; at all other times, before you edit the dialog box or a control,
you must click on it to select it.

To continue creating the new dialog box, follow these steps:

1. Make the dialog box larger by clicking on one of its drag handles with the left
mouse button and dragging until the box is the size you want it to be. This can
be done in one operation by clicking on the upper-right corner of the frame and
dragging diagonally upwards and to the right.

Information about the item you are editing is displayed in the Selected Item
Status box in the left half of the status area. As you move the shadow box, the
x-y-coordinates change. These are the coordinates of the origin of the dialog box
relative to the origin of the window. The cx-cy-coordinates are the width and
height of the dialog box. The symbolic identifier is also shown.

2. Select Styles from the Edit menu. The Dialog Box Styles pop-up window
appears.

3. Click on the text entry field in the status area, and then type the dialog box title
(for instance, Sample dialog box) into the field.

4. Press Enter and the title appears at the top of your dialog box.

You can reposition the entire dialog box by moving the pointer inside the top area
enclosed by the frame, holding the left mouse button down, and dragging the shadow
box across the screen. When the shadow box is in the position where you want the
dialog box to appear, release the mouse button. The dialog box appears in that
position. Alternatively, you can move the dialog box using the keyboard arrow keys.
You can reposition the dialog box at any time during the edit.

 Chapter 55. Dialog Editor 783

Dialog Editor

Using a Grid
Before you start adding controls to the dialog box, you might want to first select the
grid option to make laying out your dialog easier.

You can use a mouse to place controls in a dialog box and to move the controls in
line with each other. However, you can more accurately position the controls by
using the keyboard arrow keys or mouse after grid values have been set.

The Settings-change dialog lets you set the number of character spaces (in dialog
units) by which you can move dialog boxes and controls when using the Dialog
Editor.

To set the grid size, follow these steps:

1. Select Settings from the Arrange menu. The Settings-change dialog is
displayed. The initial grid setting for both x and y is 1 unit.

2. Change the x-setting to 10 and they-setting to 5. Click on OK .

The horizontal (x) and vertical (y) values are in dialog units. A horizontal dialog unit
is 0.25 of the standard character size. A vertical dialog unit is 0.125 of the standard
character size. For example, if you move a control to the left or the right (using the
mouse or keyboard arrow keys) with x set at 20, it moves in steps of twenty dialog
units.

When you subsequently position dialog boxes or controls, the objects move by the
specified number of dialog units on an invisible grid. Large values make it easier to
align controls, while small values allow you to position controls in the dialog box
more precisely.

Now that the grid is in place, you are ready to start adding controls.

784 IBM VisualAge�C++ for OS/2 User's Guide

Dialog Editor

Ordering Control Groups
This option allows you to gather controls into groups and to change the order in
which the tab keys and arrow keys move the selection cursor around the controls.

When you use group boxes to group controls, always create the group box before the
controls that are to go inside it.

It is good practice to put group markers around all separate groups of controls,
including putting a marker before the first control in the list.

The list box shows the order in which the selection cursor moves between the
controls when the user presses the arrow and tab keys. (The coordinate position of a
control when displayed in the dialog box does not affect the order.) Initially, the
controls are listed in the order in which they were created.

There are three functions involved in grouping controls:

¹ Setting Group Markers
¹ Setting Tab Markers
¹ Moving Control Order

Setting Group Markers

To set up groups in a dialog that has various types of controls, follow these steps:

1. Select Order Groups from the Arrange menu. The Groups - order dialog is
displayed.

2. Click on the first radio button in the list box.

3. Click on the Group Marker push button. A group marker is now displayed
between the Text control and the first radio button in the list.

4. Scroll down the list and click on the first push button in the list. Click on the
Group Marker push button. This has organized your controls into groups of
text, radio buttons, check boxes, and push buttons.

Setting Tab Markers

After setting group markers, you will want to set tab-stops. The controls marked with
an asterisk already have tab-stops.

To make the tab-stop at only the first control in each group, delete the tab-stops from
the second and third radio button and check box, following these steps:

1. Click on the second radio button in the list to mark it.

2. Click on the Delete Tab push button.

 Chapter 55. Dialog Editor 785

Dialog Editor

3. Repeat the above steps for the third radio button, and then perform the same
operation for the second and third check box in the list. When this is complete,
press Enter.

Moving Control Order

You can move controls in the list and then see during testing how the changes affect
the movement of the cursor. To change the position of a control in the list, follow
these steps:

1. Click on the name of the control to select it.

2. Position the pointer in the list where you want the name to appear. The pointer
changes shape to a short horizontal line when it is over a place where you can
insert the name.

3. To insert the control name, click the mouse button.

After grouping controls, you might want to test or edit the dialog, or enter additional
controls.

 Adding Controls
The control menu lists, in alphabetic order, all the controls that you can put in a
dialog box. To add controls, follow these steps:

1. Select a control from the Control menu or click on an icon on the Control
Palette at the right side of the window.

The pointer becomes a small plus sign (+) in a square. The center marks the
position where the lower-left corner of the frame for the control will be set.

2. Click the mouse to position the control.

3. A dialog might appear (depending on the type of control) in which you must
enter data or check preferences to define the control. Complete this and close the
dialog.

For an example of adding controls in a typical dialog, see “Adding Controls
Example” on page 787.

You might want to test the dialog.

For detailed descriptions of individual controls and how they work, see the individual
controls in the on line help (while using the Dialog Editor) by following these steps:

1. Select Help Index from the Help menu (or press F1 and select Help Index).

2. Select Options or press Alt-O.

786 IBM VisualAge�C++ for OS/2 User's Guide

Dialog Editor

3. Select Contents or press Ctrl-C.

4. Select Control Menu for an alphabetic list of controls, or select Control Palette
for the icons as they appear on the Control Palette.

5. Select the control you want to read about.

Adding Controls Example
The control menu lists, in alphabetic order, all the controls that you can put in a
dialog box. The sample dialog is “Sample Dialog Template File” on page 795 .
To add controls for a sample dialog, follow these steps:

1. Select Text from the Control menu or select a control by clicking on its icon on
the Control Palette at the right side of the window.

The pointer becomes a small plus sign (+) in a square. The center marks the
position where the center of the control will be.

2. Position the pointer inside the dialog box near the upper-left corner and click the
mouse.

 3. Type Student Level: in the Text entry field. Observe that the next sequential
integer is supplied in the Symbol entry field. Press Enter.

4. Replace the symbol with ID_GRAD and press Enter.

The Dialog editor assigns the next integer to the symbolic identifier you entered
and places it in the include file. This is another technique for entering symbolic
identifiers.

5. To view or change the include file at any time, select Symbols from the Edit
menu. The Symbols dialog appears.

The symbolic and integer identifier for the dialog box and the text control are
displayed in the list box. The dialog allows you to add, delete, and change the
identifiers and to view the hexadecimal equivalents of the integers.

6. Select the OK push button to remove the dialog and register any changes. Select
Cancel if you have not made any changes.

7. In your dialog box, the static control is not large enough for you to see all the
text. To remedy this, click on the text, and a frame appears around it. Drag the
right-hand edge of the frame to the right to enlarge the field.

When you release the mouse button, you should be able to see all the tex. When
a control has a frame around it, it is selected and you can use a shadow box to
position it, as you did with the dialog box.

8. To add another control, select Radio Button from the Control menu and
position the cursor just beneath the Student Level text. Press Enter.

 Chapter 55. Dialog Editor 787

Dialog Editor

9. Type Elementary in the Button Text entry field and press Enter. Drag the right
edge of the frame that surrounds the radio button until you can see all of the text.

10. Select Radio Button again and typeIntermediate in the Text entry field.
Position this radio button below the first one.

11. Select Radio Button again and typeAdvanced in the Text entry field. Position
this radio button below the other two.

12. Select Group Box from the Control menu. Position the cursor to the right of
the column of radio buttons and press Enter.

13. Type Media in the Text entry field and press Enter to title the group box.

14. Click on the lower-right corner of the group box frame and drag it diagonally
down and to the right to enlarge it. The bottom of the group box frame should
be lower than the last of the radio buttons, and the right-hand side of the group
box should be almost at the far right of the dialog box. This is to make room for
a group of check boxes that will go inside the group box.

When you use group boxes to group controls, you always create the group box
before the controls that are to go inside it.

15. Select Check Box from the Control menu. Position the cursor inside the group
box in line with the first radio button in the list, and click the mouse.

16. Type TextBooks in the Button Text entry field and press Enter. Enlarge the
frame of the check box until all of the text is displayed.

17. Select Check Box again and position the cursor below the first check box. Type
Video in the Text entry field and click Enter. Enlarge the check box frame until
all of the text is displayed.

18. Select Check Box again and position the cursor below the previous two check
boxes. TypeDiskettes in the Text entry field.

In the left-hand side of the dialog box, you should now have a column of radio
buttons with a heading of Student Level, and on the right a group box with a
heading of Media that contains three check boxes.

19. Finally, add three push buttons to the dialog box. Select Pushbutton from the
Control menu. Position the cursor in the lower-left side of the dialog box and
click the mouse. TypeOK in the Text entry field and press Enter.

20. Position another push button to the right of the first one (in the lower middle of
the dialog box) and typeCancel in the Text entry field.

21. Select a third push button and position it to the right of the second. Type Help
in the Text entry field.

The dialog box and its controls are now complete.

788 IBM VisualAge�C++ for OS/2 User's Guide

Dialog Editor

Try selecting each of the controls, and observe the information in the Selected Item
Status. It holds information about each control that you edit.

You might now want to test the dialog box.

Selecting Color and Font
The Presentation Parameters dialog allows you to select the color and font for
individual controls or for an entire dialog box.

You can select all of the following:

 ¹ Foreground Color
 ¹ Background Color
¹ Foreground Color Highlight
¹ Background Color Highlight
¹ Disabled (greyed out) Foreground Color
¹ Disabled (greyed out) Background Color

 ¹ Font Size
 ¹ Font Name

To set presentation parameters, follow these steps:

1. Select a control or the dialog box.

2. Select Presentation Parameters from the Edit menu.

3. Type the number, from 1 to 255 parts of each color, in the appropriate fields.

4. Type the font size and name, if you want to change the default, in the last two
fields.

5. Select OK or press Enter to close the dialog.

You might now want to test the dialog.

 Chapter 55. Dialog Editor 789

Dialog Editor

 Arranging Controls
The Arrange menu allows you to arrange and align controls in a logical and
easy-to-understand layout.

Align Aligns controls along an edge.

Even spacing Evenly spaces controls

Same size Sets controls to the same size.

Push buttons Arranges push buttons.

Order groups Displays the Groups-order dialog, so you can change the order
of controls and groups.

Settings Displays the Settings-change dialog, so you can change the
grid and spacing constants.

Changing the Dialog Box
To change the properties of a dialog box or a single control, use the following
functions of the Edit menu:

¹ Select New Dialog to create another dialog box in the same resource file. Your
existing dialog box will stay in memory.

¹ Select Select Dialog to switch to another open dialog box.

¹ Select Symbols to define symbols.

Eight of the editing functions require that you first select the control to be edited.
The selected control will appear in the drag window, surrounded by eight dots, one in
each corner and one at the midpoint of each side.

The following functions require that a control must first be selected:

¹ Select Cut to cut a control you would like to move or delete.

¹ Select Copy to copy to the clipboard a control you would like to duplicate
elsewhere in the same dialog or in another dialog.

¹ Select Paste to place a control you have marked with Cut or Copy.

¹ Select Clear to erase a control.

¹ Select Duplicate to create another control in this dialog box that is identical to
the selected control.

¹ Select Styles to define the style of the selected control.

¹ Select Presentation parameters to select the colors and fonts.

¹ Select Size to text to adjust the size of an entry field to the text inside.

790 IBM VisualAge�C++ for OS/2 User's Guide

Dialog Editor

Using the Options Menu
On the Options menu, a check mark next to each option shows whether it is selected
(on) or not (off).

To toggle your selection of options on and off, use the following functions of the
Options menu:

¹ Select Test mode to test the dialog.

¹ Select Hex mode to toggle between hexadecimal and decimal display of ID
Values of symbols.

¹ Select Translate mode to toggle translate mode on and off.

¹ Select Enable 2.x styles to use controls and their styles which are specific to
OS/2 2.x, but not prior releases.

¹ Select Show status area to toggle display of the status area on and off.

Testing the Dialog Box
To test the dialog box, select Test Mode from the Options menu. The dialog box is
displayed as it will appear to the user in a program. In test mode, you can select
controls, and their appearance changes in the same way as they do in an application.
To return to work mode, click on Test Mode again to de select it.

If you want to make changes, you can edit the dialog box.

Ending an Edit Session
To end the edit session, select Close from the system pull-down menu. You see
prompts for the file names of the files you want to save.

If you want to edit the same file the next time you use the editor, select Open from
the File menu.

 Dialog Templates
The Dialog Editor creates an ASCII text file that has the file-name extension .DLG.
The compiled form of this file, created using the Resource Compiler, has the
file-name extension .RES.

The .DLG file contains a series of statements, collectively termed a dialog template,
that define each dialog box and each control in each dialog box. The statement for
each dialog box contains the data required to create it, namely its class, size, position,
window text, and any other special information required for the window.

 Chapter 55. Dialog Editor 791

Dialog Editor

Normally, the template consists of a dialog box window followed by the controls
contained within it, which are child windows.

The first statement in the template is the DLGINCLUDE statement, which specifies
the file name of the include file.

The next statement is the DLGTEMPLATE statement, which specifies the symbolic
identifier of the dialog box (MYDIALOG). The DLGTEMPLATE statement also
specifies any loading and memory options. The actual dialog template is contained
within the first BEGIN and last END statement. There is a CONTROL statement for
each of the controls in the dialog box. The CONTROL statement is a general
statement that is followed by parameters that further specify the control, such as:

¹ Text, where appropriate. For example, the text OK is defined for one of the
push buttons.

¹ Application-defined symbolic or integer identifiers for each control. Your
application uses the identifier to track the responses from controls. For example,
ID_NULL is the identifier of the text control.

¹ The types and positions of the various controls. For example, the group box
control is a control window of window class WC_STATIC. The Cancel and
Help push buttons are of window class WC_BUTTON.

¹ The appearance and operation of the dialog box and its controls, which are
specified in detail by combinations of style parameters. For example, the check
boxes have a class style of BS_CHECKBOX, and radio buttons have a class style
of BS_RADIOBUTTON. You can also specify appropriate WS_* styles.

If necessary, you can use a text editor to edit the .DLG file, for example, to fine-tune
the dialog template produced by the dialog box editor. You can even use a text
editor to produce your own .DLG file. The Dialog Editor uses the general
CONTROL statement with window classes and control styles to define controls.

You can use the CONTROL statement in the same way to define your controls, or
you can use any of several predefined control statements that give you the same
result. For example, the predefined control statement PUSHBUTTON gives you a
WC_BUTTON class window with default styles of BS_PUSHBUTTON and
WS_TABSTOP.

The predefined controls are the same ones you would use to write a resource file
yourself. The controls are described in “Statements and Directives” on page 707.
control window. The predefined class for

792 IBM VisualAge�C++ for OS/2 User's Guide

Dialog Editor

A dialog template can be in either of the following:

¹ A resource.res file (generated from the .DLG file by the Resource Compiler)
¹ A block of memory that has the DLGTEMPLATE data structure, in which case

you use WinCreateDlg to create the dialog box from the template.

The dialog template uses device-independent dialog units for the coordinate system
that define the layout of controls in the dialog box.

A dialog unit is expressed in terms of thedefault standard character size, which can
vary from device to device. You do not need to put code in your application to
reformat the dialog box when displaying it on different devices. (Dialogs might need
editing if a different system font is loaded.) A horizontal dialog unit is 0.25 of the
standard character size. A vertical dialog unit is 0.125 of the standard character size.
Dialog units are expressed as offsets from the origin (lower-left corner) of the dialog
box.

A dialog template is a general structure. It could be termed a window template,
because you can use it to define any window in an application. If you prefer, use the
statement WINDOWTEMPLATE instead of DLGTEMPLATE, because it is
functionally identical. This could reduce the initialization phase of the application to
registering the application window classes and calling WinLoadDlg to load the
template.

If you use the Dialog Editor to define a standard window, you will have to edit the
resulting .DLG file to ensure that you have a client window and the required
parent-child relationships. You will also have to use WinLoadMenu in your
application, to create a menu bar for the window, because you cannot create menus
using the Dialog Editor.

The .RES file is an object-format compiled version of the .DLG file, created when the
Dialog Editor compiles the dialogs. The Dialog Editor uses the .RES file as input on
any subsequent edit of the same dialog. This means that, if you use a text editor to
fine-tune a .DLG file, and you want subsequently to re-edit the dialog using the
Dialog Editor, you must first use the Resource Compiler to generate a new .RES file
from the .DLG file.

Your application can use either the .RES file output by the Dialog Editor or a .RES
file created from the .DLG file and the other resources. If your application uses the
.DLG file, it must be included by the resource script file of your application.

 Chapter 55. Dialog Editor 793

Dialog Editor

The rcinclude statement includes the .DLG file created by the Dialog Editor; for
example:

rcinclude dbe.dlg /* Includes .DLG file */

The corresponding .H file created by the Dialog Editor must also be included in the
.RC file.

Using OS/2-defined control windows, OS/2 draws and operates the controls specified
in the resource file for your application. Controls are windows and can be used
within any other window.

794 IBM VisualAge�C++ for OS/2 User's Guide

Dialog Editor

Sample Dialog Template File
The following dialog template is used for the dialog described in “Adding Controls
Example” on page 787.

DLGINCLUDE 1 "DBE.H"

DLGTEMPLATE mydialog LOADONCALL MOVEABLE DISCARDABLE

 BEGIN

DIALOG "Sample Dialog Box", mydialog, 11, 8, 170, 105,
FS_NOBYTEALIGN | FS_DLGBORDER | WS_VISIBLE |

 WS_SAVEBITS, FCF_TITLEBAR

 BEGIN

CONTROL "Student Level:", id_null, -1, 94, 63, 9, WC_STATIC,
SS_TEXT | DT_LEFT | DT_TOP | WS_GROUP | WS_VISIBLE

CONTROL "Elementary", 258, 7, 82, 62, 11, WC_BUTTON,
BS_RADIOBUTTON | WS_GROUP | WS_TABSTOP | WS_VISIBLE

CONTROL "Intermediate", 259, 7, 67, 73, 9, WC_BUTTON,
BS_RADIOBUTTON | WS_VISIBLE

CONTROL "Advanced", 260, 7, 51, 52, 13, WC_BUTTON,
BS_RADIOBUTTON | WS_VISIBLE

CONTROL "Media", 261, 87, 48, 75, 54, WC_STATIC,
SS_GROUPBOX | WS_GROUP | WS_VISIBLE

CONTROL "Textbooks", 262, 97, 83, 60, 10, WC_BUTTON,
BS_CHECKBOX | WS_TABSTOP | WS_VISIBLE

CONTROL "Video", 263, 97, 68, 46, 10, WC_BUTTON,
BS_CHECKBOX | WS_VISIBLE

CONTROL "CBT", 264, 97, 53, 32, 10, WC_BUTTON,
BS_CHECKBOX | WS_VISIBLE

CONTROL "OK", 265, 7, 20, 38, 12, WC_BUTTON,
BS_PUSHBUTTON | WS_GROUP | WS_TABSTOP | WS_VISIBLE

CONTROL "Cancel", 266, 61, 20, 38, 12, WC_BUTTON,
BS_PUSHBUTTON | WS_TABSTOP | WS_VISIBLE

CONTROL "Help", 267, 117, 20, 38, 12, WC_BUTTON,
BS_PUSHBUTTON | WS_TABSTOP | WS_VISIBLE

 END

 END

 Chapter 55. Dialog Editor 795

Dialog Editor

796 IBM VisualAge�C++ for OS/2 User's Guide

Editing Fonts with Font Editor

56 Font Editor

You can use the OS/2 Font Editor to design and save your own fonts for use in
applications.

A font is a set of alphanumeric characters, punctuation marks, and other symbols that
share a common typeface design and line weight. An application loads a font from a
dynamic-link library file (.DLL file).

The Font Editor allows you to edit an enlarged version of each character in an editing
window, using the mouse to switch the enlarged representation of pels to black or
white.

You can change a series of pels by dragging the mouse pointer through them while
holding down the mouse button. An enlarged scale version of the character is shown
in a viewing window to the right of the edit window.

Using the Font Editor
To run the Font Editor, select Font Editor from the PM Development Tools folder.

Select one of the options in the File menu to open a new or existing font. The letter
A appears in both the editing and viewing windows. The rest of the font appears in
the character selection scroll box at the bottom of the Font Editor window.

To edit any other character in the font, select it from the character selection scroll
box. The character appears in the editing and viewing windows.

Font Editing Functions

Functions for defining fonts are found on the Header menu.

Functions for editing character width are found on the Width and Shift menus.

 Copyright IBM Corp. 1992, 1995 797

Editing Fonts with Font Editor

 Defining Fonts
Use the Header menu to define the typestyle that you want to create:

¹ Select Naming to specify the identification details such as the type-face name.

¹ Select General to specify spacing (fixed or proportional), type face style, line
width, and type weight.

¹ Select Sizes to specify the font character dimensions.

¹ Select Relations to specify the position of characters.

¹ Select Definition to change character spacing in a proportional font.

Editing Character Width
The Width and Shift menus allow you to change the width of individual characters.

The Width Menu

Use the Width menu to alter the width of a single character. This menu is enabled
only when you are editing a proportional space font. You can make a character wider
or narrower by adding or deleting columns of pels from the right, the left, or both
sides. You may also use the Set Character Increment option to set the width of a
character. On-line help panels describe how to perform these functions.

The Shift Menu

Use the Shift menu to insert a one-pel-wide row or column into (or delete from) the
character that you are editing. When you select shift, the pointer becomes a flat
horizontal or vertical bar when inside the edit window. This enables you to position
it exactly where you want the operation to take place.

To cancel a shift you have selected before execution, select Cancel Choice.

798 IBM VisualAge�C++ for OS/2 User's Guide

Editing Fonts with Font Editor

Font Resource Files
The Font Editor creates a file with a .FNT extension. The .FNT file is not referred to
in the same resource file as other resources.

Instead, it has its own resource file that contains a single-line statement that has a
similar format to the ICON, POINTER, and BITMAP statements, for example:

FONT 101 myfont.fnt /* Font */

The FONT keyword identifies the resource type.

The resource type is followed by an integer identifier that is used by the application
to identify the resource. The integer is used as a parameter to the
WinCreateStdWindow call. You cannot use a symbolic name for a font.

The integer identifier can be followed by loading and memory options. Again, the
example lets them default.

The last part of the statement is the file name of the resource created by the Font
Editor. A full path name must be given if it is not in the current directory.

Producing a font file uses a process similar to binding resources to an .EXE file.
You bind one or more .FNT files to a dummy .DLL, to produce a file containing the
font or fonts. The final file should have the extension .FON.

The .FON file created by the process is installed on the system and becomes a public
font, a font that can be used by any application in the system.

A font not installed on the system is called a private font. Before your application
can use the font, your application must use GpiLoadFonts to load the .FON file.

 Chapter 56. Font Editor 799

Editing Fonts with Font Editor

800 IBM VisualAge�C++ for OS/2 User's Guide

Editing Icons with Icon Editor

57 Icon Editor

The Icon Editor lets you create your own art (icons, pointers, and bit maps) and save
them for use by applications.

Icons, pointers, and bit maps produced by the Icon Editor are graphic symbols
comprised of pels (also known as pixels) in any of the following display states:

 ¹ Black
 ¹ White
 ¹ Color
¹ Screen (background color)
¹ Inverse screen (inverse of background color)

An application can use an icon to represent a minimized standard window. For
example, an application that lists telephone numbers could use a telephone icon when
minimized. An application can also use icons as warning symbols in message boxes
(for example, an exclamation mark or an upraised hand).

An application can associate a pointer with the mouse or similar pointing device, so
that the user can move the pointer around the screen, to select controls or text. A
pointer could also be used in an interactive graphics application to draw graphics on
the screen. For example, a free-hand graphics drawing application could use a pencil
shape to represent the pointer.

Using the Icon Editor
To run the Icon Editor, select the Development Tools folder and then select Icon
Editor .

The Icon Editor display consists of three parts: the information panel, the palette
window, and the editing window.

The information panel at the top of the Icon Editor window displays the following
information:

¹ A picture of a two-button mouse, showing the colors currently selected for each
button

¹ An actual-size image of the current figure that you are editing

 Copyright IBM Corp. 1992, 1995 801

Editing Icons with Icon Editor

¹ The status area, showing the following:

– Size (defined as 32 x x 32 for icons and pointers; user-defined for bit
maps)

 – Pen location
 – Pen size

 (from 1 x 1 to 9 x 9)
– Hotspot (for icons and pointers, but not bit maps)
– Figure type (icon, pointer, or bit map)

 – Form name

The palette window, in the lower right corner, displays the colors that are available
for use during editing. The colors currently selected are marked with frames.

The editing window is the largest part of your working area. Use the mouse or
keyboard to move the pointer, clicking or dragging the pointer to paint the enlarged
representation of pels with the selected color.

Creating a Figure
The Edit menu includes the functions used to select an icon, pointer, or bit map for
editing, and to save it after you are through.

Selecting your icon, pointer, or bit map

1. To create a new icon, pointer, or bit map, select New from the File menu. The
New Figure pop-up window appears, prompting you for further information.

Select the figure type: Icon, Pointer, or Bit map. For a bit map you must
specify the width and height in pels. Select Enter.

You can also create new art by modifying or editing an existing art of the same
type.

2. To edit existing art, select Open from the File menu. You will be prompted for
a name.

Note: Unless you have turned off Safe Prompting (which is described under
“Setting Preferences” on page 805) on the Options menu, you will be prompted
to save if you select Open or New while there is unsaved art on your screen.

3. If you started Iconedit from a command prompt and specified multiple files, you
can use the Next option on the File menu to select the next file.

The Next option will be greyed out if you did not start from the command line
and specify multiple files.

802 IBM VisualAge�C++ for OS/2 User's Guide

Editing Icons with Icon Editor

Saving your icon, pointer, or bit map

To save your art, select either of the following:

¹ Select Save to save it under its current file name. If this is new art, you will be
prompted for a name.

¹ Select Save As to save the art under a different name. You will be prompted for
a new name.

 Editing Art
To edit your art, use the functions of the Edit menu.

Select Undo to restore the art to the way it was before the most recent editing
operation.

Four of the editing functions require that you first mark the area to be edited, using
Select or Select All.

If you choose Select, the cursor changes to a plus (+) inside a square. Hold the left
mouse button down to anchor one corner, and then drag the mouse. Release the
button to anchor the opposite corner of the rectangular area you want to edit.

If you choose Select All, the entire figure is selected.

Selected Edit Menu Functions

The following functions all require that an area must first be selected:

¹ Select Fill to fill the selected area with the current palette color. For additional
information, see “Filling Areas With Color” on page 808.

¹ Select Cut to cut an area you would like to move or delete.

¹ Select Copy to copy an area you would like to duplicate elsewhere in the same
file or in another file.

¹ Select Paste to place an area you have marked with Cut or Copy. Drag the
outlined area that you have marked to the place you would like to paste it.

¹ Select Clear to erase all drawing within an area you have selected and leave
transparent pels. If you have used Select All, this will clear your entire icon,
pointer, or bit map.

¹ Select Stretch Paste to paste the clipboard contents into your art, stretching and
positioning to fit.

¹ Select Flip Horizontal to flip the art on its horizontal axis, reversing bottom and
top.

 Chapter 57. Icon Editor 803

Editing Icons with Icon Editor

¹ Select Flip Vertical to flip the art on its vertical axis, reversing left and right.
You can create a symmetrical drawing by copying one side of the art to the other
side, and then flipping one of them.

¹ Select Circle to inscribe a circle or ellipse within the selected area.

 Using Options
The choices on the Options menu enable you to test your art and vary your editing
environment. To change an option, from the Options menu select:

Test
To test view the pointer or icon you are editing. The pointer or icon will be
displayed, actual size, as the pointer until you toggle back by again selecting
Test from the Options menu.

Grid
To superimpose a grid over the editing window. This can be useful when you
want to draw a symmetrical figure. Each cell of the grid represents one pel in
the figure.

X background
To make the transparent pels (where the background is visible) apparent when
editing an icon or pointer. All screen or inverse screen colors will be shown
with an X. This option does not apply to bit maps because they have no
transparent pels.

Draw Straight
To temporarily restrict your drawing to drawing straight vertical and horizontal
lines. Even if you deviate from the horizontal row, a horizontal line is
produced when the mouse pointer is dragged across the editing window.
Dragging the mouse up or down produces straight vertical lines.

Changing Pen Shape
 See “Changing Pen Shape and Size” on page 805

Changing Pen Size
 See “Changing Pen Shape and Size” on page 805

Setting Preferences
 See “Setting Preferences” on page 805

Defining a Hotspot
 See “Defining a Hotspot” on page 806

804 IBM VisualAge�C++ for OS/2 User's Guide

Editing Icons with Icon Editor

Changing
Pen Shape
and Size

You can change the shape and size of the pen by using choices on theOptions
menu.

Changing Pen Shape

Before you select Pen Shape, you must first select the shape using the Select
function on the Edit Menu. See “Editing Art” on page 803 for information about
Select. Then select Set Pen Shape on the Options menu.

Changing Pen Size

Select Pen size on the Options menu to specify how many pels the pointer paints at
a time. You can select any of nine square pen sizes:

Shortcut: Select a pen size by pressing Ctrl and the size, such as Ctrl+6 for a 6 x 6
pen size.

Setting
Preferences

To change your preferences, select Preferences from the Options menu. Then
select any of the following:

Safe Prompting
To be warned before destructive operations such as file overwrites.

Suppress Warnings
To suppress display of informational messages.

Save State on Exit
To save settings for your next session.

Display Status Area
To toggle on and off the picture of the mouse and art from the status area.

Reset Options and Modes
To deselect the following items:

 Select
 Hotspot
 Color Fill
 Find Color

The palette will not be reset.

1 x 1 4 x 4 7 x 7
2 x 2 5 x 5 8 x 8
3 x 3 6 x 6 9 x 9

 Chapter 57. Icon Editor 805

Editing Icons with Icon Editor

Defining a
Hotspot

The Hotspotis the pel where mouse input for an icon or pointer is directed. The
default hotspot location is 16 x 16, the center of the icon or pointer. Bit maps do
not have hotspots.

Select Hotspot from the Options menu to designate this pel. The cursor changes
shape, and the screen coordinates of the current hotspot are displayed in the
information window. When you click on a new hotspot, the screen coordinates of the
new hotspot are displayed.

Select Hotspot again to return to editing.

When an application uses WinQueryPointerPos to query the screen position of a
pointer, the OS/2 operating system returns the coordinates of the pointer hot spot.

Selecting
Colors

Use the Palette to select a new drawing color, using the left or right mouse button.

The currently selected color for the right mouse button is framed on the palette in
red; the color for the left mouse button is framed in green. The currently selected
colors for both mouse buttons are also displayed at the left side of the status area.

Changing Palettes or Palette Colors

To change palettes or palette colors, select the Palette menu. On the Palette menu,
you can:

¹ Select New to create a new palette. The default palette will appear for you to
edit.

¹ Select Open to open an existing palette.

¹ Select Save to save your current palette. If it is a new palette, you will be
prompted for a name.

¹ Select Save As to save the palette under a different name. You will be prompted
for a new name.

¹ Select Edit Color to edit a color in your palette.

¹ Select Swap colors to swap the colors of the left and right mouse buttons. A
submenu will appear, asking whether you want to preserve these colors in your
art. Unless you choose Preserve Figure, the colors in your art will be changed
accordingly.

¹ Select Set default palette to save the existing palette as your default palette.

806 IBM VisualAge�C++ for OS/2 User's Guide

Editing Icons with Icon Editor

Editing Palette Colors
You can change the colors that appear on your palette. To edit palette colors, follow
these steps:

1. Select the color to be edited with the mouse. A frame appears around it on the
palette.

2. Select Edit color from the Palette menu.

Shortcuts:

¹ Double-click on the color to be edited.
¹ To select a color that you have already used in your art, use Find color on

the Tools menu.

The Edit color window will appear.

3. You can change the way you define palette colors by checking Dynamic editing
and Important and choosing between RGB and HSV terms.

¹ Dynamic editing, when checked, will make your art change dynamically as
you edit individual colors, so that you can see how the changes will affect
your art.

¹ Important , when checked, will require that the color be accurately rendered,
without dithering (approximating the color).

¹ Every color can be described numerically in either RGB or HSV terms.

RGB As proportions of primary colors red, blue, and green

HSV In terms of hue, saturation, and value

To toggle between RGB and HSV, select the appropriate radio button.

4. Use the scroll bars to change RGB or HSV values, or change these numbers from
the keyboard.

5. Select OK to save the edited color.

 Chapter 57. Icon Editor 807

Editing Icons with Icon Editor

Filling Areas With Color
There are two different ways to fill an area with color:

¹ To fill an irregularly-shaped area with the current palette color, select Color fill
from the Tools menu.

After you click on a specific pel, all adjoining areas that are the same color as
that pel will be colored with the selected color.

¹ To fill a previously-selected area with the current palette color, select Fill from
the Edit menu. You must first select an area. See “Editing Art” on
page 803 for information about Select and Select All.

Note: To select a color that you have already used in your art, use Find color on
the Tools menu. A question-mark-arrow cursor will appear.

Click on a specific pel of that color, and that color is selected.

Creating Icons for Specific Displays
Although the Icon Editor edits and saves a device-independent form of the icon, the
Device menu enables you to create versions of the icon for specific display devices.
The Device menu displays a choice of three functions: create a new device form,
select an existing form, and delete a form.

An independent form is automatically created when you create a new icon or pointer
and all other forms are derived from it. If you select any of the other device forms
listed in the menu, a new form is created for the specified device. The Custom
option enables you to create an icon or pointer for any other device.

Select List to view a list of all existing forms, including custom and standard forms.
Any item on this list can be selected and edited or deleted. However, you must have
at least one device-independent form. Select Add in the list dialog to add a new
device form.

Several icon bit maps can be saved in a single icon resource; when the icon is saved,
all versions are saved with it in a format that includes a device resolution tag for each
version. When the icon is loaded from a resource file, the display device resolution
is matched against the device for which each device-dependent icon was intended. If
a match is found, that icon is used. If no match is found, the application uses the
device-independent icon, which always exists.

808 IBM VisualAge�C++ for OS/2 User's Guide

Editing Icons with Icon Editor

Figure files can contain any of the following forms to support multiple devices:

 ¹ Independent
¹ CGA (2 colors)
¹ EGA (16 colors)
¹ VGA (16 colors)
¹ XGA/8514 (256 colors)
¹ XGA/8514 (16 colors)
¹ XGA/8514 Small Color Form (16 colors)
¹ XGA/8514 Small BW Form

 ¹ Custom

Device-dependent icons are icons that are designed for a particular display resolution.

An application can display icons or bit maps in dialog boxes or windows.

The file name extension depends on the type of resource you are creating. The Icon
Editor produces a file with any of the following extensions:

.ICO for icons

.PTR for pointers

.BMP for bit maps

The .ICO, .PTR, or .BMP files must be referred to in the resource script file for your
application. The external files containing icons, pointers, and bit maps are all
referenced in the resource script file by single-line statements that have a similar
format. For example:

ICON ID_MAINWND myprog.ico /* Icon */

POINTER ID_PTR mypoint.ptr /* Pointer */

BITMAP ID_BMP mybtmp.bmp /* bit map */

ICON, POINTER, and BITMAP keywords identify the resource type.

The resource type is followed by a symbolic name or integer identifier that is used by
your application to identify the resource. For example, with ICON, the
ID_MAINWND identifier can be used by the application in the control data
parameter of the WinCreateWindow call (or as a parameter to the
WinCreateStdWindow call) that creates the frame of the main window of your
application. The OS/2 operating system then associates the icon with the main
window.

The symbolic name or identifier can be followed by any loading and memory options.
The options are not used in the example, as it lets the options default.

 Chapter 57. Icon Editor 809

Editing Icons with Icon Editor

The last part of the statement is the file name and file type of the resource created by
the Icon Editor. A fully qualified path name must be given if the file is not in the
current directory. An icon that it used for a minimized application main window
should have the same file name as the executable file of the application.

Using a Command Line
If you start the Icon Editor from a command line, rather than from an icon, you have
an additional option available. You can load more than one file at a time by
specifying the files on the command line. For instance, the following command
would load the two specified icons, a bit map, and a pointer:

ICONEDIT Ruth.ico gurp.ico alex.bmp pamela.ptr

If you specify multiple files when you start the Icon Editor from the command line,
you can use the Next option on the File Menu to select the next file. This option is
available only if you specify multiple files from the command line.

810 IBM VisualAge�C++ for OS/2 User's Guide

Part 12. Additional Utilities You May Find Useful

VisualAge C++ provides a number of utilities that can help you complete your
applications and make programming tasks easier:

NMAKE Builds your application based on dependencies and rules.
MKMSGF Creates message files.
MSGBIND Binds messages to your application.
KwikINF Provides quick online information.
IPFC Creates online documentation.
PACK and PACK2 Compress files.
CPPFILT Demangles compiled C++ names.
EXEHDR Displays and modifies executable-file header contents.
MARKEXE Displays and modifies program type for executable files.
MAPSYM Creates symbolic debugging files (for kernel debugger)

from map files.
Workplace Class List Creates and modifies Workplace object classes.
Object Utility/2 Registers and instantiates Workplace object classes.
T Terminal Emulator Provides ASCII terminal emulation.

Chapter 58. Program Maintenance Utility (NMAKE) 815
Why Use NMAKE? . 815
Running NMAKE .815
Options .818
Description Files .821
Macros .824
Special Macros .827
Inference Rules .831
Inference Rules Example . 832
Directives .833
Inline Files .838
Characters That Modify Commands. 840
Macros and Inference Rules in TOOLS.INI. 843

Chapter 59. Creating Message Files with MKMSGF 845
MKMSGF Syntax .845
Options .850
Control Files .852

Chapter 60. Binding Messages with MSGBIND 853
MSGBIND Syntax .853

 Copyright IBM Corp. 1992, 1995 811

How Message Retrieval Works. 855

Chapter 61. Getting Quick Information with KwikINF 857
Automatic Text Retrieval . 857
BOOKSHELF Online Documents . 857
Using KwikINF .861
Searching Using the KwikINF Window . 864

Chapter 62. Creating Online Documentation 867

Chapter 63. Compressing Files with PACK and PACK2 869
Starting PACK .869
PACK Options .870
Creating a List File . 871
Restoring Compressed Files with UNPACK 872

Chapter 64. Demangling Compiled C++ Names with CPPFILT 875
Using the CPPFILT Utility . 875
Text Mode .876
Text Mode Options . 876
Binary Mode .879
Binary Mode Options . 881

Chapter 65. Using EXEHDR .885
EXEHDR Syntax .885
EXEHDR Options .886
Output .890

Chapter 66. Setting Program Type with MARKEXE 893
Command-Line Syntax .893

Chapter 67. Creating Symbolic Debugger Files with MAPSYM 897
Displaying Help .897
MAPSYM Options .897

Chapter 68. Creating Workplace Object Classes 899
Starting Workplace Class List . 899

Chapter 69. Registering Workplace Objects with Object Utility/2 903

Chapter 70. Using the T Terminal Emulator 907
Command-Line Syntax .907
Terminal Setup .908

812 IBM VisualAge�C++ for OS/2 User's Guide

Sending ASCII Files . 910
Pausing and Scrolling . 910
Receiving ASCII Files . 911

 Part 12. Additional Utilities You May Find Useful 813

814 IBM VisualAge�C++ for OS/2 User's Guide

Program Maintenance Utility (NMAKE)

58 Program Maintenance Utility (NMAKE)

The Program Maintenance Utility (NMAKE) automates the process of updating
project files. NMAKE compares the modification dates for one set of files (the target
files) with those of another set of files (the dependent files). If any dependent files
have changed more recently than the target files, NMAKE executes a series of
commands to bring the targets up-to-date.

Why Use NMAKE?
The most common use of NMAKE is to automate the process of updating a project
after you make a change to a source file. Large projects tend to have many source
files. Often, only a few of your source files need to be compiled when you make a
change. You set up a special text file called a “description” file (or “makefile”) that
tells NMAKE:

¹ Which files depend on others
¹ Which commands, such as compile and link commands, need to be carried out to

bring your program up-to-date

This use of NMAKE is only one example of its power. By building suitable
description files, you can use NMAKE to

 ¹ Make backups
¹ Configure data files
¹ Run programs when data files are modified

 Running NMAKE
Run NMAKE by typing NMAKE on the operating-system command line. Supply input
to NMAKE by either of two methods:

¹ Enter the input directly on the command line.
¹ Put your input into a command file (a text file, also called a response file) and

enter the file name on the command line.

Press CTRL+C at any time during an NMAKE run to return to the operating system.

Note: Under the OS/2 operating system, do not use the ampersand character (&) to
combine the NMAKE command with the CD, CHDIR, or SET command.

 Copyright IBM Corp. 1992, 1995 815

Program Maintenance Utility (NMAKE)

Using the Command Line
When using NMAKE at the command line, keep the following in mind::

¹ All fields are optional.
¹ NMAKE always looks first in the current directory for a description file

called MAKEFILE. If MAKEFILE does not exist, NMAKE uses the
<filename> given with the /F (specify description file) option.

 Command-Line Syntax
NMAKE [options] [macrodefinitions] [targets] [/F filname]

<options>
Specifies options that modify NMAKE's actions.

<macrodefinitions>
Lists macro definitions for NMAKE to use. Macro definitions that contain
spaces must be enclosed by double quotation marks.

<targets>
Specifies the names of one or more target files to build. If you do not list any
targets, NMAKE builds the first target in the description file.

/F <filename>
Gives the name of the description file where you specify file dependencies and
which commands to execute when a file is out-of-date.

The following example:

NMAKE /S "program = flash" SORT.EXE SEARCH.EXE

¹ Invokes NMAKE with the /S option
¹ Defines a macro, assigning the string "flash" to the macro "program"
¹ Specifies two targets: SORT.EXE and SEARCH.EXE

By default, NMAKE uses the file named MAKEFILE as the description file.

816 IBM VisualAge�C++ for OS/2 User's Guide

Program Maintenance Utility (NMAKE)

 Command-Line Help
To display NMAKE help, typeNMAKE /? at the prompt. The appropriate copyright
statement appears, along with the following:

Usage:
 NMAKE @commandfile
 NMAKE /help

NMAKE [/nologo] [/acdeinpqrst?] [/f makefile] [/x stderrfile]

 [macrodefs][targets]

Where the options stand for
/a force All targets to be built
/c Cryptic mode; suppress sign-on banner & warning messages
/d Display modification dates
/e Environment variables override macros in the makefile
/i Ignore exit codes of commands invoked
/n No execute mode; display commands only
/p Print macro definitions & target descriptions
/q Query if target is up to date; for use in batch files
/r inference Rules from 'tools.ini' to be ignored
/s Silent execution of commands
/t Touch targets with current date & time

 /? Help message
 /help Help message
/nologo do not display sign-on banner

Using NMAKE Command Files
A command file is a response file used to extend command-line input to NMAKE.

You can split input to NMAKE between the command line and a command file. Use
the name of a command file (preceded by @) where you normally type the input
information on the command line.

Why Use a Command File?

Use a command file for

¹ Complex and long commands you type frequently
¹ Strings of command-line arguments, such as macro definitions, that exceed the

limit for command-line length

Note: A command file is not the same as a description file. For information
about description files, see “Description Files” on page 821

 Chapter 58. Program Maintenance Utility (NMAKE)817

Program Maintenance Utility (NMAKE)

Command File Syntax

To provide input to NMAKE with a command file, type

NMAKE @commandfile

In the <commandfile> field, enter the name of a file containing the same information
as is normally entered on the command line.

NMAKE treats line breaks that occur between arguments as spaces. Macro
definitions can span multiple lines if you end each line except the last with a
backslash (\). Macro definitions that contain spaces must be enclosed by quotation
marks, just as if they were entered directly on the command line.

Example

The following is a command file called UPDATE:

/S "program \
= flash" SORT.EXE SEARCH.EXE

You can use this command file by typing the following command:

NMAKE @UPDATE

This runs NMAKE using:

¹ The /S option
¹ The macro definition "program = flash"
¹ The targets specified as SORT.EXE and SEARCH.EXE
¹ The description file MAKEFILE by default

Note that the backslash allows the macro definition to span two lines.

 Options
The following describes the options you can use with NMAKE. Keep the following
in mind when using options:

¹ Option characters are not case sensitive; /I and /i are equivalent.
¹ You can use either a slash or dash before the option characters; -a and /a are

equivalent.

Produce Error File (/X)
Syntax: /X stderrfile

This option produces a standard error file.

818 IBM VisualAge�C++ for OS/2 User's Guide

Program Maintenance Utility (NMAKE)

Build All Targets (/A)
Syntax: /A

This option builds all specified targets even if they are not out-of-date with respect to
their dependent files.

 See “Description Files” on page 821.

Suppress Messages (/C)
Syntax: /C

This option suppresses display of the NMAKE sign-on banner, nonfatal error
messages, and warning messages. To suppress the sign-on banner without
suppressing other messages, use the /NOLOGO option.

Display Modification Dates (/D)
Syntax: /D

This option displays the modification date of each file when the dates of target and
dependent files are checked.

 See “Description Files” on page 821.

Override Environment Variables (/E)
Syntax: /E

This option disables inherited macro redefinition.

NMAKE inherits all current environment variables as macros, which can be redefined
in a description file. The /E option disables any redefinition — the inherited macro
always has the value of the environment variable.

Specify Description File (/F)
Syntax: /F filename

This option specifies <filename> as the name of the description file to use. If a dash
(-) is entered instead of a file name, NMAKE reads a description file from the
standard input device, typically the keyboard.

If a filename is not specified, it defaults to MAKEFILE.

 Chapter 58. Program Maintenance Utility (NMAKE)819

Program Maintenance Utility (NMAKE)

Display Help (/HELP or /?)
Syntax: /HELP OR /?

This option displays a brief summary of NMAKE syntax.

Ignore Exit Codes (/I)
Syntax: /I

This option ignores exit codes (also called error level or return codes) returned by
programs such as compilers or linkers called by NMAKE. If this option is not
specified, NMAKE ends when any program returns a nonzero exit code.

Display Commands (/N)
Syntax: /N

This option causes NMAKE commands to be displayed but not executed. Use the /N
option to:

¹ Check which targets are out-of-date with respect to their dependents

¹ Debug description files

Suppress Sign-On Banner (/NOLOGO)
Syntax: /NOLOGO

This option suppresses the sign-on banner display when NMAKE is started. If you
want to suppress nonfatal error messages and warnings as well, use the suppress
messages (/C) option.

Print Macro and Target Definitions (/P)
Syntax: /P

This option writes out all macro definitions and target definitions. Output is sent to
the standard output device (typically the display).

Return Exit Code (/Q)
Syntax: /Q

This option causes NMAKE to return either of the following:

¹ A 0 exit code if all targets built during-an-NMAKE run are up-to-date
¹ A nonzero exit code if they are not up-to-date

Use this option to run NMAKE from within a batch file.

820 IBM VisualAge�C++ for OS/2 User's Guide

Program Maintenance Utility (NMAKE)

Ignore TOOLS.INI File (/R)
Syntax: /R

This option ignores the following:

¹ All inference rules and macros contained in the TOOLS.INI file
¹ All predefined inference rules and macros

Suppress Command Display (/S)
Syntax: /S

This option suppresses the display of commands as they are executed by NMAKE. It
does not suppress the display of messages generated by the commands themselves.

The /N command (Display Commands) takes precedence over the /S option. If you
use /N and /S together, commands are displayed but not executed.

Change Target Modification Dates (/T)
Syntax: /T

This option changes or “touches” the modification dates for out-of-date target files to
the current date. No commands are executed, and the target file is left unchanged.

 Description Files
NMAKE uses a description file to determine what to do. In its simplest form, a
description file tells NMAKE which files depend on others and which commands
need to be executed if a file changes.

A description file looks like this:

targets...: dependents...
 command
 :

targets... : dependents...
 command

 Description Blocks
A dependent relationship between files is defined in a description block. A
description block indicates the relationship among various parts of the program. It
contains commands to bring all components up to date. The description file can
contain up to 1048 description blocks.

 Chapter 58. Program Maintenance Utility (NMAKE)821

Program Maintenance Utility (NMAKE)

Description File Description Block
┌──────────────┐ ┌─────────5 ┌───────────────────────────┐
│ Description │ │ │ │
│ Block 1 │ │ │targets... : dependents... │
├──────────────┤─────┘ │ command │
│ Descr Blk 2 │ │ command │
├──────────────┤─────┐ │ command │
│ : │ │ │ : │
├──────────────┤ │ │ │
│ Descr Blk n │ │ │ │
│ │ │ │ │
└──────────────┘ └─────────5 └───────────────────────────┘

 Special Features
The following are special features of description files and blocks:

¹ Description files can contain macro definitions and use macros in description
blocks. Macros allow easy substitution of one text string for another.

¹ Description files can contain inference rules. Inference rules allow NMAKE to
infer which commands to execute based on the file-name extensions used for
targets and dependents.

¹ You can specify directories for NMAKE to search for dependent files by using
the following syntax:

targets : {directory1;directory2...}dependents

NMAKE searches the current directory first, then <directory1>, <directory2>, and
so on.

¹ A command can be placed on the same line as the target and dependent files by
using a semicolon (;) as depicted below:

targets... : dependents... ; command

¹ A long command can span several lines if each line ends with a backslash (\):

command \
continuation of command

¹ The execution of a command can be modified if you precede the command with
special characters.

¹ If you do not specify a command in a description block, NMAKE looks for an
inference rule to build the target.

822 IBM VisualAge�C++ for OS/2 User's Guide

Program Maintenance Utility (NMAKE)

¹ DOS and OS/2 wild card characters (* and ?) can be used in description blocks.
For example, the following description block compiles all source files with the .C
extension:

ASTRO.EXE : *.C
 ICC $**

¹ NMAKE will expand the *.C specification into the complete list of C files in the
current directory. $** is a complete list of dependents specified for the current
target.

¹ NMAKE uses several punctuation characters in its syntax. To use one of these
characters as a literal character, place an escape character (_) in front of it. For
a list of punctuation characters, see “Escape Characters” on page 839.

¹ Normally a target file can appear in only one description block. A special syntax
allows you to use a target in several description blocks.

¹ A special syntax allows you to determine the drive, path, base name, and
extension of the first dependent file in a description block.

Targets in Several Description Blocks
Using a file as a target in more than one description block causes NMAKE to end.
You can overcome this limitation by using two colons (::) as the target/dependent
separator instead of one colon.

The following description block is permissible:

X :: A
 command
X :: B
 command

The following causes NMAKE to end:

X : A
 command
X : B
 command

It is permissible to use single colons if the target/dependent lines are grouped above
the same commands. The following is permissible:

X : A
X : B
 command

 Chapter 58. Program Maintenance Utility (NMAKE)823

Program Maintenance Utility (NMAKE)

Double Colon (::) Target/Dependent Separator Example

TARGET.LIB :: A.ASM B.ASM C.ASM
ML A.ASM B.ASM C.ASM
LIB TARGET -+A.OBJ -+B.OBJ -+C.OBJ;

TARGET.LIB :: D.C E.C
ICC /C D.C E.C
LIB TARGET -+D.OBJ -+E.OBJ;

These two description blocks both update the library named TARGET.LIB. If any of
the assembly-language files have changed more recently than the library file,
NMAKE executes the commands in the first block to assemble the source files and
update the library. Similarly, if any of the C-language files have changed, NMAKE
executes the second group of commands to compile the C files and update the library.

 Macros
Macros provide a convenient way to replace one string with another in the description
file. The text is automatically replaced each time NMAKE is run. This feature
makes it easy to change text throughout the description file without having to edit
every line that uses the text. Two common uses of macros are:

Two Common Uses of Macros

¹ To create a standard description file for several projects. The macro represents
the file names in commands. These file names are defined when you run
NMAKE. When you switch to a different project, changing the macro changes
the file names NMAKE uses throughout the description file.

¹ To control the options that NMAKE passes to the compiler, assembler, or linker.
When using a macro to specify the options, you can quickly change the options
throughout the description file in one easy step.

A macro can be defined :

In a Description File
On the Command Line

 In TOOLS.INI
Through inheritance from Environment Variables

824 IBM VisualAge�C++ for OS/2 User's Guide

Program Maintenance Utility (NMAKE)

 Macros Example
program = FLASH
c = LINK
options =

$(program).EXE : $(program).OBJ
$c $(options) $(program).OBJ;

The example above defines three macros. The description block executes the
following commands:

FLASH.EXE : FLASH.OBJ
 LINK FLASH.OBJ;

 Special Features
Macros have the following special features:

¹ When using a macro, you can substitute text in the macro itself.

¹ Several macros have been predefined for special purposes.

¹ If a macro is defined more than once, precedence rules govern which definition is
used.

¹ You can also put macros into your TOOLS.INI file.

Macros in a Description File
Before using a macro, you need to define it, either on the NMAKE command line or
in your description file. Description file macro definitions look like this:

macroname = macrostring

Macro names can be any combination of alphanumeric characters and the underscore
character (_), and they are case-sensitive. A macro string can be any string of
characters.

The first character of the macro name must be the first character on the line.
NMAKE ignores any spaces before or after the equal sign (=).

The macro string can be a null string and can contain embedded spaces. Do not
enclose the macro string in quotation marks; quotation marks are used only when you
define macros on the command line.

Macros on the Command Line
Before using a macro, you need to define it, either on the NMAKE command line or
in your description file. Command-line macro definitions look like this:

macroname=macrostring

 Chapter 58. Program Maintenance Utility (NMAKE)825

Program Maintenance Utility (NMAKE)

No spaces can surround the equal sign. If you embed spaces, NMAKE might
misinterpret your macro. If your macro string contains embedded spaces, enclose it
in double quotation marks (") like this:

macroname="macro string"

or simply enclose the entire macro definition in double quotation marks (") like this:

"macroname = macro string"

Macro names can be any combination of alphanumeric characters and the underscore
character (_), and they are case-sensitive. A macro string can be any string of
characters or a null string.

 Inherited Macros
NMAKE inherits all current environment variables as macros. For example, if you
have a PATH environment variable defined asPATH = C:\TOOLS\BIN, the string
C:\TOOLS\BIN is substituted when you use PATH in the description file.

You can redefine inherited macros by including a line such as the example above in a
description file. While NMAKE is executing, the macro takes on the redefined
definition. When NMAKE terminates, however, the environment variable resumes its
original value.

The Override Environment Variables (/E) option disables inherited macro redefinition.
If you use this option, NMAKE ignores any attempt to redefine an inherited macro.

 Defined Macros
After you have defined a macro, you can use it anywhere in your description file with
the following syntax:

$(macroname)

The parentheses are not required if the macro name is only one character long. To
use a dollar sign ($) without using a macro, enter two dollar signs ($$), or use the
caret (_) before the dollar sign as an escape character.

When NMAKE runs, it replaces all occurrences of $(macroname) with the defined
macro string. If the macro is undefined, nothing is substituted. After a macro is
defined, you can cancel it only with the !UNDEF directive.

 Macro Substitutions
Just as you use macros to substitute text within a description file, you use the
following syntax to substitute text within a macro:

$(macroname: string1 = string2)

826 IBM VisualAge�C++ for OS/2 User's Guide

Program Maintenance Utility (NMAKE)

Every occurrence of <string1> is replaced by <string2> in <macroname>. Spaces
between the colon and <string1> are considered part of <string1>. If <string2> is a
null string, all occurrences of <string1> are deleted from the macro. The colon (:)
must immediately follow <macroname>.

Note: The replacement of <string1> with <string2> in the macro is not a permanent
change. If you use the macro again without a substitution, you get the
original unchanged macro.

 Example

SOURCES = ONE.C TWO.C THREE.C
PROGRAM.EXE : $(SOURCES:.C=.OBJ)
 LINK $**;

The example above defines a macro called SOURCES, which contains the names of
three C source files. With this macro, the target/dependent line substitutes the .OBJ
extension for the .C extension. Thus, NMAKE executes the following command:

LINK ONE.OBJ TWO.OBJ THREE.OBJ;

Note: $** is a special macro that translates to all dependent files for a given target.

 Special Macros
NMAKE predefines several macros. The first six macros below return one or more
file specifications for the files in the target/dependent line of a description block.
Except where noted, the file specification includes the path of the file, the base file
name, and the file-name extension.

Macro Value

$@ The specification of the target file.

$* The base name (without extension) of the target file. Path
information is also returned if the path was specified as part of the
target file name. This macro cannot be used in a dependent list.

$** The specifications of the dependent files.

$? The specifications for only those dependent files that are
out-of-date with respect to the targets.

$< The specification of a single dependent file that is out-of-date with
respect to the targets. This macro is used only in inference rules.

$$@ The file specification of the target that NMAKE is currently
evaluating. This is a dynamic dependency parameter, used only in
dependent lists.

 Chapter 58. Program Maintenance Utility (NMAKE)827

Program Maintenance Utility (NMAKE)

$(CC) The string ICC, which is the command to run the C Set ++
Compiler. You can redefine this macro to use a different
command.

$(AS) The string MASM, which is the command to run the Macro
Assembler (MASM). You can redefine this macro to use a
different command.

$(MAKE) The command name used to run NMAKE. This macro is used to
invoke NMAKE recursively. If you redefine this macro, NMAKE
issues a warning message.

Note: NMAKE executes the command line in which $(MAKE)
appears, even if the display commands (/N) option is on.

$(MAKEFLAGS)
The NMAKE options currently in effect. You cannot redefine this
macro.

Note: The special macros $** and $$@ are the only exceptions to the rule that
macro names longer than one character must be enclosed in parentheses.

You can append characters to any of the first six macros in this list to modify the
meaning of the macro. However, you cannot use macro substitutions in these macros.

Special Macros Examples
TRIG.LIB : SIN.OBJ COS.OBJ ARCTAN.OBJ
!LIB TRIG.LIB -+$?;

In the example above, the macro $? represents the names of all dependent files that
are out-of-date with respect to the target file. The exclamation point (!) preceding
the LIB command causes NMAKE to execute the LIB command once for each
dependent file in the list. As a result of this description, the LIB command is
executed up to three times, each time replacing a module with a newer version.

DIR=C:\INCLUDE
$(DIR)\GLOBALS.H : GLOBALS.H
 COPY GLOBALS.H $@
$(DIR)\TYPES.H : TYPES.H
 COPY TYPES.H $@
$(DIR)\MACROS.H : MACROS.H
 COPY MACROS.H $@

The example above shows how to update a group of include files. Each of the files
GLOBALS.H, TYPES.H, and MACROS.H in the directory C:\INCLUDE depends on
its counterpart in the current directory. If one of the include files is out-of-date,
NMAKE replaces it with the file of the same name from the current directory.

828 IBM VisualAge�C++ for OS/2 User's Guide

Program Maintenance Utility (NMAKE)

The following description file, which uses the special macro $$@, is equivalent:

DIR=C:\INCLUDE
$(DIR)\GLOBALS.H $(DIR)\TYPES.H $(DIR)\MACROS.H : $$(@F)
!COPY $? $@

The special macro $$(@F) signifies the file name (without the path) of the current
target.

When NMAKE evaluates the description block, it evaluates the three targets, one at a
time, with respect to their dependents. Thus, NMAKE first checks whether
C:\INCLUDE\GLOBALS.H is out-of-date compared with GLOBALS.H in the current
directory. If so, it executes the command to copy the dependent file GLOBALS.H to
the target. NMAKE repeats the procedure for the other two targets.

Note that on the command line, the macro $? refers to the dependent for this target.
The macro $@ specifies the full file specification of the target file.

 File-Specification Parts
A full file specification gives the base name of the file, the file-name extension, and
the path. The path provides the disk-drive identifier and the sequence of directories
needed to locate the file on the disk.

For example, the file specification

C:\SOURCE\PROG\SORT.OBJ

has the following parts:

Path Name C:\SOURCE\PROG
Base File Name SORT
File-Name Extension .OBJ

Characters That Modify Special Macros
The following six macros all resolve to a file specification (or possibly several file
specifications for $** and $?):

 $* $@ $** $< $? $$@

You can append characters to any of these macros to modify the file name returned
by the macro. Depending on which character you use, parts of the full file
specification are returned:

 Chapter 58. Program Maintenance Utility (NMAKE)829

Program Maintenance Utility (NMAKE)

 Appended Character
File Part Returned D F B R

File Path Yes No No Yes
Base File Name No Yes Yes Yes
File Name Extension No Yes No No

Modified Special Macros Example
If the macro $@ has the value

C:\SOURCE\PROG\SORT.OBJ

then the following values are returned for the modified macro:

Macro Value

$(@D) C:\SOURCE\PROG

$(@F) SORT.OBJ

$(@B) SORT

$(@R) C:\SOURCE\PROG\SORT

Note: Modified macros are always longer than a single character — they must be
enclosed by parentheses when used.

Macro Precedence Rules
When the same macro is defined in more than one place, the definition with the
highest priority is used:

Priority Definition
1 (Highest) Command line
2 Description file
3 Environment variables
4 TOOLS.INI file
5 (Lowest) Predefined macros (such as CC and AS)

If you invoke NMAKE with the Overriding Macro Definitions (/E) option, macros
defined by environment variables take precedence over those defined in a description
file.

830 IBM VisualAge�C++ for OS/2 User's Guide

Program Maintenance Utility (NMAKE)

 Inference Rules
Inference rules are templates from which NMAKE infers what to do with a
description block when no commands are given. Only those extensions defined in a
.SUFFIXES list can have inference rules. The extensions .C, .OBJ, .ASM, and .EXE
are automatically included in .SUFFIXES.

When NMAKE encounters a description block with no commands, it looks for an
inference rule that specifies how to create the target from the dependent files, given
the two file extensions. Similarly, if a dependent file does not exist, NMAKE looks
for an inference rule that specifies how to create the dependent from another file with
the same base name.

NMAKE applies an inference rule only if the base name of the file it is trying to
create matches the base name of a file that already exists.

In effect, inference rules are useful only when there is a one-to-one correspondence
between the files with the "from" extension and the files with the "to" extension.
You cannot, for example, define an inference rule that inserts a number of modules
into a library.

The use of inference rules eliminates the need to put the same commands in several
description blocks. For example, you can use inference rules to specify a single ICC
command that changes any C source file (with a .C extension) to an object file (with
a .OBJ extension).

You define an inference rule by including text of the following form in your
description file or in your TOOLS.INI file — see “Special Features”.

.fromext.toext:
commands
:

The elements of the inference rule are:

<fromext>
The file-name extension for dependent files to build a target

<toext>
The file-name extension for target files to be built

<commands>
The commands to build the <toext> target from the <fromext> dependent.

For example, an inference rule to convert C source files (with the .C extension) to C
object files (with the .OBJ extension) is

 Chapter 58. Program Maintenance Utility (NMAKE)831

Program Maintenance Utility (NMAKE)

.C.OBJ:
 ICC $<

Note: The special macro $< represents the name of a dependent out-of-date relative
to the target.

 Special Features
¹ You can specify a path where NMAKE should look for target and dependent files

used in inference rules.

¹ Inference rules are predefined for compiling and linking C programs, and for
assembling programs.

¹ NMAKE looks for inference rules in the TOOLS.INI file if it cannot find a rule
in a description file.

¹ Only those extensions defined in a .SUFFIXES list can have inference rules. The
extensions .C, .OBJ, .ASM, and .EXE are automatically included in .SUFFIXES.

Inference Rules Example
.OBJ.EXE:
 LINK $<;

EXAMPLE1.EXE: EXAMPLE1.OBJ

EXAMPLE2.EXE: EXAMPLE2.OBJ
LINK /CO EXAMPLE2,,,LIBV3.LIB

The first line above defines an inference rule that causes the LINK command to
create an executable file whenever a change is made in the corresponding object file.
The file name in the inference rule is specified with the special macro $< so that the
rule applies to any .OBJ file with an out-of-date executable file.

When NMAKE does not find any commands in the first description block, it checks
for a rule that might apply and finds the rule defined on the first two lines of the
description file. NMAKE applies the rule, replacing $< with EXAMPLE1.OBJ when
it executes the command, so that the LINK command becomes

LINK EXAMPLE1.OBJ;

NMAKE does not search for an inference rule when examining the second description
block, because a command is explicitly given.

832 IBM VisualAge�C++ for OS/2 User's Guide

Program Maintenance Utility (NMAKE)

Inference-Rule Path Specifications
When defining an inference rule, you can indicate to NMAKE where to look for
target and dependent files. Use the following syntax:

{frompath}.fromext{topath}.toext
 commands
 :

NMAKE looks in the directory specified by <frompath> for files with the <fromext>
extension. It executes the commands to build files with the <toext> extension in the
directory specified by <topath>.

Predefined Inference Rules
NMAKE predefines three inference rules:

Notes:

1. The first two rules automatically compile and link C programs.

2. The last rule automatically assembles programs.

Inference Rule Default Command Action

.C.OBJ $(CC) $(CFLAGS) /C $*.C ICC /C $*.C

.C.EXE $(CC) $(CFLAGS) $*.C ICC $*.C

.ASM.OBJ $(AS) $(AFLAGS) $*; MASM $*;

 Directives
Using directives, you can construct description files similar to batch files. NMAKE
provides directives that:

¹ Conditionally execute commands

¹ Display error messages

¹ Include the contents of other files

¹ Turn some NMAKE options on or off

Each directive begins with an exclamation point (!) in the first column of the
description file. Spaces can be placed between the exclamation point and the
directive keyword.

The list below describes the directives:

 Chapter 58. Program Maintenance Utility (NMAKE)833

Program Maintenance Utility (NMAKE)

!IF <expression>
Executes the statements between the !IF keyword and the next !ELSE or
!ENDIF directive if <expression> evaluates to a nonzero value.

The <expression> used with the !IF directive can consist of integer constants,
string constants, or exit codes returned by programs. Integer constants can use
the C unary operators for numerical negation (-), one's complement (˜), and
logical negation (!). You can also use any of the C binary operators listed
below:

Operator Description

+ Addition

- Subtraction

* Multiplication

/ Division

% Modulus

& Bitwise AND

| Bitwise OR

__ Bitwise XOR

&& Logical AND

|| Logical OR

<< Left shift

>> Right shift

== Equality

!= Inequality

< Less than

> Greater than

<= Less than or equal to

>= Greater than or equal to

Notes:

1. You can use parentheses to group expressions.

2. Values are assumed to be decimal values unless specified with a leading 0
(octal) or leading 0x (hexadecimal).

3. Strings are enclosed by quotation marks ("). You can use the equality
(==) and inequality (!=) operators to compare two strings.

834 IBM VisualAge�C++ for OS/2 User's Guide

Program Maintenance Utility (NMAKE)

4. You can invoke a program in an expression by enclosing the program name
in square brackets ([]). The exit code returned by the program is used in
the expression.

!ELSE
Executes the statements between the !ELSE and !ENDIF directives if the
statements preceding the !ELSE directive were not executed.

!ENDIF
Marks the end of the !IF, !IFDEF, or !IFNDEF block of statements.

!IFDEF <macroname>
Executes the statements between the !IFDEF keyword and the next !ELSE or
!ENDIF directive if <macroname> is defined in the description file. If a macro
has been defined as null, it is still considered to be defined.

!IFNDEF <macroname>
Executes the statements between the !IFNDEF keyword and the next !ELSE or
!ENDIF directive if <macroname> is not defined in the description file.

!UNDEF <macroname>
Undefines a previously defined macro.

!ERROR <text>
Prints text and then stops execution.

!INCLUDE <filename>
Reads and evaluates the file <filename> before continuing with the current
description file. If <filename> is enclosed by angle brackets (<>), NMAKE
searches for the file in the directories specified by the INCLUDE macro;
otherwise, it looks only in the current directory. The INCLUDE macro is
initially set to the value of the INCLUDE environment variable.

!CMDSWITCHES {+|-}<opt>
Turns on or off one of four NMAKE options: /D, /I, /N, and /S. If no options
are specified, the options are reset to the values they had when NMAKE was
started. To turn an option on, precede it with a plus sign (+); to turn it off,
precede it with a minus sign (-). This directive updates the MAKEFLAGS
macro.

 See “Special Macros” on page 827.

 Chapter 58. Program Maintenance Utility (NMAKE)835

Program Maintenance Utility (NMAKE)

 Directives Example
!INCLUDE <INFRULES.TXT>
!CMDSWITCHES +D
WINNER.EXE:WINNER.OBJ
!IFDEF DEBUG
! IF "$(DEBUG)"=="y"

LINK /CO WINNER.OBJ;
! ELSE
 LINK WINNER.OBJ;
! ENDIF
!ELSE
! ERROR Macro named DEBUG is not defined.
!ENDIF

The directives in this example do the following:

¹ The !INCLUDE directive causes the file INFRULES.TXT to be read and
evaluated as if it were part of the description file.

¹ The !CMDSWITCHES directive turns on the /D option, which displays the dates
of the files as they are checked.

¹ If WINNER.EXE is out-of-date with respect to WINNER.OBJ, the !IFDEF
directive checks to see whether the macro DEBUG is defined. If it is defined,
the !IF directive checks to see whether it is set to y. If it is, the linker is invoked
with the /CO option; otherwise, it is invoked without the /CO. If the DEBUG
macro is not defined, the !ERROR directive prints the message and NMAKE
stops executing.

 Pseudotargets
A "pseudotarget" is a target in a description block that is not a file. Instead, it is a
name that serves as a "handle" for building a group of files or executing a group of
commands. In the following example, UPDATE is a pseudotarget:

UPDATE: *.*
!copy $** A:\PRODUCT

When NMAKE evaluates a pseudotarget, it always considers the dependents to be
out-of-date. In the description above, NMAKE copies each of the dependent files to
the specified drive and directory.

NMAKE predefines several pseudotargets for special purposes.

 See “Predefined Pseudotargets” on page 837.

836 IBM VisualAge�C++ for OS/2 User's Guide

Program Maintenance Utility (NMAKE)

 Predefined Pseudotargets
NMAKE predefines several pseudotargets that provide special rules within a
description file:

 .SILENT Pseudotarget
Syntax: .SILENT : dependents...

This pseudotarget suppresses the display of executed commands for a single
description block. The /S option does the same thing for all description blocks.

 See “Suppress Command Display (/S)” on page 821.

 .IGNORE Pseudotarget
Syntax: .IGNORE : dependents...

This pseudotarget ignores exit codes returned by programs for a single description
block. The /I option does the same thing for all description blocks.

 See “Ignore Exit Codes (/I)” on page 820.

 .SUFFIXES Pseudotarget
Syntax: .SUFFIXES : extensions...

This pseudotarget defines file extensions to try when NMAKE needs to build a target
file for which no dependents are specified. NMAKE searches the current directory
for a file with the same name as the target file and an extension in <extensions...>. If
NMAKE finds such a file, and if an inference rule applies to the file, NMAKE treats
the file as a dependent of the target.

The .SUFFIXES pseudotarget is predefined as

.SUFFIXES : .OBJ .EXE .C .ASM

To add extensions to the list, specify .SUFFIXES : followed by the new extensions.
To clear the list, specify

.SUFFIXES:

Note: Only those extensions specified in .SUFFIXES can have inference rules.
NMAKE ignores inference rules unless the extensions have been specified in
a .SUFFIXES list.

 .PRECIOUS Pseudotarget
Syntax: .PRECIOUS : targets...

This pseudotarget tells NMAKE not to delete a target even if the commands that
build it are terminated or interrupted. This pseudotarget overrides the NMAKE

 Chapter 58. Program Maintenance Utility (NMAKE)837

Program Maintenance Utility (NMAKE)

default. By default, NMAKE deletes the target if it cannot be sure that the target was
built successfully.

For example,

.PRECIOUS : TOOLS.LIB
TOOLS.LIB : A2Z.OBJ Z2A.OBJ
 command
 :

If the commands to build TOOLS.LIB are interrupted, leaving an incomplete file,
NMAKE does not delete the partially built TOOLS.LIB.

Note: The pseudotarget .PRECIOUS is useful only in limited circumstances. Most
professional development tools have their own interrupt handlers and "clean
up" when errors occur.

 Inline Files
You may need to issue a command in the description file with a list of arguments
exceeding the command-line limit of the operating system. Just as NMAKE supports
the use of command files, it can also generate inline files which are read as response
files by other programs.

To generate an inline file, use the following syntax for your description block:

target : dependents
 command @<<[filename]
inline file text
<< [KEEP | NOKEEP]

All of the text between the two sets of double less than signs (<<) is placed into an
inline file and given the name <filename>. You can refer to the inline file at a later
time by using <filename>. If <filename> is not given, NMAKE gives the file a
unique name in the directory specified by the TMP environment variable if it is
defined. Otherwise, NMAKE creates a unique file name in the current directory.

The inline file can be temporary or permanent. If you do not specify otherwise, or if
you specify the keyword NOKEEP, the inline file is temporary. Specify KEEP to
retain the file.

Note: The at sign (@) is not part of the NMAKE syntax but is the typical character
used by utilities (such as LINK386) to designate a file as a response file.

838 IBM VisualAge�C++ for OS/2 User's Guide

Program Maintenance Utility (NMAKE)

In-Line Files Example
MATH.LIB : ADD.OBJ SUB.OBJ MUL.OBJ DIV.OBJ
 LIB @<<
MATH.LIB
-+ADD.OBJ-+SUB.OBJ-+MUL.OBJ-+DIV.OBJ
listing
<<

The above example creates an inline file and uses it to invoke the Library Manager
(LIB). The inline file is used as a response file by (LIB). It specifies which library
to use, the commands to execute, and the listing file to produce. The inline file
contains the following:

 MATH.LIB
 -+ADD.OBJ-+SUB.OBJ-+MUL.OBJ-+DIV.OBJ
 listing

Because no file name is listed after the LIB command, the inline file is given a
unique name and placed into the current directory (or the directory defined by the
TMP environment variable).

 Escape Characters
NMAKE uses the following punctuation characters in its syntax:

To use one of these characters in a command and not have it interpreted by NMAKE,
use a caret (_) in front of the character.

For example,

BIG_#.C

is treated as

BIG#.C

With the caret, you can include a literal newline character in a description file. This
capability is useful in macro definitions, as in the following example:

XYZ=abc_<ENTER>
def

The effect is equivalent to the effect of assigning the C-style string abc\ndef to the
XYZ macro. Note that this effect differs from the effect of using the backslash (\)

() # $ _ \
{ } ! @ -

 Chapter 58. Program Maintenance Utility (NMAKE)839

Program Maintenance Utility (NMAKE)

to continue a line. A newline character that follows a backslash is replaced with a
space.

NMAKE ignores a caret that is not followed by any of the characters it uses in its
syntax. A caret that appears within quotation marks is not treated as an escape
character.

Note: The escape character cannot be used in the command portion of a dependency
block.

Characters That Modify Commands
Any of three characters can be placed in front of a command to modify how the
command is run:

— (dash) Turns off error checking for the command

@ (at sign) Suppresses display of the command

! (exclamation point)
Executes the command for each dependent file

NOTE

1. Spaces can separate the modifying character from the command. Any command
on a separate line — whether modified or not — must be indented by one or
more spaces or tabs.

2. You can use more than one character to modify a single command.

Turn Error Checking Off (-)
Syntax: -[n] command

The /I option globally turns command error-checking off. The dash (-) command
modifier overrides the global setting to turn error checking off for commands
individually. This modifier is used in two ways:

¹ A dash without a number turns off all error checking.

¹ A dash followed by a number causes NMAKE to abort only if the exit code
returned by the command is greater than the number.

 See “Ignore Exit Codes (/I)” on page 820.

Dash Command Modifier Examples
LIGHT.LST : LIGHT.TXT
- FLASH LIGHT.TXT

840 IBM VisualAge�C++ for OS/2 User's Guide

Program Maintenance Utility (NMAKE)

In the example above, NMAKE never ends, regardless of the exit code returned by
FLASH.

LIGHT.LST : LIGHT.TXT
-1 FLASH LIGHT.TXT

In the example above, NMAKE ends if the exit code returned by FLASH is greater
than 1.

Suppress Command Display (@)
Syntax: @ command

The /S option globally suppresses the display of commands while NMAKE is
running. The at sign (@) modifier suppresses the display for individual commands.

Note: Regardless of the /S option or the @ modifier, output generated by the
command itself always appears.

 See “Suppress Command Display (/S)” on page 821.

At Sign (@) Command Modifier Example
Suppress Command Display (@)

SORT.EXE:SORT.OBJ
@ ECHO sorting

The command line calling the ECHO command is not displayed. The output of the
ECHO command, however, is displayed.

Execute Command for Dependents (!)
Syntax: ! command

The exclamation-point command modifier causes the command to be executed for
each dependent file if the command uses one of the special macros $? or $**. The
$? macro refers to all dependent files out-of-date with respect to the target. The $**
macro refers to all dependent files in the description block.

 See “Special Macros” on page 827.

Exclamation Point (!) Command Modifier Examples
LEAP.TXT : HOP.ASM SKIP.BAS JUMP.C
! print $** lpt1:

The example above executes the following three commands, regardless of the
modification dates of the dependent file:

 Chapter 58. Program Maintenance Utility (NMAKE)841

Program Maintenance Utility (NMAKE)

print HOP.ASM lpt1:
print SKIP.BAS lpt1:
print JUMP.C lpt1:

LEAP.TXT : HOP.ASM SKIP.BAS JUMP.C
! print $? lpt1:

The example above executes the print command only for those dependent files with
modification dates later than that of the LEAP.TXT file. If HOP.ASM and JUMP.C
have modification dates later than LEAP.TXT, the following two commands are
executed:

print HOP.ASM lpt1:
print JUMP.C lpt1:

 EXTMAKE Syntax
Description files can use a special syntax to determine the drive, path, base name, and
extension of the first dependent file in a description block. This syntax is called the
extmake syntax.

The characters%s represent the complete file specification of the first dependent file.
Various parts of the file specification are represented using the syntax

%|partsF

where <parts> is a combination of the following letters:

d Drive
p Path
f Base name
e Extension

For example, to specify the drive and path name of the first dependent file in a
description block, use:

 %|dpF

The percent symbol (%) is a replacement in DOS and OS/2 command lines. To use
the percent symbol in command-line arguments, use a double percent (%%).

842 IBM VisualAge�C++ for OS/2 User's Guide

Program Maintenance Utility (NMAKE)

Macros and Inference Rules in TOOLS.INI
You can place either macros or inference rules in your TOOLS.INI file. NMAKE
looks for the TOOLS.INI file first in the current directory and then in the directory
indicated by the INIT environment variable.

If NMAKE finds a TOOLS.INI file, it looks for the following tag:

[nmake]

You can place macros and inference rules below this tag in the same format you
would use in a description file.

If a macro or inference rule is defined in both the TOOLS.INI file and the description
file, the definition in the description file takes precedence. Also, if you use the /R
option, the TOOLS.INI file is ignored.

 TOOLS.INI Example
[nmake]
CFLAGS=/ss /ms /Gd-
.C.OBJ:
$(CC) -c $(CFLAGS) $*.C

These lines in the TOOLS.INI file do the following:

¹ Define the CFLAGS macro as "/ss /ms /Gd-"

¹ Redefine the predefined inference rule to build .OBJ files from .C source files

 Chapter 58. Program Maintenance Utility (NMAKE)843

Program Maintenance Utility (NMAKE)

844 IBM VisualAge�C++ for OS/2 User's Guide

Creating Message Files with MKMSGF

59 Creating Message Files with MKMSGF

The MKMSGF program reads the input message file that you specify and creates an
output message file that DosGetMessage uses to display messages.

There are two ways that the output message file can be used:

¹ Selected messages can be bound to the message segment of an executable file
using the MSGBIND program.

¹ Messages can be accessed directly from the output message file.

 See “How Message Retrieval Works” on page 855 for additional information.

 MKMSGF Syntax
MKMSGF infile outfile [options]

 OR

MKMSGF @controlfile

The infile field specifies the input file that contains message definitions. The
input-file name can be any valid OS/2 file name, optionally preceded by a drive letter
and a path.

The outfile field specifies the output file created by MKMSGF. The output-file name
can be any valid OS/2 file name, optionally preceded by a drive letter and a path.

To differentiate between the two files, the following convention is recommended,
using the same file name.

¹ The infile file should have a .TXT extension.
¹ The outfile file should have a .MSG extension.

Note: The output file cannot have the same file name and extension as the input
file.

 Copyright IBM Corp. 1992, 1995 845

Creating Message Files with MKMSGF

 Help
There are two ways to display MKMSGF help.

Short Syntax Help

To display a short version of MKMSGF syntax help, typeMKMSGF at the prompt, with
no parameters. The following will be displayed:

MKMSGF infile[.ext] outfile[.ext] [/V]
[/D <DBCS range or country>] [/P <code page>]
[/L <language id,sub id>]

Long Help

To display a longer version of MKMSGF help, including defaults, country codes, and
language IDs, typeMKMSGF /? at the prompt. The following will be displayed:

Use MKMSGF as follows:

MKMSGF <inputfile> <outputfile> [/V]
[/D <DBCS range or country>]
[/P <code page>]
[/L <language family id,sub id>]

where the default values are:
code page - none
DBCS range - none

A valid DBCS range is: n10,n11,n20,n21,...,nn0,nn1
A single number is taken as a DBCS country code.

846 IBM VisualAge�C++ for OS/2 User's Guide

Creating Message Files with MKMSGF

The valid OS/2 language/sublanguage ID values are:

Figure 185. Language and Sublanguage ID Values

Code Family Sub Language Principal country

 ARA 1 2 Arabic Arab Countries
 BGR 2 1 Bulgarian Bulgaria
 CAT 3 1 Catalan Spain
 CHT 4 1 Traditional Chinese R.O.C.
 CHS 4 2 Simplified Chinese P.R.C.
 CSY 5 1 Czech Czechoslovakia
 DAN 6 1 Danish Denmark
 DEU 7 1 German Germany
 DES 7 2 Swiss German Switzerland
 EEL 8 1 Greek Greece
 ENU 9 1 US English United States
 ENG 9 2 UK English United Kingdom
 ESP 10 1 Castilian Spanish Spain
 ESM 10 2 Mexican Spanish Mexico
 FIN 11 1 Finnish Finland
 FRA 12 1 French France
 FRB 12 2 Belgian French Belgium
 FRC 12 3 Canadian French Canada
 FRS 12 4 Swiss French Switzerland
 HEB 13 1 Hebrew Israel
 HUN 14 1 Hungarian Hungary
 ISL 15 1 Icelandic Iceland
 ITA 16 1 Italian Italy
 ITS 16 2 Swiss Italian Switzerland
 JPN 17 1 Japanese Japan
 KOR 18 1 Korean Korea
 NLD 19 1 Dutch Netherlands
 NLB 19 2 Belgian Dutch Belgium
 NOR 20 1 Norwegian - Bokmal Norway
 NON 20 2 Norwegian - Nynorsk Norway
 PLK 21 1 Polish Poland
 PTB 22 1 Brazilian Portuguese Brazil
 PTG 22 2 Portuguese Portugal
 RMS 23 1 Rhaeto-Romanic Switzerland
 ROM 24 1 Romanian Romania
 RUS 25 1 Russian U.S.S.R.
 SHL 26 1 Croato-Serbian (Lat Yugoslavia
 SHC 26 2 Serbo-Croatian (Cyr Yugoslavia
 SKY 27 1 Slovakian Czechoslovakia
 SQI 28 1 Albanian Albania
 SVE 29 1 Swedish Sweden
 THA 30 1 Thai Thailand
 TRK 31 1 Turkish Turkey
 URD 32 1 Urdu Pakistan
 BAH 33 1 Bahasa Indonesia

 Chapter 59. Creating Message Files with MKMSGF847

Creating Message Files with MKMSGF

Input Message File
The input message file is a standard ASCII file that contains three types of lines:

 ¹ Comment lines
¹ Component identifier line
¹ Component message lines

Comment Lines

Comment lines are allowed anywhere in the input message file, except between the
component identifier and the first message. Comment lines must begin with a
semicolon (;) in the first column.

In the Input Message File Example, the comment lines are

; This is a sample of an input
; message file for component DOS
; starting with three comment lines.

Component Identifier Line

The component-identifier line contains a three-character name identifier that precedes
all MKMSGF message numbers.

In the example, the component identifier isDOS.

Component-Message Lines

Each component-message line consists of a message header and an ASCII text
message.

The message header is comprised of the following parts:

¹ A three-character component identifier
¹ A four-digit message number
¹ A single character specifying message type (E, H, I, P, W, ?)
¹ A colon (:)
¹ Followed by a blank space.

The following message types are used:

Type Meaning
E Error
H Help
I Information
P Prompt
W Warning

848 IBM VisualAge�C++ for OS/2 User's Guide

Creating Message Files with MKMSGF

? no message assigned to this number

The message header must begin in the first column of the line. Only one header can
precede the text of a message, although a message can span multiple lines.

Message numbers can start at any number, but messages must be numbered
sequentially. If you do not use a message number, you must insert an empty entry in
its place in the text file. An empty entry consists of the message number, with? as
the message type, and no text.

The character % has a special meaning when used within the text of a message:

%0 is placed at the end of a prompt (type P) to prevent DosGetMessage from
executing a carriage return and line feed. This allows the user to be prompted for
input on the same line as the message text.

%1 – %9 are used to identify variable string insertion within the text of a message.
These variables correspond to the Itable and IvCount parameters in the
DosGetMessage call.

Component-Message Example

For example,DOS0100E: is DOS error message 100. For additional examples, see
the “Input Message File Example” on page 852.

 Output File
The output file contains the indexed message file that DosGetMessage will use. The
output-file name can be any valid OS/2 file name, optionally preceded by a drive
letter and a path. The output file cannot have the same name as the input file.

To differentiate between the two files, the following convention is recommended,
using the same file name.

¹ The infile file should have a .TXT extension.
¹ The outfile file should have a .MSG extension.

Help-message file names begin with the component identifier, followed by H.MSG.
For example, the help file associated with the component identifier DOS would be
DOSH.MSG.

 Chapter 59. Creating Message Files with MKMSGF849

Creating Message Files with MKMSGF

 Options
Text-based messages in different code pages can be created using MKMSGF to
display errors, help information, prompt, or provide general information to the
application user.

MKMSGF uses the following parameter formats to build message files:

MKMSGF infile outfile /Pcodepage

MKMSGF infile outfile /Ddbcsrange or country id

MKMSGF infile outfile /LlangID,VerId

MKMSGF infile outfile /V

MKMSGF infile outfile /?

 MKMSGF @controlfile

¹ Infile is the ASCII-text source file.

Example:

MSG
MSG0001I: (mm%4dd%4yy) %2%4%1%4%3
MSG0002I: (dd%4mm%4yy) %1%4%2%4%3
MSG0003I: Current date is: %0

%0 is a special argument that displays a prompt for user input.

%1 – %9 are the arguments the user can use to insert text in a message.

¹ Outfile is the binary output message file.

¹ @controlfile is the message definition file.

Options

/P Code-page ID for the input message file. See “/P Option” on
page 851

/D DbcsRange or country ID for the input message file. See “/D
Option” on page 851

/L Language family ID (one word) and language version ID (one word).
See “/L Option” on page 851

/V Verbose display of message file control variables as the message file is
being created. See “/Verbose Option Output Example” on page 851

/? Help display of command syntax for MKMSGF.

Note: Any combination of /P, /D, /L, and /V switches can be used for either the
command line or @controlfile execution method.

850 IBM VisualAge�C++ for OS/2 User's Guide

Creating Message Files with MKMSGF

The / switch prefix and the - prefix can be used interchangeably when
defining switches to MKMSGF.

 /D Option
The DBCS option (/D) specifies the DBCS Range or country ID for that input
message file.

Valid DBCS country ID will cause the initialization of valid DBCS ranges to be set
up for this file.

 /L Option
The Language option (/L) specifies the language family ID (one word) and language
version ID (one word).

Valid combination of language family and language version will be set for this file.

A valid language family with invalid or undefined language version id will cause a
default value of 1 to be set for language version.

 /P Option
The Code-page option (/P) specifies the code-page ID for that input message file.

Up to 16 /P combinations can be saved with the message file.

/P cannot be used to identify DBCS data.

/Verbose Option Output Example
Following is a sample of MKMSGF output, using the Verbose option (/V). This
output was produced using the following command:

mkmsgf myapp.txt myapp.msg /v

 strIn = myapp.txt
 strOut = myapp.msg
StrIncDir = (null)
CodePages = 437
Language family id = 0 and sub id = 0
Language family id and sub id = unspecified

 flags = none
 CP_type = SBCS
"myapp.txt": length = 382 bytes.
29 messages scanned. Writing output file...
Size of table entry: word

 Chapter 59. Creating Message Files with MKMSGF851

Creating Message Files with MKMSGF

 Control Files
The control file (specified as @controlfile) is used to create multiple-code-page
message files. The at sign (@) is not part of the file name, but rather, a delimiter
required before a control-file name.

The control file has the following format:

Example:

root.in root.out /Pcodepage /Ddbcsrang/ctryid /LlangID,VerId
sub.001 sub1.out /Pcodepage /Ddbcsrang/ctryid /LlangID,VerId
 .
 .
sub.00n subn.out /Pcodepage /Ddbcsrang/ctryid /LlangID,VerId

The help option (/?) is invalid due to the purpose of the definition file.

Note: Any combination of /P /D /L and /V switches can be used for either the
command line or msg_definition_file execution method.

Input Message File Example
Following is an example of an input message file:

; This is a sample of an input
; message file for component MAB
; starting with three comment lines.
MAB
MAB0100E: File not found
MAB0101?:
MAB0102H: Usage: del [drive:][path] filename
MAB0103?:
MAB0104I: %1 files copied
MAB0105W: Warning! All data will be destroyed!
MAB0106?:
MAB0107?:
MAB0108P: Do you wish to apply these patches (Y or N)? %0
MAB0109E: Divide overflow

852 IBM VisualAge�C++ for OS/2 User's Guide

Binding Messages with MSGBIND

60 Binding Messages with MSGBIND

The MSGBIND program binds a message segment to an executable program. It does
this by reading an input file that specifies the executable files to modify. For each
executable file, MSGBIND specifies which message files to scan, and for each
message file, it specifies which messages to include in the executable file. Although
the resulting executable file will be larger, access to messages will be faster.

In the OS/2 operating system, message segment/objects are packed with other
application code. If the size of the code segment/object and the bound messages
exceeds 64KB, the following statement in the program definition file (.DEF) isolates
the application code from the message statement/object:

16 Bit Applications
SEGMENT

32 Bit Applications
SEGMENT '_MSGSEG32' CLASS 'CODE'

 MSGBIND Syntax
The MSGBIND command line has the following form:

MSGBIND infile

The infile field specifies the input file that identifies the executable files, output
message files, and message numbers that will be bound. The input-file name can be
any valid OS/2 file name and can include an optional file name extension.

 Input File
The input file contains the following three types of lines:

¹ > Executable file

¹ < Message file

 ¹ Message numbers.

Executable file

The File in which messages are to be bound is preceded by a greater-than symbol (>).
The name of the file can be any valid OS/2 file name.

 Copyright IBM Corp. 1992, 1995 853

Binding Messages with MSGBIND

Two or more different executable files can be modified by the specifications found in
one input file. MSGBIND continues to use this file until it encounters another
greater-than symbol.

Message file

The message file to be read from is preceded by a less-than sign (<). You create this
file by using the MKMSGF program. The name can be any valid OS/2 file name.
All message numbers that follow it are located in the specified message file and are
copied to the current output executable file. MSGBIND reads the message-number
list until it encounters one of the following: the end of the input file, a new output
specification, or a new input message file.

Message Numbers

The messages in the message file are listed below the message-file name. Only those
message numbers that you specify will be added. You can also specify an asterisk
(*) to indicate that all messages within the message file will be added. Message
numbers must consist of a three-letter component identifier followed by a four-digit
message number.

 See “Input Message File” on page 848 for a more detailed description of message
numbers.

VisualAge C ++ Message Files
If you plan to run your application on workstations where VisualAge C++ is not
installed, and your application generates runtime messages from any of the
VisualAge C++ message files, you must bind the appropriate VisualAge C++
messages to your application as well as any of your own.

The VisualAge C++ message files you may need are:

DDE4.MSG C runtime library and I/O Stream and Complex class libraries.
IBMCRERR.MSG Regular expressions.
DDE4C01E.MSG Collection class libraries.
CPPOOC3U.MSG User Interface class libraries.
DAXCLS.MSG Database Access class libraries.

You can choose to bind only the messages you expect your application to generate, or
all messages.

Multiple Code-Page Message Files
Multiple code-page message files can also be bound to an executable file, which
enables a user to bind to an application messages for different countries.

854 IBM VisualAge�C++ for OS/2 User's Guide

Binding Messages with MSGBIND

The following example shows how three messages in two different languages can be
bound to an executable file:

MSGBIND infile

where infile consists of the following:

 >PROG1.EXE
 <TEXTUS.MSG
 MSG0001
 MSG0002
 MSG0003
 <TEXTIT.MSG
 MSG0001
 MSG0002
 MSG0003

where:

¹ PROG1.EXE is the executable file to be modified.

¹ TEXTUS.MSG is the file, created using MKMSGF, which contains messages in
US English.

¹ TEXTIT.MSG is the file, created using MKMSGF, which contains the same
messages translated into Italian.

¹ MSGnnnn defines the messages to be bound to the application:

MSG Message component ID
0001 Message number

 Displaying Help
To display MSGBIND help, typeMSGBIND at the prompt, with no parameters. The
following will be displayed:

usage: MSGBIND scriptfile

How Message Retrieval Works
When an application requests the message retriever for text associated with a message
number, a test is made to determine if there is a bound message segment with this
executable file. If true, each bound message segment is searched for a match with
the current session's code-page number.

If a match is made, then the message number is searched for. If it is found, the
message will be returned to the caller. Otherwise, the search of remaining bound
message segments will continue.

 Chapter 60. Binding Messages with MSGBIND855

Binding Messages with MSGBIND

If no match results from a search of all message segments, the message file on the
disk is searched. DosGetMessage will access the message file under any of the
following conditions:

¹ The message file is in the current directory.
¹ The message file is in the path specified in the DPATH environment variable

(protect mode).
¹ The message file is in the path specified in the APPEND environment variable

(real mode).
¹ The fully-qualified file name is specified in DosGetMessage.

Sample Input File
>c:\cmd.exe
<c:\os20\dosutil.msg
DOS0100
DOS0123
DOS0245
>c:\format.exe
<c:\os20\dosutil.msg
DOS0001
DOS0006
<c:\format.msg
FMT0001
FMT0002
<c:\myown.msg
*

The first line of a MSGBIND input file specifies that the executable file to modify is
CMD.EXE. The messages DOS0100, DOS0123, and DOS0245 are read from the file
DOSUTIL.MSG and added to the CMD.EXE file. The MSGBIND program then
encounters an executable-file option for the FORMAT.EXE file. The messages
DOS0001 and DOS0006 are read from DOSUTIL.MSG and added to FORMAT.EXE.
Next, the messages FMT0001 and FMT0002 are read from the file FORMAT.MSG
and added to FORMAT.EXE. Finally, because an asterisk is specified, all the
messages are read from the file MYOWN.MSG and added to FORMAT.EXE.

The files DOSUTIL.MSG and FORMAT.MSG in this example are two
output-message-file names from the MKMSGF program.

856 IBM VisualAge�C++ for OS/2 User's Guide

Quick Information with KwikINF

61 Getting Quick Information with KwikINF

KwikINF provides you with a quick and convenient method of accessing information
in online documents stored in the OS/2 BOOKSHELF from anywhere on the desktop,
with the exception of DOS or WIN-OS/2 sessions.

When KwikINF has been started, you can open a dialog with KwikINF by pressing a
user-selectable hot key. Until you configure KwikINF, your KwikINF hot key is
ALT+Q. The KwikINF window includes a Configure push button. This opens
another dialog with KwikINF: the Configure KwikINF window. The KwikINF
window also allows you to initiate searches for text strings in online documents of
choice.

Automatic Text Retrieval
The KwikINF window includes a Search String entry field. You can specify the text
string you want KwikINF to search for. Or, under certain conditions, this entry field
automatically contains the word located under the cursor when you press your
KwikINF hot key.

This text retrieval feature is available from OS/2 full-screen and Presentation Manager
(PM) multi-line entry (MLE) fields. This feature is also available from PM AVIO
and VIO windows. Communication Manager’s 3270 emulator is a common example
of a PM AVIO window.

An OS/2 Window is a VIO window. This means that if, for example, you open an
OS/2 Window and start an OS/2 text-based application, KwikINF will automatically
retrieve the word under the cursor when you press your KwikINF hot key. This
automatic text-retrieval feature is not available from graphic-text PM windows.

BOOKSHELF Online Documents
The KwikINF window includes a Volume to Search list box of all online documents
stored in the OS/2 BOOKSHELF subdirectories. KwikINF initiates searches for
information in any online document in this list.

 Copyright IBM Corp. 1992, 1995 857

Quick Information with KwikINF

The BOOKSHELF is an environment variable, set in CONFIG.SYS, that contains a
list of subdirectories containing online documents created as viewable .INF files with
the Information Presentation Facility (IPF). The BOOKSHELF environment variable
is set as follows:

 SET BOOKSHELF=<subdirectory>;...;<subdirectory>;

Online documents for OS/2 (for example, the Command Reference) are stored in the
\OS2\BOOK subdirectory of the drive on which OS/2 is installed. Online documents
for VisualAge C++ (for example, the Programming Guide) are stored in the \HELP
subdirectory under the drive and directory you specified when you installed the
VisualAge C++ information.

If you had installed OS/2 on drive C:, VisualAge C++ on drive D: in the IBMCPP
directory, and no other products, your BOOKSHELF environment variable would
look like:

 SET BOOKSHELF=C:\OS2\BOOK;D:\IBMCPP\HELP;

The online document where KwikINF looks for the Search String is selected from
the Volume to Search list box by KwikINF or by you. KwikINF selects the Volume
to Search by looking for the text string that has a matching entry in the KwikINF
index file or, if there is no matching entry in the index file, in the Default Volume
you have selected in the Configure KwikINF window.

Index Files for Rapid Search
The KwikINF index files provide a rapid-search mechanism for locating specific
kinds of information in online documents in the BOOKSHELF. The KwikINF index
file consists of one or more concatenated files stored in the BOOKSHELF and
defined by the HELPNDX variable in CONFIG.SYS as shown in the following
example:

 SET HELPNDX=EPMKWHLP.NDX+CPP.NDX+CPPBRS.NDX

where EPMKWHLP.NDX is the KwikINF index file for the OS/2 Toolkit
information, and CPP.NDX and CPPBRS.NDX are the index files for the
VisualAge C++ C and C++ information.

Index File Format
An index file provides a mapping for keywords to the online information for that
keyword. Index files are provided with VisualAge C++, but you can also create your
own index files for your own or other online information.

858 IBM VisualAge�C++ for OS/2 User's Guide

Quick Information with KwikINF

The first line of an index file contains the keywordEXTENSIONS:, followed by a list
of file extensions that identify the types of files for which the keywords in the file
apply. Each extension is 1 to 3 case-insensitive characters, separated by spaces. You
can use an asterisk (*) to indicate that all file extensions are valid. For example, for
an index file of C keywords, you might put:

EXTENSIONS: C H I SQC

The extension is used to resolve ambiguities when you request contextual help from a
tool such as the VisualAge C++ editor; if you are editing a REXX file, the editor
would not use any keywords from an index file marked with the above extensions.

The second line of the index file contains the keywordDESCRIPTION: followed by
text that describes what the index file is for. For example, the second line of the
VisualAge C++ index file is:

DESCRIPTION: IBM VisualAge C++ language, library, and class libraries

The remaining lines in the index file contain one or more entries of the form:

 (keyword, command)

where

(Indicates the beginning of an entry.

) Indicates the end of an entry.

keyword Is a string on which a case-sensitive match should be made. The
keyword should not contain the character (or). It can end with an
asterisk (*) to match any strings that begin with the same characters. For
example, the entries for the OS/2 APIs use Dos* as the search keyword.
If * is one of the characters in the keyword, use a second asterisk as the
escape character (for example, **).

If more than one instance of the same keyword is found, which is used
depends on the implementation of the tool you are using.

command Is any valid command. Most often, the command invokes theview
utility for the online document that contains information for the keyword.
You can use a tilde (˜) in the command to represent the exact keyword
matched. For example, given the entry(API*, view mydoc.inf ˜), if
you were looking for APIsamp, the command invoked would be view
mydoc.inf APIsamp.

Any characters not contained within parentheses are considered comments.

 Chapter 61. Getting Quick Information with KwikINF 859

Quick Information with KwikINF

The following shows a sample index file:

EXTENSIONS: *
DESCRIPTION: Sample Index File
(Dos*, VIEW CPREF ˜)
(_Optlink, VIEW CPPPROG.INF Linkage Keywords)
(WinCreateWindow, VIEW PMWIN.INF ˜)

You can also look at the VisualAge C++ index files for real-life examples.

Enabling Online Documents
You can enable any online document for KwikINF by:

1. Creating the online document as a viewable .INF file using the Information
Presentation Facility (IPF).

2. Appending the name of the subdirectory where it is stored to the BOOKSHELF
in CONFIG.SYS.

3. Creating an index file to support the KwikINF rapid-search mechanism, storing it
in the BOOKSHELF, and adding it to the HELPNDX variable in CONFIG.SYS.

For example, you can enable your online document MYDOC stored in MYSUBDIR
subdirectory for KwikINF by:

1. Compiling the tagged source for MYDOC with the IPF compiler by entering:

IPFC MYDOC /INF

2. Modifying the BOOKSHELF statement in CONFIG.SYS as follows:

SET BOOKSHELF=...;C:\MYSUBDIR;

3. Creating MYINDEX file in MYSUBDIR as described in “Index File Format”
on page 858.

4. Modifying the HELPNDX variable in CONFIG.SYS as follows:

SET HELPNDX=EPMKWHLP.NDX+CPP.NDX+CPPBRS.NDX+MYINDEX.NDX

For more information on creating an IPF-viewable online document, see
Chapter 62, “Creating Online Documentation” on page 867 and the online IPF Guide
and Reference in the VisualAge C++ Information folder.

860 IBM VisualAge�C++ for OS/2 User's Guide

Quick Information with KwikINF

 Using KwikINF
KwikINF is installed as a program object in the OS/2 Toolkit Information folder.
You start KwikINF by double-clicking on the KwikINF object or by entering
KwikINF from the command line of an OS/2 Window. You can start KwikINF
automatically when you start OS/2 by placing a shadow of the KwikINF object in the
Startup folder in the OS/2 System folder on the desktop. You shadow an object by
pressing CTRL + SHIFT while dragging the object.

KwikINF installs a PM system hook to monitor keystrokes in PM sessions and OS/2
character device monitors to monitor keystrokes in OS/2 full-screen sessions.
KwikINF will install only one copy of the hook and monitors, even if you attempt to
re-start KwikINF.

When KwikINF has been started, you can initiate searches for text strings in online
documents of choice by pressing a user-selectable hot key.

Note: You cannot initiate searches for text strings in online documents from DOS or
WIN-OS/2 sessions.

Until you configure KwikINF, your KwikINF hot key is ALT+Q. You configure
KwikINF by pressing your KwikINF hot key and then pressing the Configure push
button to open the Configure KwikINF window.

Note: When you start KwikINF by double-clicking on the KwikINF object in the
Toolkit Information folder, a message box tells you what hot key opens the
KwikINF window. This technique can also be used to determine what your
current KwikINF hot key is, after KwikINF has been started.

How you initiate a search for information in online documents is dependent on where
you are on the desktop when you press the KwikINF hot key:

¹ From an OS/2 full-screen session, a PM VIO or AVIO window, or PM MLE:
position the cursor on the string you want to search for and press the KwikINF
hot key. KwikINF retrieves the word at the cursor. If you have configured
KwikINF to display the KwikINF window when the KwikINF hot key is pressed,
KwikINF automatically places the retrieved word in the Search String entry field
of the KwikINF window. When you press the Search push button or Enter,
KwikINF displays the information. If you have configured KwikINF to bypass
the KwikINF window when the KwikINF hot key is pressed, KwikINF
automatically displays the information.

If no word is under the cursor, the previous Search String is used. If no
previous Search String exists, KwikINF displays the Contents of the Default
volume to search.

 Chapter 61. Getting Quick Information with KwikINF 861

Quick Information with KwikINF

¹ From a graphic-text PM window: press the KwikINF hot key, then type the string
you want to search for in the Search String entry field of the KwikINF window.
The KwikINF text-retrieval feature is not available from graphic-text PM
windows.

The online document where KwikINF looks for the text string is selected from the
Volume to Search list box by KwikINF or by you. To open the online document to
the panel that contains the information, press the Search push button or press Enter.

KwikINF From the Command Line
You can start, terminate, and configure KwikINF from the command line in an OS/2
Window by entering:

KwikINF [no options] [/C] [/T] [/?]

where:

no options starts KwikINF. After entering this command, the default KwikINF
hot key (ALT + Q) is enabled.

/T terminates KwikINF and disables the KwikINF hot key.

/C opens the Configure KwikINF window. Use this window to select
another KwikINF hot key, to select a default online document from the
BOOKSHELF to search, and to select the activation behavior of the
KwikINF window.

/? displays the following information.

 Usage: KwikINF [Option]
 Option Description
 /C Configure KwikINF
 /T Terminate KwikINF

/? This short help list

 Configuring KwikINF
You configure KwikINF through the Configure KwikINF window. KwikINF displays
this window when you press the Configure push button on the KwikINF window or
when you enter the following from the command line of an OS/2 Window:

KwikINF /C

The Configure KwikINF window allows you to:

¹ Select another KwikINF hot key.

¹ Specify the number of OS/2 full-screen sessions enabled for KwikINF.

¹ Specify the name of the default online document KwikINF searches.

862 IBM VisualAge�C++ for OS/2 User's Guide

Quick Information with KwikINF

¹ Select the activation behavior of the KwikINF window.

Use the push buttons on the Configure KwikINF window as follows:

¹ Press OK to enable your configuration choices.

¹ Press Cancel to cancel your configuration choices. This closes the Configure
KwikINF window.

¹ Press Help to get general help for the current window.

Activation Key Sequence
The Activation Key Sequence provides a selectable list of KwikINF hot keys. To
access the list, single-click on the down arrow. Select the KwikINF hot key of your
choice from the following list:

CTRL + A

CTRL + H

CTRL + Q

ALT + A

ALT + Q (this is the default hot key)

The KwikINF hot key initiates searches for information in online documents from
anywhere on the desktop, with the exception of DOS or WIN-OS/2 sessions.

Full Screen Sessions
Use the Number of Fullscreen Sessions to Monitor spin button to specify the
number of OS/2 full-screen sessions enabled for KwikINF. KwikINF is implemented
as a PM system hook to monitor keystrokes in PM sessions and as OS/2 character
device monitors to monitor keystrokes in OS/2 full-screen sessions. For OS/2
full-screen sessions, KwikINF will monitor only the number of sessions specified
here.

Default Volume to Search
Use the Default Volume to Search single selection list box to specify which online
document in the BOOKSHELF you want KwikINF to search by default. KwikINF
looks for the Search String in this online document, when there is no matching entry
in the KwikINF index file. Select the online document, then select the OK push
button to activate the selection.

 Activation Behavior
Use the Activation Behavior radio buttons to select the behavior of the KwikINF
window. The KwikINF window can be displayed or bypassed when the user presses
the KwikINF hot key after KwikINF has been installed.

 Chapter 61. Getting Quick Information with KwikINF 863

Quick Information with KwikINF

¹ Select the Display KwikINF Window radio button to tell KwikINF that you
always want the KwikINF window to be displayed when you press the KwikINF
hot key to initiate searches for information. This is the default behavior of the
KwikINF window.

When the you press the KwikINF hot key, you can initiate a search for the text
string that may be automatically displayed in the Search String entry field or for
the text string that you enter into this field. You can also specify which online
document in the BOOKSHELF KwikINF searches for the text string.

¹ Select the Bypass KwikINF Window radio button to tell KwikINF that you do
not want the KwikINF window to be displayed when you press the KwikINF hot
key to initiate searches for information. This is typically used when working
under conditions where the KwikINF automatic text-retrieval feature is available.

When you press the KwikINF hot key, KwikINF automatically looks for the text
string under the cursor in the online document that has a matching entry in the
KwikINF index file or, if there is no matching entry in the index file, in the
Default volume selected from the Configure KwikINF window.

You configure KwikINF by pressing the Configure push button in the KwikINF
window. To configure KwikINF when this window is bypassed, press SHIFT +
your KwikINF hotkey to display the Configure KwikINF window.

Searching Using the KwikINF Window
If you have configured KwikINF to display the KwikINF window (this is the default
condition), the KwikINF window is displayed when you press your KwikINF hot key.

The KwikINF window allows you to search for a text string in an online document in
the OS/2 BOOKSHELF. The text string is typed by you in the Search String entry
field or is automatically retrieved by KwikINF, under certain conditions, from under
the cursor when you press your KwikINF hot key.

The online document that KwikINF searches for the text string is selected from the
Volume to Search list box by KwikINF or by you. KwikINF selects the Volume to
Search by looking for the text string that has a matching entry in the KwikINF index
file or, if there is no matching entry in the index file, in the Default Volume you
have selected in the Configure KwikINF window. Or you can override KwikINF’s
selection of the Volume to Search by making your own selection from the list box.

To initiate the search for the text string in the online document, press the Search
push button or press Enter. If the search is successful, KwikINF opens the online
document to the online panel that contains the information and displays a window
with a title bar that matches the search string.

864 IBM VisualAge�C++ for OS/2 User's Guide

Quick Information with KwikINF

If the search is not successful, you can search any online document for the
information by following this procedure:

¹ Clear the Search String entry field.

¹ Select an online document from the Volume to Search list box. The Contents
window of the online document appears.

¹ Select Services from the menu bar.

¹ Select Search from the Services pull down menu. The Search help window
appears.

¹ Type the text string, then select the All libraries radio button.

¹ Select the Search push button or press Enter.

Use the push buttons on the KwikINF window as follows:

¹ Press Search to initiate the search for the text string in the Search String entry
field in the selected online document.

¹ Press Cancel to cancel the request to search for the text string and to close the
KwikINF window.

¹ Press Configure to display the Configure KwikINF window.

¹ Press Help to get general help for the current window.

Search String Entry Field
KwikINF searches for the text string in this entry field in the selected online
document in the OS/2 BOOKSHELF.

Under certain conditions, KwikINF automatically retrieves the word under the cursor
when you press your KwikINF hot key. Letters, numbers, underscores, and the
pound sign are retrievable by KwikINF. Blank spaces and other special characters
are used as delimiters and are not retrievable by KwikINF.

You may also type any text string you want into this field. All characters are valid in
the entry field to allow for special search criteria.

VOLUME TO SEARCH List Box
The KwikINF window includes a list box of all online documents stored in the OS/2
BOOKSHELF subdirectories. KwikINF initiates searches for information in any
online document in this list. The online document where KwikINF looks for the
Search String is selected from the Volume to Search list box by KwikINF or by
you. KwikINF selects the Volume to Search by looking for the text string that has a
matching entry in the KwikINF index file or, if there is no matching entry in the
index file, in the Default Volume you have selected in the Configure KwikINF

 Chapter 61. Getting Quick Information with KwikINF 865

Quick Information with KwikINF

window. Or you can override KwikINF’s selection of the Volume to Search by
making your own selection from the list box.

You can also open and display the Contents of an online document by
double-clicking on an entry in this list box.

KwikINF Keys Help
Use your KwikINF hot key (ALT+Q or the hot key you select from the Configure
KwikINF window) to display the KwikINF window. You can also use your
KwikINF hot key to initiate a search for a text string automatically, when you
configure KwikINF to bypass the KwikINF window.

To re-configure KwikINF, when you have configured KwikINF to bypass the
KwikINF window, press SHIFT + your KwikINF hot key.

To determine what your KwikINF hot key is, double-click on the KwikINF program
object in the OS/2 Toolkit Information folder.

866 IBM VisualAge�C++ for OS/2 User's Guide

Creating Online Documentation

62 Creating Online Documentation

The Information Presentation Facility (IPF) is a Toolkit tool that you can use to
create online information, to specify how it will appear on the screen, to connect
various parts of the information, and to provide help information that can be
requested by the user. IPF features include:

¹ A tagging language that formats text and provides ways to connect information
and customize the information display.

¹ A compiler that creates online documents and help windows.
¹ A viewing program that displays formatted online documents (view). This

program is part of the OS/2 operating system.

The syntax for the IPF compiler command is:

 ┌ ┐────────────────
55──IPFC──source_file─ ───6 ┴┬ ┬──────────── ──┬ ┬──────────────────────── ──5%
 └ ┘ ─/──options─ └ ┘ ─>──output_message_file─

Enabling help for applications requires programming code that communicates with
IPF and with the PM APIs to display help windows.

For more information on creating help for applications, see the online IPF Guide and
Reference in the VisualAge C++ Information folder.

 Copyright IBM Corp. 1992, 1995 867

Creating Online Documentation

868 IBM VisualAge�C++ for OS/2 User's Guide

Compressing Files with PACK and PACK2

63 Compressing Files with PACK and PACK2

PACK and PACK2 reduce the size of a file by compressing its data. You can use
these packing programs for a single file or for a group of files, thereby reducing the
disk space required for your OS/2 application.

The following sections refer only to PACK, but the information applies to both
PACK and PACK2. The options, parameters, and function for PACK2 are identical
to PACK. The only difference between PACK and PACK2 is that PACK2 has a
better compression algorithm.

 Starting PACK
You start PACK with a single command from the command line. You can specify
the files to be compressed in one of two ways:

¹ Specify the names of all the files you want to compress on the command line.
This compresses each file individually.

¹ Specify a single file on the command line that contains a list of all the files you
want to compress. This compresses all files listed into a single file. See
“Creating a List File” on page 871 for details about the list file format.

Include the drive and path if the files are not in the working directory. You can
specify file names with any combination of uppercase and lowercase letters.
File-name extensions are not required; however, if you specify a file name that has an
extension, also type the extension. Global file-name characters are permitted on the
command line, but not in a file containing a file list.

The command-syntax is as follows:

PACK sourcefile [packedfile] [options]

where:

sourcefile Specifies the names of the files to be compressed, or a single file
that lists the files to be compressed. This parameter is required.

When the data is compressed, the name of the source file is placed
in the header of the compressed file and is used as the destination
file name during unpacking.

 Copyright IBM Corp. 1992, 1995 869

Compressing Files with PACK and PACK2

packedfile Specifies the name of the compressed file to create. Files that
contain compressed data can be recognized by the @ symbol as the
last character in the file name. If you do not specify this
parameter, PACK gives the compressed file the same name as
sourcefile and changes the last character of the file extension to
@.

options Specifies one or more options described under “PACK Options.”

 PACK Options
You can specify the following options for PACK:

/A Adds data from sourcefile to the data in packedfile.

The source file can be either in a compressed or uncompressed
state. If the source file is in an uncompressed state, the data is
compressed before being added to the file containing the
compressed data.

To use /A, sourcefile must specify a single source file; it cannot
be a list of files.

/C Specifies that the current path be placed in the header of the file
that contains the compressed data. When the UNPACK command
is used, this path will be the destination path for the file that
contains the uncompressed data.

You cannot use /C when you specify /H:hdrpath\.

/D:hdrdate Records the date in the header of the file that has the compressed
data, and also in the destination file when it is uncompressed.

The date must follow the format /D:MM-DD-YYYY (for example:
/D:08-20-1991 and /D:12-30-2010)

/H:[hdrpath\][hdrfile]
Specifies the path and/or file name to use when restoring the
compressed file. This information is stored in the header of the
compressed file to be used by UNPACK. (Note that you can
override this option when you use UNPACK by specifying the
target path and file name.)

hdrpath must end with a backslash (\), regardless of whether
hdrfile is specified. You cannot specify a drive.

If you do not specify hdrpath, no directory information is included
in the header. If you do not specify hdrfile, PACK uses
sourcefile.

870 IBM VisualAge�C++ for OS/2 User's Guide

Compressing Files with PACK and PACK2

You cannot use both /H:hdrpath\ and /C.

/L Indicates that sourcefile is a list of files to be compressed. The
list file itself is not compressed; all files listed within it are
compressed into a single file.

/R Removes the file specified by sourcefile from the file that
contains only compressed data. The sourcefile parameter must
specify the path and file name exactly as they appear in the header
of the file with the compressed data; otherwise, the following error
message appears on the screen.

The specified file to remove was not found.

To use /R, sourcefile must specify a single source file; it cannot
be a list of files.

/T:hdrtime Records the time in the header of the file that has the compressed
data, and also in the destination file when it is uncompressed.

The time must follow the format /T:HH.MM (for example /T:02.06
and /T:14.54). Hour 00 represents 12 a.m. and hour 12 represents
12 p.m.

To display the path and file-name information stored in the header of the compressed
file, use UNPACK with the /SHOW option. UNPACK is described in “Restoring
Compressed Files with UNPACK” on page 872 and in the online OS/2 Command
Reference.

Creating a List File
To use a list file with PACK, you must first create a file that contains the names of
the files you want to compress. You can give the list file any name. Following is an
example of specifying a list file at the command line.

PACK DEVICE.LST DEVICE.DRV /L

The /L indicates that DEVICE.LST is a list file. If the list file is not in the working
directory, you must specify the drive and path. Global file-name characters are not
permitted in the list-file name. DEVICE.DRV is the destination file for the
end-to-end-compressed data. (End-to-end compressed data is the data from each of
the files contained in the list file. This data is stored in a contiguous format in the
destination file.)

The syntax used in the list file is similar to that used in the command line. The
syntax for a single line in the list file is:

 sourcefile [options]

 Chapter 63. Compressing Files with PACK and PACK2871

Restoring Compressed Files with UNPACK

where options are any of/C, /D, /H, or /T. These options work as if you
specified them for sourcefile on the PACK command line. For a description of
these options, see “PACK Options” on page 870.

When using a list file, you cannot specify global file-name characters in the
source-file name. You can include comments or blank lines by entering a semicolon
as the first character of the line. An example of a list file follows:

;This is a comment
 C:\OS2\COMMAND.COM
CONFIG.SYS /H:CONFIG.BAK /C

 \OS2\INSTALL\DDINSTAL.EXE
 /H:\OS2\DDINSTAL.TMP
 /D:10-15-91 /T:11.45

Restoring Compressed Files with UNPACK
UNPACK restores a file of compressed data to its original size and copies it to a
specified drive and path.

To start the UNPACK command, type:

UNPACK sourcefile [options]

where sourcefile specifies an existing compressed file, and options specifies one
or more options, described in “UNPACK Options.” If sourcefile contains more
than one compressed file, UNPACK restores each file it contains.

 UNPACK Options
You can specify one or more of the following options:

targetdrv: Specifies the drive where you want UNPACK to copy one or more
restored files.

When you specify a target drive but not a path, UNPACK uses the
path information stored in the header of the compressed file.

targetpath Specifies the name of the directory (and its subdirectories) where
you want UNPACK to copy one or more restored files.

If you do not specify targetpath, UNPACK uses the path
information stored in the header of the compressed file. Specifying
targetpath overrides the path information in the header.

/SHOW Displays the destination path and file-name information placed by
PACK in the header of the compressed file.

872 IBM VisualAge�C++ for OS/2 User's Guide

Restoring Compressed Files with UNPACK

/N:singlefile Extracts and uncompresses one file from a file that contains
multiple files of compressed data.

/V Verifies that sectors written to the target disk are recorded properly.
This parameter lets you know that critical data has been correctly
recorded.

This parameter causes UNPACK to run more slowly because a
check is made for each entry recorded on the disk.

/F Specifies that files with extended attributes should not be unpacked
or copied if the destination file system does not support extended
attributes.

 Chapter 63. Compressing Files with PACK and PACK2873

Restoring Compressed Files with UNPACK

874 IBM VisualAge�C++ for OS/2 User's Guide

64 Demangling Compiled C++ Names with CPPFILT

When the VisualAge C++ compiler compiles a C++ program, it encodes all C++
symbolic names to include type and scoping information. This encoding process is
called mangling. The linker uses the mangled names in the object files to resolve
external references using the exported names.

Tools that use the files with mangled names do not have access to the original source
code names, and therefore present the mangled names in their output. Using a
process called demangling, the CPPFILT utility converts the mangled names to their
original source code names so that they can be easily identified.

Note: The demangling routines in the runtime library provided with VisualAge C++
offer another method for converting mangled names to their original source
code names. You can use these routines to develop tools that manipulate
mangled names. For more information on the demangling routines, refer to
the appendix on Mapping in theIBM VisualAge C++: Programming Guide,
and the information in the <demangle.h> header file.

Using the CPPFILT Utility
The CPPFILT utility converts mangled names to demangled names in two separate
modes:

Text Specify the names of one or more ASCII text files to have the CPPFILT
substitute demangled names for mangled names wherever it finds them in
the text. Input can also be read fromstdin.

Binary Specify the names of one or more object (.OBJ) and library (.LIB) files to
produce demangled output in a format that is suitable for inclusion in a
DLL module definition (.DEF) file.

All output is sent tostdout.

 Copyright IBM Corp. 1992, 1995 875

 Text Mode
Use the CPPFILT utility in Text mode when you want to simply substitute demangled
names for mangled names wherever they are found in the text.

To use the CPPFILT utility in text mode, typecppfilt followed by any valid text
mode options on the command line.

The syntax for the cppfilt command in Text mode is:

 ┌ ┐───────────── ┌ ┐───────────────────
55──cppfilt─ ───6 ┴┬ ┬───────── ───6 ┴┬ ┬─────────────── ───────────────────────────────5%

└ ┘──/option └ ┘──text-filename

 Text Files
The file you specify for the cppfilt command in text mode should be an ASCII text
file that is present in the current directory, unless you specify its path.

If you do not specify a text file, the input is read fromstdin.

Output in Text Mode
Output in text mode would be the input text with the mangled names replaced by
their demangled names wherever they are found in the text.

All output is sent tostdout.

Text Mode Options
The CPPFILT utility has the following options in Text mode:

/C Demangle stand-alone class names
/H or /? Display help for CPPFILT
/M Produce symbol map
/Q Suppress display of logo
/S Demanlge compiler-generated symbol names
/T Produce side-by-side demangling
/Wnnn Specify width of field for demangled names

Note: You can specify options using the slash form (/S) or the dash form (-S).

876 IBM VisualAge�C++ for OS/2 User's Guide

/C (Class Names)

Syntax: Default:
/C Do not demangle stand-alone class names

Use /C to instruct the CPPFILT utility to demangle stand-alone class names.
Stand-alone class names are names that do not appear within the context of a function
name or member variable. These names are not normally produced by the compiler.

For example, the stand-alone class nameQ2_1X1Y would be demangled asX::Y if
you specify the/C option.

If you do not specify the/C option, the default is not to demangle stand-alone class
names.

 /H (Help)

Syntax: Default:
/H None
/?

Specify the/H or /? option on the CPPFILT command line to see a short online
help on the cppfilt command syntax and options.

If you do not specify this option, the default is not to display any online help.

/M (Symbol Map)

Syntax: Default:
/M Do not produce symbol map

Specify the/M option on the CPPFILT command line to produce a symbol map on
standard output. The map contains a list of the mangled names and their
corresponding demangled names. This output follows the normal filtered output.

If you do not specify the/M option, the default is not to produce a symbol map.

 Chapter 64. Demangling Compiled C++ Names with CPPFILT877

/Q (Do Not Display Logo)

Syntax: Default:
/Q Display logo and copyright notice

Specify the/Q option on the CPPFILT command line to suppress the display of the
logo and copyright notice for the CPPFILT utility.

If you do not specify this option, the default is to display the logo and copyright
notice.

/S (Special Symbol Names)

Syntax: Default:
/S Do not demangle special

compiler-generated symbol names

Specify the/S option on the CPPFILT command line to instruct the CPPFILT utility
to demangle special compiler-generated symbol names.

For example, the compiler-generated symbol name,__ct__3FooFUi, that represents a
constructor for the classFoo would be demangled asFoo::Foo(unsigned int).

If you do not specify the /S option, the default is not to demangle special
compiler-generated symbol names.

/T (Mangled and Demangled Names Together)

Syntax: Default:
/T Replace mangled name with demangled

name only

Specify the/T option on the CPPFILT command line to produce side-by-side
demangling. That is, each mangled name is replaced with the demangled name
followed by the original mangled name in the text.

If you do not specify the/T option, the default is to replace the mangled name by the
demangled name only.

878 IBM VisualAge�C++ for OS/2 User's Guide

 /Wnnn (Width)

Syntax: Default:
/Wwidth No fixed field width

Specify the/Wwidth option on the CPPFILT command line to have the CPPFILT
utility print the demangled names in fields width characters wide. If the name is
shorter than width, it is padded to the right with blanks; if longer, it is truncated to
width characters.

If you do not specify the/W width option, the default is not to have a fixed field
width when printing demangled names in the text.

 Binary Mode
Use the CPPFILT utility in Binary mode when you want to demangle names in object
(.OBJ) and library (.LIB) files to produce output that is suitable for inclusion in a
DLL module definition (.DEF) file.

To use the CPPFILT utility in Binary mode, typecppfilt /B followed by any valid
Binary mode options on the command line. The CPPFILT utility switches to the
Binary mode of operation when it encounters the/B option.

The syntax for the cppfilt command in Binary mode is:

 ┌ ┐───────────── ┌ ┐───────────────────
55──cppfilt──/B─ ───6 ┴┬ ┬───────── ───6 ┴┬ ┬─────────────── ───────────────────────────5%

└ ┘──/option ├ ┤─.OBJ-filename─
 └ ┘─.LIB-filename─

.OBJ and .LIB Files
The file names that you specify after thecppfilt /B binary-mode command must be
object (.OBJ) or library (.LIB) files. They must be present in the current directory,
unless their paths are specified. CPPFILT will also search for library files along the
paths specified in the LIB environment variable if the files are not found in the
current directory.

Input cannot be read from stdin in binary mode. You must specify object or library
filenames for input.

All output is sent to stdout.

 Chapter 64. Demangling Compiled C++ Names with CPPFILT879

Output in Binary Mode
CPPFILT output in Binary mode lists any libraries and any object files within each
library. If you specify the /X, /R, and /P options, the exported, referenced, and public
symbols are also listed for each object file.

For example, the command

cppfilt /B /P /O 1000 /N c:\ibmcpp\lib\dde4cc.lib

would produce the following output for a library file called DDE4CC.LIB:

;From library: c:\ibmcpp\lib\dde4cc.lib
;From object file: C:\ibmcpp\src\IILNSEQ.C
;PUBDEFs (Symbols available from object file):

 ;ILinkedSequenceImpl::setToPrevious(ILinkedSequenceImpl::Node*&) const
 setToPrevious__19ILinkedSequenceImplCFRPQ2_19ILinkedSequenceImpl4Node @1000 NONAME
 ;ILinkedSequenceImpl::allElementsDo(void*,void*) const
 allElementsDo__19ILinkedSequenceImplCFPvT1 @1001 NONAME
 ;ILinkedSequenceImpl::isConsistent() const
 isConsistent__19ILinkedSequenceImplCFv @1002 NONAME
 ;ILinkedSequenceImpl::setToNext(ILinkedSequenceImpl::Node*&) const
 setToNext__19ILinkedSequenceImplCFRPQ2_19ILinkedSequenceImpl4Node @1003 NONAME
 ;ILinkedSequenceImpl::addAsNext(ILinkedSequenceImpl::Node*,ILinkedSequenceImpl::Node*)
 addAsNext__19ILinkedSequenceImplFPQ2_19ILinkedSequenceImpl4NodeT1 @1004 NONAME
;From object file: C:\ibmcpp\src\IITBSEQ.C
;PUBDEFs (Symbols available from object file):

 ;ITabularSequenceImpl::setToPrevious(ITabularSequenceImpl::Cursor&) const
 setToPrevious__20ITabularSequenceImplCFRQ2_20ITabularSequenceImpl6Cursor @1034 NONAME
 ;ITabularSequenceImpl::allElementsDo(void*)
 allElementsDo__20ITabularSequenceImplFPv @1035 NONAME
 ;ITabularSequenceImpl::removeAll(void*,void*)
 removeAll__20ITabularSequenceImplFPvT1 @1036 NONAME
 ;ITabularSequenceImpl::addAllFrom(const ITabularSequenceImpl&)
 addAllFrom__20ITabularSequenceImplFRC20ITabularSequenceImpl @1037 NONAME
;From object file: IIAVLKSS.C
;PUBDEFs (Symbols available from object file):

 ;IAvlKeySortedSetImpl::allElementsDo(void*,void*) const
 allElementsDo__20IAvlKeySortedSetImplCFPvT1 @1080 NONAME

;IAvlKeySortedSetImpl::isFirst(const IAvlKeySortedSetImpl::Node*) const
 isFirst__20IAvlKeySortedSetImplCFPCQ2_20IAvlKeySortedSetImpl4Node @1081 NONAME

;IAvlKeySortedSetImpl::setToPosition(unsigned long,IAvlKeySortedSetImpl::Node*&) const
 setToPosition__20IAvlKeySortedSetImplCFUlRPQ2_20IAvlKeySortedSetImpl4Node @1082 NONAME
 ;IAvlKeySortedSetImpl::locateOrAddElementWithKey(const void*)
 locateOrAddElementWithKey__20IAvlKeySortedSetImplFPCv @1083 NONAME

Note: This is only a partial listing of the actual output.

880 IBM VisualAge�C++ for OS/2 User's Guide

Binary Mode Options
In binary mode, the CPPFILT utility has the following options:

/B Operate in Binary mode
/H or /? Display help
/N Reference exported names by ordinal number
/O[ord] Generate ordinals after each demangled name
/P Include public symbols in output
/Q Suppress display of logo
/R Include referenced symbols in output
/S Demangle special compiler-generated symbol names
/X Include exported symbols in output

Note: You can specify options using the slash form (/R) or the dash form (-R).

/B (Operate in Binary Mode)

Syntax: Default:
/B Operate in Text mode

Specify /B on the CPPFILT command line to instruct CPPFILT to operate in Binary
mode.

If you do not specify the/B option, CPPFILT will operate in the default Text mode.

 /H (Help)

Syntax: Default:
/H None
/?

Specify the/H or /? option on the CPPFILT command line to see a short online
help on the cppfilt command syntax and options.

If you do not specify this option, the default is not to display any online help.

 Chapter 64. Demangling Compiled C++ Names with CPPFILT881

/N (NONAME Keyword)

Syntax: Default:
/N Reference exported names by name

Specify the /N option on the CPPFILT command line to instruct CPPFILT to generate
the NONAME keyword as consistent with the module definition (.DEF) file EXPORTS
statement syntax. The NONAME keyword indicates that the exported names should be
referenced by their ordinals, and not by their names.

Note: You should also specify /N together with the/O option to generate ordinals.

For example, if you specify/N /O 1000, the output for a single name would look
something like this:

;ILinkedSequenceImpl::isConsistent() const
isConsistent__19ILinkedSequenceImplCFv @1000 NONAME

For more information on using module definition files, see Chapter 21, “Creating
Module Definition Files” on page 369.

 /O (Ordinals)

Syntax: Default:
/O Do not generate ordinals

Specify the/O[ord]: option on the CPPFILT command line to generate ordinals
after each demangled name. If the optional numeric parameter ord is specified,
CPPFILT will generate the ordinals starting from ord.

The ordinals are generated along with the @ character as consistent with the module
definition (.DEF) file EXPORTS statement syntax.

For example, if you specify/O 1000, the output for a single name would look
something like this:

;ILinkedSequenceImpl::isConsistent() const
isConsistent__19ILinkedSequenceImplCFv @1000

If you do not specify the/O option, the default is not to generate ordinals after each
demangled name.

For more information on using module definition files, see Chapter 21, “Creating
Module Definition Files” on page 369.

882 IBM VisualAge�C++ for OS/2 User's Guide

/P (Public Symbols)

Syntax: Default:
/P Do not include public symbols in output

Specify the /P option on the CPPFILT command line to include all public (PUBDEF,
COMDAT, COMDEF) symbols in the output.

Note: Only the first occurrence of a symbol found within the COMDAT sections
will be included in the output. Subsequent occurrences of the same
COMDAT symbol will appear as comments in the output.

If you do not specify this option, the default is not to include public symbols in the
output.

Note: If you do not specify any of the /X, /R, or /P options, the Binary mode output
will include only the library and object names, without any symbol names.

/Q (Do Not Display Logo)

Syntax: Default:
/Q Display logo and copyright notice

Specify the/Q option on the CPPFILT command line to suppress the display of the
logo and copyright notice for the CPPFILT utility.

If you do not specify this option, the default is to display the logo and copyright
notice.

/R (Referenced Symbols)

Syntax: Default:
/R Do not include referenced symbols in

output

Specify the/R option on the CPPFILT command line to include all referenced
(EXTDEF) symbols in the output.

If you do not specify this option, the default is not to include referenced symbols in
the output.

Note: If you do not specify any of the /X, /R, or /P options, the binary-mode output
will include only the library and object names, without any symbol names.

 Chapter 64. Demangling Compiled C++ Names with CPPFILT883

/S (Special Symbol Names)

Syntax: Default:
/S Do not demangle special

compiler-generated symbol names

Specify the /S option on the CPPFILT command line to instruct the CPPFILT utility
to demangle special compiler-generated symbol names.

For example, the compiler-generated symbol name,__ct__3FooFUi, that represents a
constructor for the classFoo would be demangled asFoo::Foo(unsigned int).

If you do not specify the /S option, the default is not to demangle special
compiler-generated symbol names.

/X (Exported Symbols)

Syntax: Default:
/X Do not include exported symbols in

output

Specify the/X option on the CPPFILT command line to include all exported
(EXPDEF) symbols in the output.

If you do not specify /X, the default is not to include exported symbols in the output.

Note: If you do not specify any of the /X, /R, or /P options, the Binary mode output
will include only the library and object names, without any symbol names.

884 IBM VisualAge�C++ for OS/2 User's Guide

Changing Executable Headers with EXEHDR

65 Using EXEHDR

The Executable File Header Utility (EXEHDR) displays and modifies the contents of
an executable-file header. EXEHDR generates an Output listing (see page 890)
showing the contents of the file header and information about each object or segment
in the file. EXEHDR Options are provided (see page 886) that let you change
values in the file header.

Uses of EXEHDR include:

¹ Determining whether a file is an application or a dynamic link library
¹ Viewing and changing the attributes set by the module definition file
¹ Viewing the number and size of code and data segments.

You can use EXEHDR with DOS or OS/2 applications and dynamic-link libraries.

 EXEHDR Syntax
EXEHDR [options] filename

<options>
Options used to modify Output or change the file header.

<filename>
One or more names of applications or dynamic-link library files.

Regardless of options, EXEHDR always creates an Output listing of the file
header.

 Displaying Help
To display EXEHDR help, typeEXEHDR /? at the command prompt. The
appropriate copyright statement appears along with a brief list of EXEHDR options.

 Copyright IBM Corp. 1992, 1995 885

Changing Executable Headers with EXEHDR

Usage: EXEHDR [options] filename...
Valid options are:
 /?
/HEAP:(0H - ffffH)

 /HELP
/MAX:(0H - ffffH)
/MIN:(0H - ffffH)

 /NEWFILES
 /NOLOGO
/PMTYPE:(PM | VIO | NOVIO |

WINDOWAPI | WINDOWCOMPAT |
 NOTWINDOWCOMPAT)
 /RESETERROR
/STACK:(0H - ffffH)

 /VERBOSE

 EXEHDR Options
Usage Notes::

¹ Option characters are not case sensitive: /R and /r are equivalent.
¹ Options can be shortened to the fewest characters that uniquely identify them.

The characters in brackets can be omitted: /N and /NOLOGO are equivalent.
¹ Although use of the minimum one-letter abbreviations is allowed, if a future

release has an additional option starting with the same letter, the one-letter option
will no longer be usable.

Formats Affected by Options
The EXEHDR options that can change executable files are MIN, MAX, STACK,
PMTYPE, HEAP, RESETERROR, and NEWFILES.

Executable headers are used by the operating system to determine characteristics of
the executable file, such as stack size, entry point, number of objects (or segments),
and so on. EXEHDR recognizes three different executable file formats: DOS, OS/2
16-bit, and OS/2 32-bit.

Note: VisualAge C++ generates only OS/2 32-bit executable files.

886 IBM VisualAge�C++ for OS/2 User's Guide

Changing Executable Headers with EXEHDR

An X in the following table indicates which options change each type of executable:

Option DOS OS/2 16-bit OS/2 32-bit

HEAP X X

MAX X

MIN X

NEWFILES X

PMTYPE X X

RESETERROR X X

STACK X X X

For compatibility purposes, executable files generated by the VisualAge C++ linker
include both a DOS header and an OS/2 header.

 /HEA[P]
Set Heap Allocation (/HEAP)

Syntax: /HEA[P]:nnnn

This option sets the size of the local heap and is applicable to OS/2 applications only.
The field <nnnn> contains the local heap size in bytes.

You can specify <nnnn> in decimal, octal, or hexadecimal radix using standard C
language notation.

Note: For 32-bit OS/2 applications, the loader ignores this option.

/HEL[P] and /?
Display Help (/HELP or /?)

Syntax: /HEL[P] OR /?

This option displays a brief summary of EXEHDR syntax.

 /MA[X]
Set Maximum Allocation (/MAX)

Syntax: /MA[X]:nnnn

This option sets the maximum allocation of memory for the program. The field
<nnnn> contains the maximum number of 16-byte paragraphs required to load and
run the program. This value must be equal to or greater than the minimum
allocation.

 Chapter 65. Using EXEHDR 887

Changing Executable Headers with EXEHDR

Compare to “/MI[N]” on page 888 .

You can specify <nnnn> in decimal, octal, or hexadecimal radix using standard C
language notation.

 /MI[N]
Set Minimum Allocation (/MIN)

Syntax: /MI[N]:nnnn

This option sets the minimum allocation of memory for the program. The field
<nnnn> contains the minimum number of 16-byte paragraphs required to load and run
the program. This value must be equal to or less than the maximum allocation.

Compare to “/MA[X]” on page 887 .

You can specify <nnnn> in decimal, octal, or hexadecimal radix using standard C
language notation.

 /NE[WFILES]
New Files (/NEWFILES)

Syntax: /NE[WFILES]

This option enables long file name support for OS/2 16-bit executable files. (OS/2
32-bit executable files generated by the VisualAge C++ linker always support long
file names.)

 /NO[LOGO]
Suppress Sign-On Banner (/NOLOGO)

Syntax: /NO[LOGO]

This option suppresses the sign-on banner displayed by EXEHDR when it starts.

 /P[MTYPE]
Set Application Type (/PMTYPE)

Syntax: /P[MTYPE]:type

This option specifies the type of application. It pertains only to OS/2 applications.
The /PMTYPE option in EXEHDR is equivalent to either the NAME statement in the
module-definition file (see “NAME” on page 384) or the /PMTYPE option in the
VisualAge C++ linker (see “/PMTYPE” on page 363).

888 IBM VisualAge�C++ for OS/2 User's Guide

Changing Executable Headers with EXEHDR

A keyword in <type> is equivalent to a keyword in a NAME statement, as shown in
the following list:

Field Keyword Equiv. Keyword

PM WINDOWAPI

VIO WINDOWCOMPAT

NOVIO NOTWINDOWCOMPAT

The NAME statement keyword is also accepted.

 /R[ESETERROR]
Reset Linker Error (/RESETERROR)

Syntax: /R[ESETERROR]

This option clears an error flag stored in OS/2 applications. The error flag is set by
the linker when the link has unresolved external references or duplicate symbol
definitions (any linker error messages starting with L2xxx).

OS/2 does not load the application if the error flag is set. This option allows you to
attempt to run a program with VisualAge C++ linker errors and is useful during
application development.

 /S[TACK]
Set Stack Allocation (/STACK)

Syntax: /S[TACK]:nnnn

This option sets the size of the stack. The field <nnnn> contains the stack size in
bytes.

You can specify <nnnn> in decimal, octal, or hexadecimal radix using standard C
language notation.

 Chapter 65. Using EXEHDR 889

Changing Executable Headers with EXEHDR

 /V[ERBOSE]
Display in Verbose Mode (/VERBOSE)

Syntax: /V[ERBOSE]

This option displays the executable-file header in verbose mode.

 Output
EXEHDR lists the current contents of the file header and information about each
object (or segment) in the file. To redirect this output to a printer or disk file, use the
operating system redirection operator.

The output is in two parts: a “Header Listing” giving the contents of the file
header; and an “Object or Segment Listing” on page 891 giving attributes of all
objects (or segments) in the file. If the /VERBOSE option is specified, additional
output is generated.

 Header Listing
The header listing is comprised of the following fields:

<Module> Name of Application

This field lists the name of the application as specified in the NAME statement
of the module-definition file.

If no module definition was used to create the executable file, this field displays
the name assumed by default.

If a module definition was used to create the file, but the LIBRARY statement
appeared instead of the NAME statement (thus specifying a dynamic-link
library), the name of the library is given and EXEHDR uses the word "Library"
instead of "Module" to identify the field.

<Description> Description of Application

This field gives the contents, if any, of the DESCRIPTION statement of the
module-definition file used to create the file being examined.

<Data> Type of Automatic Data Object

This field indicates the type of automatic data segment in a program: SHARED,
NONSHARED, or NONE. This type can be specified in a module-definition
file. The defaults are NONSHARED for applications and SHARED for
dynamic-link libraries.

890 IBM VisualAge�C++ for OS/2 User's Guide

Changing Executable Headers with EXEHDR

<Initial CS:IP> Program Starting Address

This field gives the program starting address (if an application is being
examined) or address of the initialization routine (if a dynamic-link library is
being examined).

<Initial SS:SP> Initial Stack Pointer

This field gives the value of the initial stack pointer.

<Extra Stack Allocation> Additional stack allocation

This field gives the value of the extra stack location.

<DGROUP> Automatic-Data-Object Number

Object or Segment Listing
The object listing is comprised of the following fields:

no. Object index number, starting with 1, in decimal

type Identification of the object as a code or data object

A code object is comprised of segments with class name ending in
CODE. All other objects are data objects.

address Location, within the file, of the contents of the object (in hexadecimal)

file Size of the object (in bytes), as contained in the file (in hexadecimal)

mem Size of the object (in bytes), as it is stored in memory (in hexadecimal)

If the value of this field is greater than the value of <file>, the
operating system pads the additional space with zero values at load
time.

flags Object attributes

If the /VERBOSE option is not used, only nondefault attributes are
listed. Attributes are given in the form specified in the
module-definition file.

 Chapter 65. Using EXEHDR 891

Changing Executable Headers with EXEHDR

 Output Example
The following output is generated by EXEHDR for the executable file IMPLIB.EXE:

Module: IMPLIB
Description: Operating System/2 Import Library Manager
Data: NONSHARED
Initial CS:IP: seg 1 offset 234c
Initial SS:SP: seg 4 offset 0000
Extra stack allocation: 0a00 bytes
DGROUP: seg 4

no. type address file mem flags
1 CODE 00003400 045f2 045f2
2 DATA 00007c00 00374 00374
3 DATA 00000000 00000 02d3a
4 DATA 00008000 01635 01680

 Verbose Output
When you specify the /VERBOSE option, EXEHDR generates additional output:

¹ DOS-specific header information. All OS/2 executable files have a DOS header,
whether bound or not. If the program is not bound, the DOS portion typically
consists of a stub that simply terminates the program.

¹ OS/2-specific header information. The object-table display in verbose mode is
described below.

¹ File addresses and lengths of the various tables in the executable file. For each
table, the following is generated:

– Name of the table
– Address of the table within the file
– Length of the table in hexadecimal radix
– Length of the table in decimal radix

¹ Object table with complete attributes, not just the nondefault attributes. The
/VERBOSE option displays two additional attributes:

– The RELOCS attribute is displayed for each object that has address
relocations. Relocations occur in each object that references objects in other
objects or makes dynamic-link references.

– The ITERATED attribute is displayed for each object that has iterated data.
Iterated data consist of a special code that packs repeated bytes.

¹ Run-time relocations and fixups.

¹ All exported entry points.

892 IBM VisualAge�C++ for OS/2 User's Guide

Setting Executable Type with MARKEXE

66 Setting Program Type with MARKEXE

The MARKEXE program enables you to view and set the program type for an
executable file. The program type identifies the OS/2 sessions in which a program
can run.

Use MARKEXE with the VisualAge C++ linker to change or set the program type of
programs you have created.

You can set DLL initialization and termination. If you are using a 16-bit linker,
MARKEXE can also enable long file name support for 16-bit executables.

Note: VisualAge C++ generates only 32-bit executables, which include long file
name support.

 Command-Line Syntax
MARKEXE uses the following syntax:

MARKEXE [/?] [FORCE] [NO] [options] filename...

Filename is a file name or a list of file names. Global file-name characters (*.EXE)
also can be used. For descriptions of the above terms, see “Syntax Definitions”
on page 894. If no option is given, DISPLAY is assumed.

Typing MARKEXE /? at the command line displays the appropriate copyright
statement along with a list of options.

DISPLAY - display status of flags
DLLINIT - per-process initialization
DLLTERM - per-process termination
WINDOWAPI - window api (PM application)
WINDOWCOMPAT - window compatible application
NOTWINDOWCOMPAT - not window compatible application
UNSPECIFIED - unspecified application type
LFNS - long file name support

 Copyright IBM Corp. 1992, 1995 893

Setting Executable Type with MARKEXE

 Syntax Definitions
MARKEXE has the following keywords, options, and program types. You can also
specify any number of files to be viewed or marked.

KEYWORDS

FORCE Marks the executable file with OS/2 as the target operating
system even though the file was marked for another operating
system. Using FORCE might produce internally inconsistent
executable files.

NO Sets the command to the opposite condition. This keyword
does not apply to the DISPLAY, UNSPECIFIED, or
WINDOWAPI options.

OPTIONS

DISPLAY Displays the application type in a message; does not make
any changes.

DLLINIT Sets per process initialization for the dynamic link library.
(Use with VisualAge C++ linker and other 32-bit linkers.)

DLLTERM Sets per process termination for the dynamic link library.
(Use with 16-bit linkers only.)

LFNS Enables support of long file names. (Use with 16-bit linkers
only.)

PROGRAM TYPES

MARKEXE does not modify the file if the executable file’s program type is the same
as the requested type. It displays a message instead.

WINDOWAPI The application is a Presentation Manager application and can
run in the Presentation Manager session only.

WINDOWCOMPAT The application can run in a Presentation Manager window or
in an full-screen session.

NOTWINDOWCOMPAT
The application must run in an OS/2 full-screen session.

UNSPECIFIED The application type is not known. By default, the OS/2
operating system will force the program to run in a
full-screen session.

Note: Specifying an incorrect program type might cause undesirable results when
you try to run that program. For example, do not change a
WINDOWCOMPAT program to WINDOWAPI.

894 IBM VisualAge�C++ for OS/2 User's Guide

Setting Executable Type with MARKEXE

Viewing Program Type
To display the program type of an executable file without changing the file, specify
only a file name, omitting an option.

 MARKEXE filename.exe

Example

To view the program type of MYPROG.EXE, type the following:

 MARKEXE myprog.exe

MARKEXE displays the type in a message that looks like this:

myprog.exe: OS/2 1.x, WINDOWCOMPAT, LFNS

Setting Program Type
To set the program type of an executable file, specify one of the program types.
More than one executable file can be set to the same program type on a single
command line.

MARKEXE type filename.exe another.exe

Examples

To set WINDOWCOMPAT as the program type of MYPROG.EXE, type:

MARKEXE WINDOWCOMPAT myprog.exe

To set WINDOWAPI as the program type of several executable files, type:

MARKEXE WINDOWAPI marion.exe alex.exe

 Chapter 66. Setting Program Type with MARKEXE895

Setting Executable Type with MARKEXE

896 IBM VisualAge�C++ for OS/2 User's Guide

Creating Symbolic Debugger Files with MAPSYM

67 Creating Symbolic Debugger Files with MAPSYM

The MAPSYM program creates .SYM files from .MAP files. .SYM files are used by
the kernel debugger for symbolic debugging.

Note: You must run MAPSYM from the directory in which the file to be converted
is located.

To create a .SYM file, follow these steps:

1. Make sure you are in the correct directory.

2. At the prompt type the following:

mapsym filename

Note that the .MAP extension is not required.

 Displaying Help
To display MAPSYM help, type MAPSYM at the prompt, with no arguments. The
appropriate copyright statement appears, along with the following:

usage: mapsym [-aln] mapfile

 MAPSYM Options
You can use the following options with MAPSYM:

/A Omits Alphabetical sorting of symbols.

/N Includes source code line Numbers in *.SYM file.

/L Produces verbose Listing.

 Copyright IBM Corp. 1992, 1995 897

Creating Symbolic Debugger Files with MAPSYM

898 IBM VisualAge�C++ for OS/2 User's Guide

Creating Workplace Classes

68 Creating Workplace Object Classes

The Workplace Class List is a tool that creates a workplace object class and an
instance of a workplace object class. Workplace objects are constructed using the
SOM protocol and are instances of one of the following workplace object classes:

Predefined These classes are defined by the system. Examples of predefined
workplace object classes are WPObject, WPFileSys, and WPAbstract.

Subclass These classes are derived from existing predefined workplace object
classes. They add or remove function; however, they retain the basic
behavior of that class.

Replaced These classes replace the class being subclassed. They modify the
behavior of an instance of a predefined workplace object class without
the instance being aware of the new class.

Starting Workplace Class List
To start Workplace Class List, select the PM Development Tools folder, and then
select Workplace Class List. A window appears. The window contains a list of the
workplace object classes currently registered in the OS/2 Workplace Shell. Using the
window, you can:

¹ Create an instance of a workplace object class
¹ Replace a workplace object class
¹ Unreplace a workplace object class
¹ Add a workplace object class
¹ Delete a workplace object class

Creating an Object Class Instance
To create an instance of a workplace object class:

1. Select the class from the list in the Workplace Object Class window.
2. Display the pop-up menu by clicking mouse button 2.
3. Select the Create Instance choice.

Note: Only an instance of a physical workplace object class can be created. In
other words, you cannot create instances of WPObject or WPClass
because they are not physical classes.

 Copyright IBM Corp. 1992, 1995 899

Creating Workplace Classes

4. Fill in the following input fields:

Object Title The text string you assign to the object. The text string
becomes the object title and appears under the object when
the object is displayed on the Workplace Shell. When the
object is in an opened state, the text string appears in the
title bar of the window.

Class of new object The name of the class of which the object you selected is a
member.

Parameters A series of keyname=value pairs (separated by
semicolons) that change the behavior of the object. Each
object class defines the keynames and parameters it expects
to see. All parameters have safe defaults, so it is never
required to pass parameters to an object.

Location A real name specified by a fully qualified file specification,
such as C:\OS2\DLL\MINXOBJ.DLL, or a logical name
specified by a predefined symbol.

Examples of logical names include the following:

LOCATION_NOWHERE Hidden folder
LOCATION_DESKTOP OS/2 Desktop (Workplace)
LOCATION_SYSTEM OS/2 System folder
LOCATION_TEMPLATES Template folder
LOCATION_SYSTEMSETUP System setup folder
LOCATION_STARTUP Startup folder
LOCATION_INFORMATION Information folder
LOCATION_INFORMATION Information folder
LOCATION_DRIVES Drives folder

Replacing a Workplace Object Class
To replace an existing registered class:

1. Select the class from the list in the Workplace Object Class window.
2. Display the pop-up menu by single-clicking mouse button 2.
3. Select the Replace choice. Note that only classes that have already been

registered are valid.
4. Fill-in the following input fields: Original class and Replacement class.

Note: The replacement class must be a descendant of the original class. Replacing
an object class is useful for modifying the behavior of objects which are
instances of the original class but are not aware of the replacement class.

900 IBM VisualAge�C++ for OS/2 User's Guide

Creating Workplace Classes

Original class The name of the object class being replaced in the
Workplace.

Replacement class The name of the object class replacing the original class.

Unreplaceing a Workplace Object Class
To return a replaced class to its original class:

1. Select the replaced class from the list on the workplace object class window.
2. Display the pop-up menu by clicking mouse button 2.
3. Select the Unreplace choice. Note that only classes that have already been

replaced are valid.
4. Fill-in the following input fields:

Original class The name of the replaced object class being returned to its
original object class in the Workplace.

Replacement class The name of the replaced object class being returned to its
original object class.

Adding a Workplace Object Class
To add a class to the Workplace Shell:

1. Display the pop-up menu by clicking mouse button 2.
2. Select the Add Class choice.
3. Fill-in the following input fields:

New class name The name of object class you want to add to the Workplace.
Type the class name exactly as it is built, case-sensitive.

Library module The name of the dynamic link library (DLL) that holds the
object definition. Type the library name with complete file
specification information.

Note: The DLL must be created by the IBM System Object
Model.

Deleting an Object Class
To delete a class from the Workplace Shell:

1. Select the class you want to delete from the list in the Workplace Object Class
window.

2. Display the pop-up menu by clicking mouse button 2.
3. Select the Delete a Class choice.
4. Fill-in the name of the class you want to delete from the Workplace.

Note: You cannot delete system predefined classes, such as WPObject or WPClass.

 Chapter 68. Creating Workplace Object Classes901

Creating Workplace Classes

902 IBM VisualAge�C++ for OS/2 User's Guide

Registering Workplace Objects with Object Utility/2

69 Registering Workplace Objects with Object Utility/2

Object Utility/2 provides a facility for registering Workplace Shell classes, creating
instances of Workplace Shell classes, and modifying instances of Workplace Shell
classes.

The following attributes can be set or modified for instances of Workplace Shell
objects:

 ¹ Template

 ¹ Copy

 ¹ Delete

 ¹ Rename

 ¹ Print

 ¹ Link

 ¹ Move

 ¹ Drag

The attributes modify the behavior of the objects to allow or not allow the above
actions. For example, the Template attribute allows you to create a template. Some
objects do not allow specific behaviors even if the attribute is selected.

A Workplace Shell Class must be registered with the Workplace Shell before it will
be recognized by Object Utility/2. After the object class is registered, an instance of
that class can be created. The Object Utility/2 automates these procedures of object
class registration and instantiation. This tool can create an instance of an object from
a class that has already been instantiated or can modify an existing instance.

Registration of a class is performed by opening the main view of Object Utility/2.
The class name and DLL name must be provided. The class is not registered if it has
been registered previously.

To modify an existing instance, the icon representing the class is dragged to and
dropped on top of Object Utility/2. You can enter the object ID and class name after
opening the main view.

After the item to be installed is dropped, a dialog box is displayed to obtain
registration and instantiation information.

 Copyright IBM Corp. 1992, 1995 903

Registering Workplace Objects with Object Utility/2

To destroy an object created by this tool, the object can be dragged and dropped onto
the shredder object on the Workplace Shell desktop (if the no drag and no delete
options are not selected and the object allows deletion). A mechanism to deregister
an object class is not provided with this tool.

 Class Name
Class name is a list of all the registered classes that have DLLs available on your
system. OS/2 allows classes to be registered without the DLLs available, but Object
Utility/2 does not. You can select a class from the list or enter one manually. This
field is required when registering a new class, modifying an existing instance that was
not dropped on Object Utility/2, or creating a new instance.

 DLL Name
The DLL name must be a fully qualified path and file name if the DLL is not located
in a DLL search path. This field is required if you are registering a class.

 Object ID
The Object ID must be enclosed in angle brackets(<>). This field is required when
you modify an existing object that was not dropped on Object Utility/2. You are
warned if you try to create an instance that is not a template, without an Object ID.
You may create the new instance without an object ID. The Object ID must be
unique, if specified, when creating an instance. Templates cannot have an object ID.
Instances with an object ID cannot be made into a template.

 Title Field
The Title field is required when creating a new object. You can alter the title of an
existing object by providing a different title in this field.

 Location Field
You can select an existing location from the location list or enter a location manually.
The location must be an object ID that represents a folder (enclosed in angle
brackets) or a fully qualified path name.

904 IBM VisualAge�C++ for OS/2 User's Guide

Registering Workplace Objects with Object Utility/2

 Options
Create Instance Creates an instance of the class.

Template Creates a template of the class in the Templates folder.

No Copy Removes Copy from the pop-up menu.

No delete Removes Delete from the pop-up menu.

No Rename Removes Rename from the pop-up menu.

No Print Removes Print from the pop-up menu.

No Link Removes Link from the pop-up menu.

No Move Removes Move from the pop-up menu.

No drag Prevents dragging of the object.

 Chapter 69. Registering Workplace Objects with Object Utility/2905

Registering Workplace Objects with Object Utility/2

906 IBM VisualAge�C++ for OS/2 User's Guide

Using the T Terminal Emulator

70 Using the T Terminal Emulator

The Kernel Debugger uses the T Terminal Emulator to communicate with the
machine to be debugged, also known as the MUT (Machine Under Test).

You can also use T to send and receive ASCII files.

All functions of T are listed on the Help menu. Press F1 to view the Help menu,
which is shown below.

TERMINAL - OS/2 ASCII Terminal Program

 Version 2.00.00

 F1 or ALT-H Help
 F2 Terminal Setup
 F3 Sending ASCII Files
 F4 Pausing and Scrolling
 F6 Receiving ASCII Files
 F8 or ALT-X Exit terminal program

 Command-Line Syntax
To display help for command-line syntax, typeT -? at the prompt.

OS/2 Terminal program
Version 2.00.00
November 1, 1991

Valid command line switches:
 -L[ines]X X={lines}
 -C[om]N N={1..8}
-Q[uiet] enter quiet mode

 -V[tp]:name name=vtp server
-S[end]:name name=auto-send file name
-R[emark]:text text=status line remark (20 chars max)

 Copyright IBM Corp. 1992, 1995 907

Using the T Terminal Emulator

 Command-Line Options
Use command line options when invoking T to specify the screen size and the COM
port to be used:

-L[ines]X Where x = {25, 43, 50}

-C[om]N Where n = {1,2,3}

-? To display these options

 Terminal Setup
All terminal setup functions are listed here. Press F2 from the program's main screen
to view the Terminal Setup menu.

The Terminal Setup Options are as follows:

¹ Help (press F1)
¹ Port setup (Press F2)
¹ Terminal emulation (Press F3)
¹ Keyboard macros (Press F4)
¹ Bells & Whistles (Press F5)
¹ Exit setup mode (Press Esc or F8)

You must press Esc to return to the main screen before continuing with any functions
other than the above setup functions.

Setup Terminal Emulation
To set up terminal emulation, follow these steps:

1. Press F2 at the main screen. The Terminal Setup dialog will be displayed.

2. Press F3. The Terminal Emulation Setup dialog will be displayed.

 Terminal Emulation Setup
 Emulator status: None loaded.

 Help: F1
 Z19 emulator: F2

 Exit emulator setup mode: Esc, F8

908 IBM VisualAge�C++ for OS/2 User's Guide

Using the T Terminal Emulator

Setup Bells & Whistles
To change bells and whistles, follow these steps:

1. Press F2 at the main screen. The Terminal Setup dialog will be displayed.

2. Press F5. The Bells & Whistles Setup dialog will be displayed.

3. Make your selections.

Bells and Whistles Setup

Filter NULL characters: Yes
Disable beeps: No

 Background: Foreground:
Normal screen: Black White
Status line: Blue Bright White
Scroll screen: Blue Red
Scroll status line: White Blue
Help screen: Blue Bright White
Menu: Blue Bright White
Menu highlight: Cyan Black

Next Value:

Setting Communications Parameters
To change communications parameters, follow these steps:

1. Press F2 at the main screen. The Terminal Setup dialog will be displayed.

2. Press F2. The Current COM2 Port Parameters dialog will be displayed.

 Current COM2 Port parameters:

 Baud Rate: 9600
 Parity: NONE
 Data Bits: 8
 Stop Bits: 1
 Write Timeout (sec.): 1.00
 Read Timeout (sec.): 0.10
 Handshaking: XON/XOFF

 Next Value: -> Previous Value: <-
 Next Field: Dn Previous Field: Up
 Don't Change: Esc
 Accept Changes: Enter

3. Use the Up Arrow and Down Arrow cursor keys to scroll backward and forward
through the parameter list, and the -> and <- keys to scroll through allowable
values for each parameter.

 Chapter 70. Using the T Terminal Emulator909

Using the T Terminal Emulator

4. Press Escape to exit this dialog without changing values, or press Enter to save
these values and exit the dialog.

Note: The communications port may be changed from the command line by using
the -c option. See “Command-Line Options” on page 908

Sending ASCII Files
To send an ASCII file, follow these steps:

1. Press F3. The Send File Control dialog will be displayed.

 Send File Control

 Send file name:
 SEND.TXT

 Don't send file: Esc
 Accept changes and send file: Enter

2. Enter the filename in the Send File name field.

3. Press Enter to send the file and exit the dialog, or press Escape to exit this dialog
without sending a file.

Pausing and Scrolling
To enter Scroll Mode and pause display of communications, follow these steps:

1. Press F4. A status line will appear at the bottom of the screen.

F1=Help ESC=Active mode Screen Top is 100%
through the buffer. Scroll Mode

2. Press F1 to display the Scroll Mode commands.

 Screen Scroll Mode

 F1 or ALT-H Help
 Dn Down a line
 Up Up a line
 PgUp Up a page
 PgDn Down a page
 ESC or Enter Return to active mode

3. Select a scroll mode command.

910 IBM VisualAge�C++ for OS/2 User's Guide

Using the T Terminal Emulator

Receiving ASCII Files
To receive an ASCII file, follow these steps:

1. Press F6. The Capture File Control dialog will be displayed.

 Capture File Control

 Capture file name:
 Capture.Txt

 Capture entire buffer: F3
 START Capture: F5
 Delete file: F9
 Don't Change: Esc
 Accept Changes: Enter

2. Select an item from the Capture File Control menu.

 Chapter 70. Using the T Terminal Emulator911

Using the T Terminal Emulator

912 IBM VisualAge�C++ for OS/2 User's Guide

 Glossary

This glossary defines terms and abbreviations that
are used in this book. Included are terms and
definitions from the following sources:

¹ American National Standard Dictionary for
Information Systems, ANSI X3.172-1990,
copyright 1990 by the American National
Standards Institute (ANSI). Copies may be
purchased from the American National
Standards Institute, 1430 Broadway, New
York, New York 10018. Such definitions are
indicated by the symbolANSI after the
definition.

¹ IBM Dictionary of Computing, SC20-1699.
These definitions are indicated by the
registered trademarkIBM after the definition.

¹ X/Open CAE Specification. Commands and
Utilities, Issue 4. July, 1992. These
definitions are indicated by the symbol
X/Open after the definition.

¹ ISO/IEC 9945-1:1990/IEEE POSIX
1003.1-1990. These definitions are indicated
by the symbol ISO.1 after the definition.

¹ The Information Technology Vocabulary,
developed by Subcommittee 1, Joint
Technical Committee 1, of the International
Organization for Standardization and the
International Electrotechnical Commission
(ISO/IEC JTC1/SC1). Definitions of
published parts of this vocabulary are
identified by the symbol ISO-JTC1 after the
definition; definitions taken from draft
international standards, committee drafts, and
working papers being developed by ISO/IEC
JTC1/SC1 are identified by the symbol ISO
Draft after the definition, indicating that final
agreement has not yet been reached among
the participating National Bodies of SC1.

A
abstract class. (1) A class with at least one
pure virtual function that is used as a base class
for other classes. The abstract class represents a
concept; classes derived from it represent
implementations of the concept. You cannot have
a direct object of an abstract class. See also base
class. (2) A class that allows polymorphism.
There can be no objects of an abstract class; they
are only used to derive new classes.

abstraction (data). A data type with a private
representation and a public set of operations. The
C++ language uses the concept of classes to
implement data abstraction.

access. An attribute that determines whether or
not a class member is accessible in an expression
or declaration.

access specifier. One of the C++ keywords:
public, private, and protected, used to define the
access to a member.

action. A description of tool or function that can
be used to manipulate a project's parts, or build a
project's target. Examples are Compile, Link, and
Edit.

action class. A grouping of action that perform
a similar function

actions support DLL. A dynamic link library
that provides such support for an action as
determining dependencies and targets if the action
is to participate in a build, providing a user
interface for setting options, and integration with
the monitor and editor.

additional heap. (1) A Language Environment
heap created and controlled by a call to
CEECRHP. See also below heap, anywhere heap,
and initial heap.

address space. (1) The range of addresses
available to a computer program.ANSI. (2) The
complete range of addresses that are available to
a programmer. See also virtual address space.
(3) In the AIX operating system, the code, stack,
and data that are accessible by a process.
(4) The area of virtual storage available for a

 Copyright IBM Corp. 1992, 1995 913

particular job. (5) The memory locations that
can be referenced by a process.X/Open. ISO.1.

aggregate. (1) An array or a structure. (2) A
compile-time option to show the layout of a
structure or union in the listing. (3) An array or
a class object with no private or protected
members, no constructors, no base classes, and no
virtual functions. (4) In programming languages,
a structured collection of data items that form a
data type. ISO-JTC1.

alert. (1) A message sent to a management
services focal point in a network to identify a
problem or an impending problem.IBM. (2) To
cause the user's terminal to give some audible or
visual indication that an error or some other event
has occurred. When the standard output is
directed to a terminal device, the method for
alerting the terminal user is unspecified. When
the standard output is not directed to a terminal
device, the alert is accomplished by writing the
alert character to standard output (unless the
utility description indicates that the use of
standard output produces undefined results in this
case). X/Open.

alignment. The storing of data in relation to
certain machine-dependent boundaries.IBM.

American National Standards Institute. See
ANSI.

angle brackets. The characters < (left angle
bracket) and > (right angle bracket). When used
in the phrase “enclosed in angle brackets,” the
symbol < immediately precedes the object to be
enclosed, and > immediately follows it. When
describing these characters in the portable
character set, the names <less-than-sign> and
<greater-than-sign> are used. X/Open.

ANSI (American National Standards
Institute) . An organization consisting of
producers, consumers, and general interest groups,
that establishes the procedures by which
accredited organizations create and maintain
voluntary industry standards in the United States.
ANSI.

anywhere heap. The VisualAge C++ heap
controlled by the ANYHEAP run-time option. It
contains library data, such as VisualAge C++
control blocks and data structures not normally
accessible from user code. The anywhere heap

may reside above 16M. See also below heap,
additional heap, initial heap.

application. (1) The use to which an
information processing system is put; for
example, a payroll application, an airline
reservation application, a network application.
IBM. (2) A collection of software components
used to perform specific types of user-oriented
work on a computer.IBM.

application program. A program written for or
by a user that applies to the user's work, such as
a program that does inventory control or payroll.
IBM.

argument. (1) A parameter passed between a
calling program and a called program.IBM.
(2) In a function call, an expression that
represents a value that the calling function passes
to the function specified in the call. Also called
parameter. (3) In the shell, a parameter passed
to a utility as the equivalent of a single string in
the argv array created by one of the exec
functions. An argument is one of the options,
option-arguments, or operands following the
command name.X/Open.

array . In programming languages, an aggregate
that consists of data objects, with identical
attributes, each of which may be uniquely
referenced by subscripting.IBM.

array element. A data item in an array.IBM.

ASCII (American National Standard Code for
Information Interchange). The standard code,
using a coded character set consisting of 7-bit
coded characters (8 bits including parity check),
that is used for information interchange among
data processing systems, data communication
systems, and associated equipment. The ASCII
set consists of control characters and graphic
characters. IBM.

Note: IBM has defined an extension to ASCII
code (characters 128-255).

assembler user exit. In the Language
Environment a routine to tailor the characteristics
of an enclave prior to its establishment.

automatic data. Data that does not persist after
a routine has finished executing. Automatic data
may be automatically initialized to a certain value
upon entry and reentry to a routine.

914 IBM VisualAge�C++ for OS/2 User's Guide

Using the T Terminal Emulator

automatic storage. Storage that is allocated on
entry to a routine or block and is freed on the
subsequent return. Sometimes referred to as stack
storageor dynamic storage.

B
backslash. The character \. This character is
named <backslash> in the portable character set.

base class. A class from which other classes are
derived. A base class may itself be derived from
another base class. See also abstract class.

base project. A project from which another
project inherits its Tools setup. Distinguished
from parent project. from.

based on. The use of existing classes for
implementing new classes.

below heap. The VisualAge C++ heap
controlled by the BELOWHEAP runtime option,
which contains library data, such as
VisualAge C++ control block and data structures
not normally accessible from user code. Below
heap always resides below 16M. See also
anywhere heap, initial heap, additional heap.

binary stream. (1) An ordered sequence of
untranslated characters. (2) A sequence of
characters that corresponds on a one-to-one basis
with the characters in the file. No character
translation is performed on binary streams.IBM.

bit field . A member of a structure or union that
contains a specified number of bits.IBM.

block. (1) In programming languages, a
compound statement that coincides with the scope
of at least one of the declarations contained
within it. A block may also specify storage
allocation or segment programs for other
purposes.ISO-JTC1. (2) A string of data
elements recorded or transmitted as a unit. The
elements may be characters, words or physical
records. ISO Draft. (3) The unit of data
transmitted to and from a device. Each block
contains one record, part of a record, or several
records.

brackets. The characters [(left bracket) and]
(right bracket), also known as square brackets.
When used in the phrase “enclosed in (square)

brackets” the symbol [immediately precedes the
object to be enclosed, and] immediately follows
it. When describing these characters in the
portable character set, the names <left-bracket>
and <right-bracket> are used. X/Open.

breakpoint. A point in a computer program
where execution may be halted. A breakpoint is
usually at the beginning of an instruction where
halts, caused by external intervention, are
convenient for resuming execution. ISO Draft.

build . An action that invokes the WorkFrame
Build tool. The Build tool manages the project's
make file, as well as build dependencies between
projects in a project hierarchy.

build actions. A series of actions that are
invoked to build a project's target. These actions
are set in the Build options window, or in
MakeMake, WorkFrame's make file creation
utility.

built-in . (1) A function that the compiler will
automatically inline instead of making the
function call, unless the programmer specifies not
to inline. (2) In programming languages,
pertaining to a language object that is declared by
the definition of the programming language; for
example the built-in function SIN in PL/I, the
predefined data type INTEGER in FORTRAN.
ISO-JTC1. Synonymous with predefined.IBM.

C
C++ class library. See class library.

C++ library . A system library that contains
common C++ language subroutines for file access,
memory allocation, and other functions.

call. To transfer control to a procedure, program,
routine, or subroutine. IBM.

caller. A routine that calls another routine.

carriage-return character. A character that in
the output stream indicates that printing should
start at the beginning of the same physical line in
which the carriage-return character occurred. The
carriage-return is the character designated by '\r'
in the C and C++ languages. It is unspecified
whether this character is the exact sequence
transmitted to an output device by the system to

 Glossary 915

Using the T Terminal Emulator

accomplish the movement to the beginning of the
line. X/Open.

CASE (Computer-Aided Software
Engineering). A set of tools or programs to help
develop complex applications. IBM.

cast. In the C and C++ languages, an expression
that converts the type of the operand to a
specified data type (the operator). IBM.

character. (1) A letter, digit, or other symbol
that is used as part of the organization, control, or
representation of data. A character is often in the
form of a spatial arrangement of adjacent or
connected strokes.ANSI. (2) A sequence of one
or more bytes representing a single graphic
symbol or control code. This term corresponds to
the ISO C standard term multibyte character
(multi-byte character), where a single-byte
character is a special case of the multi-byte
character. Unlike the usage in the ISO C
standard, character here has no necessary
relationship with storage space, andbyte is used
when storage space is discussed.X/Open. ISO.1.

character array. An array of type char. X/Open.

character class. A named set of characters
sharing an attribute associated with the name of
the class. The classes and the characters that they
contain are dependent on the value of the
LC_CTYPE category in the current locale.
X/Open.

character constant. (1) A constant with a
character value. IBM. (2) A string of any of the
characters that can be represented, usually
enclosed in apostrophes.IBM. (3) In some
languages, a character enclosed in apostrophes.
IBM.

character set. (1) A finite set of different
characters that is complete for a given purpose;
for example, the character set in ISO Standard
646, 7-bit Coded Character Set for Information
Processing Interchange.ISO Draft. (2) All the
valid characters for a programming language or
for a computer system. IBM. (3) A group of
characters used for a specific reason; for example,
the set of characters a printer can print. IBM.
(4) See also portable character set.

character string. A contiguous sequence of
characters terminated by and including the first
null byte. X/Open.

child. A node that is subordinate to another
node in a tree structure. Only the root node is
not a child.

class. (1) A C++ aggregate that may contain
functions, types, and user-defined operators in
addition to data. Classes may be defined
hierarchically, allowing one class to be derived
from another, and may restrict access to its
members. (2) A user-defined data type. A class
data type can contain both data representations
(data members) and functions (member
functions).

class library. A collection of C++ classes.

class name. A unique identifier of a class type
that becomes a reserved word within its scope.

class template. A blueprint describing how a set
of related classes can be constructed.

C library . A system library that contains
common C language subroutines for file access,
string operators, character operations, memory
allocation, and other functions. IBM.

client program. A program that uses a class.
The program is said to be a client of the class.

COBOL (Common Business-Oriented
Language). A high-level language, based on
English, that is primarily used for business
applications.

coded character set. (1) A set of graphic
characters and their code point assignments. The
set may contain fewer characters than the total
number of possible characters: some code points
may be unassigned. IBM. (2) A coded set whose
elements are single characters; for example, all
characters of an alphabet. ISO Draft.
(3) Loosely, a code. ANSI.

code page. (1) An assignment of graphic
characters and control function meanings to all
code points; for example, assignment of
characters and meanings to 256 code points for
an 8-bit code, assignment of characters and
meanings to 128 code points for a 7-bit code.

916 IBM VisualAge�C++ for OS/2 User's Guide

Using the T Terminal Emulator

(2) A particular assignment of hexadecimal
identifiers to graphic characters.

code point. (1) A 1-byte code representing one
of 256 potential characters. (2) An identifier in
an alert description that represents a short unit of
text. The code point is replaced with the text by
an alert display program.

codeset. Synonym for code element set. IBM.

collating element. The smallest entity used to
determine the logical ordering of character or
wide-character strings. A collating element
consists of either a single character, or two or
more characters collating as a single entity. The
value of the LC_COLLATE category in the
current locale determines the current set of
collating elements.X/Open.

collating sequence. (1) A specified arrangement
used in sequencing.ISO-JTC1. ANSI. (2) An
ordering assigned to a set of items, such that any
two sets in that assigned order can be collated.
ANSI. (3) The relative ordering of collating
elements as determined by the setting of the
LC_COLLATE category in the current locale.
The character order, as defined for the
LC_COLLATE category in the current locale,
defines the relative order of all collating elements,
such that each element occupies a unique position
in the order. This is the order used in ranges of
characters and collating elements in regular
expressions and pattern matching. In addition,
the definition of the collating weights of
characters and collating elements uses collating
elements to represent their respective positions
within the collation sequence.

collation. The logical ordering of character or
wide-character strings according to defined
precedence rules. These rules identify a collation
sequence between the collating elements, and
such additional rules that can be used to order
strings consisting or multiple collating elements.
X/Open.

collection. (1) An abstract class without any
ordering, element properties, or key properties.
All abstract classes are derived from collection.
(2) In a general sense, an implementation of an
abstract data type for storing elements.

Collection Class Library. A set of classes that
provide basic functions for collections, and can be
used as base classes.

command. A request to perform an operation or
run a program. When parameters, arguments,
flags, or other operands are associated with a
command, the resulting character string is a single
command.

compilation unit. (1) A portion of a computer
program sufficiently complete to be compiled
correctly. IBM. (2) A single compiled file and
all its associated include files. (3) An
independently compilable sequence of high-level
language statements. Each high-level language
product has different rules for what makes up a
compilation unit.

Complex Mathematics library. A C++ class
library that provides the facilities to manipulate
complex numbers and perform standard
mathematical operations on them.

condition. (1) A relational expression that can
be evaluated to a value of either true or false.
IBM. (2) An exception that has been enabled, or
recognized, by the Language Environment and
thus is eligible to activate user and language
condition handlers. Any alteration to the normal
programmed flow of an application. Conditions
can be detected by the hardware/operating system
and result in an interrupt. They can also be
detected by language-specific generated code or
language library code.

const. (1) An attribute of a data object that
declares the object cannot be changed. (2) A
keyword that allows you to define a variable
whose value does not change.

constant. (1) In programming languages, a
language object that takes only one specific value.
ISO-JTC1. (2) A data item with a value that
does not change. IBM.

constant expression. An expression having a
value that can be determined during compilation
and that does not change during the running of
the program. IBM.

constructor. A special C++ class member
function that has the same name as the class and
is used to create an object of that class.

 Glossary 917

Using the T Terminal Emulator

control character. (1) A character whose
occurrence in a particular context specifies a
control function. ISO Draft. (2) Synonymous
with nonprinting character.IBM. (3) A
character, other than a graphic character, that
affects the recording, processing, transmission, or
interpretation of text.X/Open.

conversion. (1) In programming languages, the
transformation between values that represent the
same data item but belong to different data types.
Information may be lost because of conversion
since accuracy of data representation varies
among different data types.ISO-JTC1. (2) The
process of changing from one method of data
processing to another or from one data processing
system to another.IBM. (3) The process of
changing from one form of representation to
another; for example to change from decimal
representation to binary representation.IBM.
(4) A change in the type of a value. For
example, when you add values having different
data types, the compiler converts both values to a
common form before adding the values.

coordinated universal time (UTC). Equivalent
to Greenwich Mean Time (GMT)

copy constructor. A constructor that copies a
class object of the same class type.

current working directory . (1) A directory,
associated with a process, that is used in
path-name resolution for path names that do not
begin with a slash. X/Open. ISO.1. (2) In DOS,
the directory that is searched when a file name is
entered with no indication of the directory that
lists the file name. DOS assumes that the current
directory is the root directory unless a path to
another directory is specified.IBM. (3) In the
OS/2 operating system, the first directory in
which the operating system looks for programs
and files and stores temporary files and output.
IBM. (4) In the AIX operating system, a
directory that is active and that can be displayed.
Relative path name resolution begins in the
current directory.IBM.

cursor. A reference to an element at a specific
position in a data structure.

D
data definition (DD). (1) In the C and C++
languages, a definition that describes a data
object, reserves storage for a data object, and can
provide an initial value for a data object. A data
definition appears outside a function or at the
beginning of a block statement. IBM. (2) A
program statement that describes the features of,
specifies relationships of, or establishes context
of, data. ANSI. (3) A statement that is stored in
the environment and that externally identifies a
file and the attributes with which it should be
opened.

data definition name. See ddname.

data member. The smallest possible piece of
complete data. Elements are composed of data
members.

data set. Under MVS, a named collection of
related data records that is stored and retrieved by
an assigned name. Equivalent to a CMS file.

data structure. The internal data representation
of an implementation.

data type. The properties and internal
representation that characterize data.

DBCS (double-byte character set). A set of
characters in which each character is represented
by 2 bytes. Languages such as Japanese,
Chinese, and Korean, which contain more
symbols than can be represented by 256 code
points, require double-byte character sets.

Because each character requires 2 bytes, the
typing, display, and printing of DBCS characters
requires hardware and programs that support
DBCS. IBM.

ddname (data definition name). (1) The
logical name of a file within an application. The
ddname provides the means for the logical file to
be connected to the physical file. (2) The part of
the data definition before the equal sign. It is the
name used in a call to fopen or freopen to refer
to the data definition stored in the environment.

DD statement (data definition statement).
(1) In MVS, serves as the connection between
the logical name of a file and the physical name
of the file. (2) A job control statement that

918 IBM VisualAge�C++ for OS/2 User's Guide

Using the T Terminal Emulator

defines a file to the operating system, and is a
request to the operating system for the allocation
of input/output resources.

decimal constant. (1) A numerical data type
used in standard arithmetic operations. (2) A
number containing any of the digits 0 through 9.
IBM.

declaration. (1) In the C and C++ languages, a
description that makes an external object or
function available to a function or a block
statement. IBM. (2) Establishes the names and
characteristics of data objects and functions used
in a program.

default action. Each action class has a default
action. It is defined as the first action listed for
the class.

default constructor. A constructor that takes no
arguments, or, if it takes arguments, all its
arguments have default values.

default editor. The editor that is first in the list
of editors in the Tools setup window. This
editor is invoked when you double-click on an
error message in the monitor, or when another
tool requests an Edit action to be invoked.

default locale. (1) The C locale, which is
always used when no selection of locale is
performed. (2) A system default locale, named
by locale-related environmental variables.

define directive. A preprocessor statement that
directs the preprocessor to replace an identifier or
macro invocation with special code.

definition . (1) A data description that reserves
storage and may provide an initial value. (2) A
declaration that allocates storage, and may
initialize a data object or specify the body of a
function.

delete. (1) A C++ keyword that identifies a free
storage deallocation operator. (2) A C++
operator used to destroy objects created bynew.

demangling. The conversion of mangled names
back to their original source code names. During
C++ compilation, identifiers such as function and
static class member names are mangled (encoded)
with type and scoping information to ensure

type-safe linkage. These mangled names appear
in the object file and the final executable file.
Demangling (decoding) converts these names
back to their original names to make program
debugging easier. See also mangling.

denormal. Pertaining to a number with a value
so close to0 that its exponent cannot be
represented normally. The exponent can be
represented in a special way at the possible cost
of a loss of significance.

derived class. A class that inherits from a base
class. All members of the base class become
members of the derived class. You can add
additional data members and member functions to
the derived class. A derived class object can be
manipulated as if it is a base class object. The
derived class can override virtual functions of the
base class.

descriptor. PL/I control block that holds
information such as string lengths, array subscript
bounds, and area sizes, and is passed from one
PL/I routine to another during run time.

destructor. A special member function that has
the same name as its class, preceded by a tilde
(˜), and that "cleans up" after an object of that
class, for example, freeing storage that was
allocated when the object was created. A
destructor has no arguments and no return type.

device. A computer peripheral or an object that
appears to the application as such.X/Open.
ISO.1.

difference. Given two sets A and B, the
difference (A-B) is the set of all elements
contained in A but not in B. For bags, there is
an additional rule for duplicates: If bag P
contains an element m times and bag Q contains
the same element n times, then, ifm>n, the
difference contains that element m-n times. If
m≤n, the difference contains that element zero
times.

directory . A type of file containing the names
and controlling information for other files or
other directories. IBM.

display. To direct the output to the user's
terminal. If the output is not directed to the
terminal, the results are undefined. X/Open.

 Glossary 919

Using the T Terminal Emulator

dot. The file name consisting of a single dot
character (.).X/Open. ISO.1.

double-byte character set. See DBCS.

double-precision. Pertaining to the use of two
computer words to represent a number in
accordance with the required precision.
ISO-JTC1. ANSI.

doubleword. A contiguous sequence of bits or
characters that comprises two computer words
and is capable of being addressed as a unit.IBM.

dump. To copy data in a readable format from
main or auxiliary storage onto an external
medium such as tape, diskette, or printer.IBM.

dynamic. Pertaining to an operation that occurs
at the time it is needed rather than at a
predetermined or fixed time.IBM.

dynamic link library (DLL) . A file containing
executable code and data bound to a program at
load time or run time. The code and data in a
dynamic link library can be shared by several
applications simultaneously.

dynamic storage. Synonym for automatic
storage.

E
EBCDIC (extended binary-coded decimal
interchange code). A coded character set of 256
8-bit characters.IBM.

element. The component of an array, subrange,
enumeration, or set.

empty string. (1) A string whose first byte is a
null byte. Synonymous with null string. X/Open.
(2) A character array whose first element is a
null character.ISO.1.

encapsulation. Hiding the internal representation
of data objects and implementation details of
functions from the client program. This enables
the end user to focus on the use of data objects
and functions without having to know about their
representation or implementation.

enclave. In the Language Environment for MVS
and VM, an independent collection of routines,

one of which is designated as the main routine.
An enclave is roughly analogous to a program or
run unit.

entry point. In assembler language, the address
or label of the first instruction that is executed
when a routine is entered for execution.

enumeration constant. In the C or C++
language, an identifier, with an associated integer
value, defined in an enumerator. An enumeration
constant may be used anywhere an integer
constant is allowed. IBM.

enumerator. In the C and C++ language, an
enumeration constant and its associated value.
IBM.

environment variable. In a WorkFrame project,
an environment variable is an operating system
variable, like PATH and DPATH, and any other
environment variables that are defined using the
OS/2 SET command, such as TMP.

equivalence class. (1) A grouping of characters
that are considered equal for the purpose of
collation; for example, many languages place an
uppercase character in the same equivalence class
as its lowercase form, but some languages
distinguish between accented and unaccented
character forms for the purpose of collation. IBM.
(2) A set of collating elements with the same
primary collation weight.

Elements in an equivalence class are typically
elements that naturally group together, such as all
accented letters based on the same base letter.

The collation order of elements within an
equivalence class is determined by the weights
assigned on any subsequent levels after the
primary weight. X/Open.

escape sequence. (1) A representation of a
character. An escape sequence contains the \
symbol followed by one of the characters: a, b, f,
n, r, t, v, ', ", x, \, or followed by one or more
octal or hexadecimal digits. (2) A sequence of
characters that represent, for example, nonprinting
characters, or the exact code point value to be
used to represent variant and nonvariant
characters regardless of code page. (3) In the C
and C++ language, an escape character followed
by one or more characters. The escape character
indicates that a different code, or a different
coded character set, is used to interpret the

920 IBM VisualAge�C++ for OS/2 User's Guide

characters that follow. Any member of the
character set used at runtime can be represented
using an escape sequence. (4) A character that is
preceded by a backslash character and is
interpreted to have a special meaning to the
operating system. (5) A sequence sent to a
terminal to perform actions such as moving the
cursor, changing from normal to reverse video,
and clearing the screen. Synonymous with
multibyte control. IBM.

exception. (1) Any user, logic, or system error
detected by a function that does not itself deal
with the error but passes the error on to a
handling routine (also called throwing the
exception). (2) In programming languages, an
abnormal situation that may arise during
execution, that may cause a deviation from the
normal execution sequence, and for which
facilities exist in a programming language to
define, raise, recognize, ignore, and handle it; for
example, (ON-) condition in PL/I, exception in
ADA. ISO-JTC1.

exception handler. (1) Exception handlers are
catch blocks in C++ applications. Catch blocks
catch exceptions when they are thrown from a
function enclosed in a try block. Try blocks,
catch blocks, and throw expressions are the
constructs used to implement formal exception
handling in C++ applications. (2) A set of
routines used to detect deadlock conditions or to
process abnormal condition processing. An
exception handler allows the normal running of
processes to be interrupted and resumed.IBM.

executable file. A regular file acceptable as a
new process image file by the equivalent of the
exec family of functions, and thus usable as one
form of a utility. The standard utilities described
as compilers can produce executable files, but
other unspecified methods of producing
executable files may also be provided. The
internal format of an executable file is
unspecified, but a conforming application cannot
assume an executable file is a text file. X/Open.

extension. (1) An element or function not
included in the standard language. (2) File name
extension.

F
file scope. A name declared outside all blocks
and classes has file scope and can be used after
the point of declaration in a source file.

file-scoped action. Distinguished from a
project-scoped action in that it is invoked on files.
Only file-scoped actions can participate in a
project build.

filter . In WorkFrame, the value of a type. The
filter of a type can be expressed as a file mask,
regular expression, a logical-OR, a logical-AND,
or logical-NOT of a list of types, or a filter
determined by a PAM.

first element. The element visited first in an
iteration over a collection. Each collection has its
own definition for first element. For example,
the first element of a sorted set is the element
with the smallest value.

for statement. A looping statement that contains
the word for followed by a list of expressions
enclosed in parentheses (the condition) and a
statement (the action). Each expression in the
parenthesized list is separated by a semicolon.
You can omit any of the expressions, but you
cannot omit the semicolons.

function. A named group of statements that can
be called and evaluated and can return a value to
the calling statement. IBM.

function call. An expression that moves the path
of execution from the current function to a
specified function and evaluates to the return
value provided by the called function. A function
call contains the name of the function to which
control moves and a parenthesized list of values.
IBM.

function definition . The complete description of
a function. A function definition contains an
optional storage class specifier, an optional type
specifier, a function declarator, optional parameter
declarations, and a block statement (the function
body).

function prototype. A function declaration that
provides type information for each parameter. It
is the first line of the function (header) followed
by a ; (semicolon). The declaration is required

 Glossary 921

by the compiler at the time that the function is
declared, so that the compiler can check the type.

function template. Provides a blueprint
describing how a set of related individual
functions can be constructed.

G
global. Pertaining to information available to
more than one program or subroutine. IBM.

global variable. A symbol defined in one
program module that is used in other
independently compiled program modules.

GMT (Greenwich Mean Time). The solar time
at the meridian of Greenwich, formerly used as
the prime basis of standard time throughout the
world. GMT has been superseded by coordinate
universal time (UTC).

Greenwich Mean Time. See GMT.

H
header file. A text file that contains declarations
used by a group of functions, programs, or users.

heap. An unordered flat collection that allows
duplicate elements.

heap storage. An area of storage used for
allocation of storage whose lifetime is not related
to the execution of the current routine. The heap
consists of the initial heap segment and zero or
more increments.

hexadecimal constant. A constant, usually
starting with special characters, that contains only
hexadecimal digits. Three examples for the
hexadecimal constant with value 0 would be
'\x00', '0x0', or '0X00'.

I
I18N. Abbreviation for internationalization.

identifier . (1) One or more characters used to
identify or name a data element and possibly to
indicate certain properties of that data element.
ANSI. (2) In programming languages, a token

that names a data object such as a variable, an
array, a record, a subprogram, or a function.
ANSI. (3) A sequence of letters, digits, and
underscores used to identify a data object or
function. IBM.

if statement. A conditional statement that
contains the keyword if, followed by an
expression in parentheses (the condition), a
statement (the action), and an optional else clause
(the alternative action). IBM.

include directive. A preprocessor directive that
causes the preprocessor to replace the statement
with the contents of a specified file.

include file. See header file.

include statement. In the C and C++ languages,
a preprocessor statement that causes the
preprocessor to replace the statement with the
contents of a specified file. IBM.

incomplete type. A type that has no value or
meaning when it is first declared. There are three
incomplete types: void, arrays of unknown size
and structures and unions of unspecified content.
A void type can never be completed. Arrays of
unknown size and structures or unions of
unspecified content can be completed in further
declarations.

indirection . (1) A mechanism for connecting
objects by storing, in one object, a reference to
another object. (2) In the C and C++ languages,
the application of the unary operator * to a
pointer to access the object the pointer points to.

inheritance. (1) A technique that allows the use
of an existing class as the base for creating other
classes. (2) In WorkFrame, refers to the
mechanism in which the Tools setup of a project
is shared by another project.

initial heap. The VisualAge C++ heap
controlled by the HEAP runtime option and
designated by a heap_id of 0. The initial heap
contains dynamically allocated user data.

initializer . An expression used to initialize data
objects. In the C++ language, there are three
types of initializers:

1. An expression followed by an assignment
operator is used to initialize fundamental data

922 IBM VisualAge�C++ for OS/2 User's Guide

type objects or class objects that have copy
constructors.

2. An expression enclosed in braces ({ }) is
used to initialize aggregates.

3. A parenthesized expression list is used to
initialize base classes and members using
constructors.

input stream. A sequence of control statements
and data submitted to a system from an input
unit. Synonymous with input job stream, job
input stream. IBM.

instance. An object-oriented programming term
synonymous with object. An instance is a
particular instantiation of a data type. It is simply
a region of storage that contains a value or group
of values. For example, if a class box is
previously defined, two instances of a class box
could be instantiated with the declaration:

box box1, box2;

instantiate. To create or generate a particular
instance or object of a data type. For example,
an instance box1 of class box could be
instantiated with the declaration:

box box1;

instruction . A program statement that specifies
an operation to be performed by the computer,
along with the values or locations of operands.
This statement represents the programmer's
request to the processor to perform a specific
operation.

instruction scheduling. An optimization
technique that reorders instructions in code to
minimize execution time.

integer constant. A decimal, octal, or
hexadecimal constant.

internationalization . The capability of a
computer program to adapt to the requirements of
different native languages, local customs, and
coded character sets. X/Open.

Synonymous with I18N.

I/O Stream library . A class library that
provides the facilities to deal with many varieties
of input and output.

iteration . The process of repeatedly applying a
function to a series of elements in a collection
until some condition is satisfied.

K
keyword. (1) A predefined word reserved for
the C and C++ languages, that may not be used as
an identifier. (2) A symbol that identifies a
parameter in JCL.

L
label. An identifier within or attached to a set of
data elements. ISO Draft.

Language Environment. Abbreviated form of
IBM Language Environment for MVS and VM.
Pertaining to an IBM software product that
provides a common runtime environment and
runtime services to applications compiled by
Language Environment-conforming compilers.

last element. The element visited last in an
iteration over a collection. Each collection has its
own definition for last element. For example, the
last element of a sorted set is the element with
the largest value.

lexically. Relating to the left-to-right order of
units.

library . (1) A collection of functions, calls,
subroutines, or other data. IBM. (2) A set of
object modules that can be specified in a link
command.

line. A sequence of zero or more non-new-line
characters plus a terminating new-line character.
X/Open.

link . To interconnect items of data or portions
of one or more computer programs; for example,
linking of object programs by a linkage editor to
produce an executable file.

linker . A computer program for creating load
modules from one or more object modules by
resolving cross references among the modules
and, if necessary, adjusting addresses. IBM.

literal . (1) In programming languages, a lexical
unit that directly represents a value; for example,

 Glossary 923

14 represents the integer fourteen, “APRIL”
represents the string of characters APRIL,
3.0005E2 represents the number 300.05.
ISO-JTC1. (2) A symbol or a quantity in a
source program that is itself data, rather than a
reference to data. IBM. (3) A character string
whose value is given by the characters
themselves; for example, the numeric literal 7 has
the value 7, and the character literal
CHARACTERS has the value CHARACTERS.
IBM.

loader. A routine, commonly a computer
program, that reads data into main storage. ANSI.

load module. All or part of a computer program
in a form suitable for loading into main storage
for execution. A load module is usually the
output of a linkage editor. ISO Draft.

local. (1) In programming languages, pertaining
to the relationship between a language object and
a block such that the language object has a scope
contained in that block. ISO-JTC1.
(2) Pertaining to that which is defined and used
only in one subdivision of a computer program.
ANSI.

locale. The definition of the subset of a user's
environment that depends on language and
cultural conventions. X/Open.

localization. The process of establishing
information within a computer system specific to
the operation of particular native languages, local
customs, and coded character sets. X/Open.

M
macro. An identifier followed by arguments
(may be a parenthesized list of arguments) that
the preprocessor replaces with the replacement
code located in a preprocessor#define directive.

main function. An external function with the
identifier main that is the first user
function—aside from exit routines and C++ static
object constructors—to get control when program
execution begins. Each C and C++ program must
have exactly one function named main.

make. An action in which a project's target is
built from a make file by a make utility.

makefile. A text file containing a list of your
application's parts. The make utility uses
makefiles to maintain application parts and
dependencies.

MakeMake. WorkFrame's make file generation
utility.

mangling. The encoding during compilation of
identifiers such as function and variable names to
include type and scope information. The
prelinker uses these mangled names to ensure
type-safe linkage. See also demangling.

map file. A listing file that can be created
during the prelink or link step and that contains
information on the size and mapping of segments
and symbols.

mask. A pattern of characters that controls the
keeping, deleting, or testing of portions of another
pattern of characters.ISO-JTC1. ANSI.

member. A data object or function in a
structure, union, or class. Members can also be
classes, enumerations, bit fields, and type names.

member function. (1) An operator or function
that is declared as a member of a class. A
member function has access to the private and
protected data members and member functions of
objects of its class. Member functions are also
called methods. (2) A function that performs
operations on a class.

method. In the C++ language, a synonym for
member function.

migrate. To move to a changed operating
environment, usually to a new release or version
of a system. IBM.

mode. A collection of attributes that specifies a
file's type and its access permissions. X/Open.
ISO.1.

module. A program unit that usually performs a
particular function or related functions, and that is
distinct and identifiable with respect to compiling,
combining with other units, and loading.

module definition file. a file used by the linker
that contains module statements that define
general attributes of the executable being linked,

924 IBM VisualAge�C++ for OS/2 User's Guide

segment attributes, and imported or exported
functions and data.

Monitor . A window that displays output from
monitored actions. The Monitor window is
attached to the project container.

monitored action. An action that has been set
to run in the Monitor window, er actions
may run in a full-screen and outputs to standard
out. Actions may also run in full-screen and
windowed sessions.

multibyte character. A mixture of single-byte
characters from a single-byte character set and
double-byte characters from a double-byte
character set.

multicharacter collating element. A sequence
of two or more characters that collate as an
entity. For example, in some coded character
sets, an accented character is represented by a
non-spacing accent, followed by the letter. Other
examples are the Spanish elementsch and ll .
X/Open.

multiple inheritance. An object-oriented
programming technique implemented in the C++
language through derivation, in which the derived
class inherits members from more than one base
class.

mutex. A flag used by a semaphore to protect
shared resources. The mutex is locked and
unlocked by threads in a program. A mutex can
only be locked by one thread at a time and can
only be unlocked by the same thread that locked
it. The current owner of a mutex is the thread
that it is currently locked by. An unlocked mutex
has no current owner.

N
name. In the C++ language, a name is
commonly referred to as an identifier. However,
syntactically, a name can be an identifier,
operator function name, conversion function
name, destructor name or qualified name.

nested class. A class defined within the scope of
another class.

nested project. A project that appears inside
another project. Nesting expresses a dependency

of the parent project on the child project's target.
This dependency is managed by WorkFrame's
Build utility.

newline character. A character that in the
output stream indicates that printing should start
at the beginning of the next line. The newline
character is designated by '\n' in the C and C++
language. It is unspecified whether this character
is the exact sequence transmitted to an output
device by the system to accomplish the
movement to the next line. X/Open.

node. In a tree structure, a point at which
subordinate items of data originate. ANSI.

NULL . In the C and C++ languages, a pointer
that does not point to a data object. IBM.

null character (NUL) . The ASCII or EBCDIC
character '\0' with the hex value 00, all bits turned
off. It is used to represent the absence of a
printed or displayed character. This character is
named <NUL> in the portable character set.

null pointer . The value that is obtained by
converting the number 0 into a pointer; for
example,(void *) 0. The C and C++ languages
guarantee that this value will not match that of
any legitimate pointer, so it is used by many
functions that return pointers to indicate an error.
X/Open.

null string . (1) A string whose first byte is a
null byte. Synonymous with empty string.
X/Open. (2) A character array whose first
element is a null character. ISO.1.

null value. A parameter position for which no
value is specified. IBM.

number sign. The character #, also known as
pound signand hash sign. This character is
named <number-sign> in the portable character
set.

O
object. (1) A region of storage. An object is
created when a variable is defined or new is
invoked. An object is destroyed when it goes out
of scope. (See also instance.) (2) In
object-oriented design or programming, an
abstraction consisting of data and the operations

 Glossary 925

associated with that data. See also class. IBM.
(3) An instance of a class.

object code. Machine-executable instructions,
usually generated by a compiler from source code
written in a higher level language (such as the
C++ language). For programs that must be
linked, object code consists of relocatable
machine code.

object module. (1) All or part of an object
program sufficiently complete for linking.
Assemblers and compilers usually produce object
modules. ISO Draft. (2) A set of instructions in
machine language produced by a compiler from a
source program. IBM.

object-oriented programming. A programming
approach based on the concepts of data
abstraction and inheritance. Unlike procedural
programming techniques, object-oriented
programming concentrates not on how something
is accomplished, but on what data objects
comprise the problem and how they are
manipulated.

octal constant. The digit 0 (zero) followed by
any digits 0 through 7.

open file. A file that is currently associated with
a file descriptor.X/Open. ISO.1.

operand. An entity on which an operation is
performed. ISO-JTC1. ANSI.

operating system (OS). Software that controls
functions such as resource allocation, scheduling,
input/output control, and data management.

operator function. An overloaded operator that
is either a member of a class or that takes at least
one argument that is a class type or a reference to
a class type.

operator precedence. In programming
languages, an order relation defining the sequence
of the application of operators within an
expression. ISO-JTC1.

overflow. (1) A condition that occurs when a
portion of the result of an operation exceeds the
capacity of the intended unit of storage. (2) That
portion of an operation that exceeds the capacity
of the intended unit of storage. IBM.

overloading. An object-oriented programming
technique that allows you to redefine functions
and most standard C++ operators when the
functions and operators are used with class types.

P
pack. To store data in a compact form in such a
way that the original form can be recovered.

parameter. (1) In the C and C++ languages, an
object declared as part of a function declaration
or definition that acquires a value on entry to the
function, or an identifier following the macro
name in a function-like macro definition. X/Open.
(2) Data passed between programs or procedures.
IBM.

parent process. (1) The program that originates
the creation of other processes by means of
spawn or exec function calls. See also child
process. (2) A process that creates other
processes.

parent project. A project that contains other
projects. Distinguished from child project.

partitioned data set (PDS). A data set in direct
access storage that is divided into partitions,
called members, each of which can contain a
program, part of a program, or data. IBM.

path name. (1) A string that is used to identify
a file. A path name consists of, at most,
{PATH_MAX} bytes, including the terminating
null character. It has an optional beginning slash,
followed by zero or more file names separated by
slashes. If the path name refers to a directory, it
may also have one or more trailing slashes.
Multiple successive slashes are considered to be
the same as one slash. A path name that begins
with two successive slashes may be interpreted in
an implementation-dependent manner, although
more than two leading slashes will be treated as a
single slash. The interpretation of the path name
is described in pathname resolution. ISO.1.
(2) A file name specifying all directories leading
to the file.

pattern. A sequence of characters used either
with regular expression notation or for path name
expansion, as a means of selecting various
characters strings or path names, respectively.

926 IBM VisualAge�C++ for OS/2 User's Guide

The syntaxes of the two patterns are similar, but
not identical. X/Open.

period. The character (.). The term period is
contrasted against dot, which is used to describe a
specific directory entry. This character is named
<period> in the portable character set.

pipe. To direct data so that the output from one
process becomes the input to another process.
The standard output of one command can be
connected to the standard input of another with
the pipe operator (|). Two commands connected
in this way constitute a pipeline. IBM.

pointer. In the C and C++ languages, a variable
that holds the address of a data object or a
function. IBM.

pointer to member. An operator used to access
the address of non-static members of a class.

portable character set. The set of characters
specified in POSIX 1003.2, section 2.4:

<NUL>
<alert>
<backspace>
<tab>
<newline>
<vertical-tab>
<form-feed>
<carriage-return>
<space>
<exclamation-mark> !
<quotation-mark> "
<number-sign> #
<dollar-sign> $
<percent-sign> %
<ampersand> &
<apostrophe> '
<left-parenthesis> (
<right-parenthesis>)
<asterisk> *
<plus-sign> +
<comma> ,
<hyphen> –
<hyphen-minus> –
<period> .
<slash> /
<zero> 0
<one> 1
<two> 2
<three> 3
<four> 4
<five> 5
<six> 6
<seven> 7
<eight> 8
<nine> 9
<colon> :
<semicolon> ;
<less-than-sign> <
<equals-sign> =
<greater-than-sign> >
<question-mark> ?
<commercial-at> @

 Glossary 927

<A> A
 B
<C> C
<D> D
<E> E
<F> F
<G> G
<H> H
<I> I
<J> J
<K> K
<L> L
<M> M
<N> N
<O> O
<P> P
<Q> Q
<R> R
<S> S
<T> T
<U> U
<V> V
<W> W
<X> X
<Y> Y
<Z> Z

<left-square-bracket> [
<backslash> \
<reverse-solidus> \
<right-square-bracket>]
<circumflex> _
<circumflex-accent> _
<underscore> _
<low-line> _
<grave-accent> `

<a> a
 b
<c> c
<d> d
<e> e
<f> f
<g> g
<h> h
<i> i
<j> j
<k> k
<l> l
<m> m
<n> n
<o> o
<p> p
<q> q
<r> r
<s> s
<t> t
<u> u
<v> v
<w> w
<x> x
<y> y
<z> z

<left-brace> {
<left-curly-bracket> {
<vertical-line> |
<right-brace> }
<right-curly-bracket> }
<tilde> ˜

portability . The ability of a programming
language to compile successfully on different
operating systems without requiring changes to
the source code.

precedence. The priority system for grouping
different types of operators with their operands.

predefined macros. Frequently used routines
provided by an application or language for the
programmer.

preprocessor. A phase of the compiler that
examines the source program for preprocessor
statements that are then executed, resulting in the
alteration of the source program.

private. Pertaining to a class member that is
only accessible to member functions and friends
of that class.

process. (1) An instance of an executing
application and the resources it uses. (2) An
address space and single thread of control that
executes within that address space, and its
required system resources. A process is created
by another process issuing the fork[] function.
The process that issues the fork[] function is
known as the parent process, and the new process
created by the fork[] function is known as the
child process.X/Open. ISO.1.

project. The central WorkFrame model of the
complete set of data and actions required to build
a single target, such as a dynamic link library
(DLL) or other executable. A project consists of
a set ofproject parts and a Tools setup..

Project Access Method (PAM). A dynamic link
library that contains a set of methods through
which a simple abstraction of a file system or
repository is provided to WorkFrame. PAMs
enable a WorkFrame project to contain any kind
of object that a PAM can support, for example a
version of a file in a source control library, or
another file system like MVS or AIX.

project hierarchy. A project tree that represents
dependencies between projects. The WorkFrame

928 IBM VisualAge�C++ for OS/2 User's Guide

project paradigm requires that one project should
be created for every target. Dependencies
between projects and their targets should be
expressed in a project hierarchy. That is, if a
project's build depends on the target of another
project, the dependent project should contain the
project it depends on. The dependent project is
then said to nest the other project. This enables
the Build tool to perform Builds in a depth-first
search manner from anywhere in the project
hierarchy.

project-scoped action. An action that applies to
a project as a whole, or to a project's specially
designated parts. Specially designated project
parts are the project's make file and target. An
example of a project-scoped action is Debug,
which is invoked on the project's target.

Project Smarts. A project catalog that contains
templates for common types of applications.

Project Smarts application. A skeletal
application that consists of template source code
and a configured project revolving around an
application theme. It serves as a starting point
for similar applications.

protected. Pertaining to a class member that is
only accessible to member functions and friends
of that class, or to member functions and friends
of classes derived from that class.

prototype. A function declaration or definition
that includes both the return type of the function
and the types of its parameters. See function
prototype.

public. Pertaining to a class member that is
accessible to all functions.

Q
qualified name. Used to qualify a nonclass type
name such as a member by its class name.

queue. A sequence with restricted access in
which elements can only be added at the back
end (or bottom) and removed from the front end
(or top). A queue is characterized by first-in,
first-out behavior and chronological order.

R
register storage class specifier. A specifier that
indicates to the compiler within a block scope
data definition, or a parameter declaration, that
the object being described will be heavily used.

redirection. In the shell, a method of
associating files with the input or output of
commands. X/Open.

reentrant. The attribute of a program or routine
that allows the same copy of a program or routine
to be used concurrently by two or more tasks.

regular expression. (1) A mechanism to select
specific strings from a set of character strings.
(2) A set of characters, meta-characters, and
operators that define a string or group of strings
in a search pattern. (3) A string containing
wildcard characters and operations that define a
set of one or more possible strings.

regular file. A file that is a randomly accessible
sequence of bytes, with no further structure
imposed by the system.X/Open. ISO.1.

relation. An unordered flat collection class that
uses keys, allows for duplicate elements, and has
element equality.

runtime library . A compiled collection of
functions whose members can be referred to by
an application program during runtime execution.
Typically used to refer to a dynamic library that
is provided in object code, such that references to
the library are resolved during the linking step.
The runtime library itself is not statically bound
into the application modules.

S
scalar. An arithmetic object, or a pointer to an
object of any type.

scope. (1) That part of a source program in
which a variable is visible. (2) That part of a
source program in which an object is defined and
recognized.

semaphore. An object used by multithread
applications for signalling purposes and for
controlling access to serially reusable resources.

 Glossary 929

Processes can be locked to a resource with
semaphores if the processes follow certain
programming conventions.

sequence. A sequentially ordered flat collection.

session. A collection of process groups
established for job control purposes. Each
process group is a member of a session. A
process is considered to be a member of the
session of which its process group is a member.
A newly created process joins the session of its
creator. A process can alter its session
membership. There can be multiple process
groups in the same session.X/Open. ISO.1.

shell. A program that interprets sequences of
text input as commands. It may operate on an
input stream or it may interactively prompt and
read commands from a terminal. X/Open.

This feature is provided as part of OpenEdition
MVS Shell and Utilities feature licensed program.

signal. (1) A condition that may or may not be
reported during program execution. For example,
SIGFPE is the signal used to represent erroneous
arithmetic operations such as a division by zero.
(2) A mechanism by which a process may be
notified of, or affected by, an event occurring in
the system. Examples of such events include
hardware exceptions and specific actions by
processes. The termsignal is also used to refer
to the event itself. X/Open. ISO.1. (3) In AIX
operating system operations, a method of
interprocess communication that simulates
software interrupts.IBM.

signal handler. A function to be called when
the signal is reported.

slash. The character /, also known as solidus.
This character is named <slash> in the portable
character set.

S-name. An external non-C++ name in an object
module produced by compiling with the
NOLONGNAME option. Such a name is up to 8
characters long and single case.

source directory. A directory where a project's
parts are physically stored. A project may have
many source directories.

source file. A file that contains source
statements for such items as high-level language

programs and data description specifications.
IBM.

source program. A set of instructions written in
a programming language that must be translated
to machine language before the program can be
run. IBM.

source type. A source type appears in an
action's list of source types. An action's list of
source types specifies the kind of parts or files to
which the action applies.

space character. The character defined in the
portable character set as <space>. The space
character is a member of the space character class
of the current locale, but represents the single
character, and not all of the possible members of
the class. X/Open.

specifiers. Used in declarations to indicate
storage class, fundamental data type and other
properties of the object or function being
declared.

stack frame. The physical representation of the
activation of a routine. The stack frame is
allocated and freed on a LIFO (last in, first out)
basis. A stack is a collection of one or more
stack segments consisting of an initial stack
segment and zero or more increments.

stack storage. Synonym for automatic storage.

standard error. An output stream usually
intended to be used for diagnostic messages.
X/Open.

standard input. (1) An input stream usually
intended to be used for primary data input.
X/Open. (2) The primary source of data entered
into a command. Standard input comes from the
keyboard unless redirection or piping is used, in
which case standard input can be from a file or
the output from another command. IBM.

standard output. (1) An output stream usually
intended to be used for primary data output.
X/Open. (2) In the AIX operating system, the
primary destination of data coming from a
command. Standard output goes to the display
unless redirection or piping is used, in which case
standard output can go to a file or to another
command. IBM.

930 IBM VisualAge�C++ for OS/2 User's Guide

statement. An instruction that ends with the
character ; (semicolon) or several instructions that
are surrounded by the characters { and }.

static. A keyword used for defining the scope
and linkage of variables and functions. For
internal variables, the variable has block scope
and retains its value between function calls. For
external values, the variable has file scope and
retains its value within the source file. For class
variables, the variable is shared by all objects of
the class and retains its value within the entire
program.

storage class specifier. One of: auto, register,
static, or extern.

stream. (1) A continuous stream of data
elements being transmitted, or intended for
transmission, in character or binary-digit form,
using a defined format. (2) A file access object
that allows access to an ordered sequence of
characters, as described by the ISO C standard.
Such objects can be created by the fdopen or
fopen functions, and are associated with a file
descriptor. A stream provides the additional
services of user-selectable buffering and
formatted input and output. X/Open.

string. A contiguous sequence of bytes
terminated by and including the first null byte.
X/Open.

string literal . Zero or more characters enclosed
in double quotation marks.

struct. An aggregate of elements, having
arbitrary types.

structure. A construct (a class data type) that
contains an ordered group of data objects. Unlike
an array, the data objects within a structure can
have varied data types. A structure can be used
in all places a class is used. The initial projection
is public.

subscript. One or more expressions, each
enclosed in brackets, that follow an array name.
A subscript refers to an element in an array.

subsystem. A secondary or subordinate system,
usually capable of operating independently of or
asynchronously with, a controlling system. ISO
Draft.

superset. Given two sets A and B, A is a
superset of B if and only if all elements of B are
also elements of A. That is, A is a superset of B
if B is a subset of A.

support. In system development, to provide the
necessary resources for the correct operation of a
functional unit. IBM.

switch statement. A C or C++ language
statement that causes control to be transferred to
one of several statements depending on the value
of an expression.

system default. A default value defined in the
system profile. IBM.

T
tab character. A character that in the output
stream indicates that printing or displaying should
start at the next horizontal tabulation position on
the current line. The tab is the character
designated by '\t' in the C language. If the
current position is at or past the last defined
horizontal tabulation position, the behavior is
unspecified. It is unspecified whether the
character is the exact sequence transmitted to an
output device by the system to accomplish the
tabulation. X/Open.

This character is named <tab> in the portable
character set.

target. A project's target is the file that is
produced as a result of a project build.

target type. A target type appears in an action's
list of target types. Target types only apply to
actions that participate in a project build, such as
Compile and Link. The Build tool and
MakeMake utility use the source and target types
of build actions to determine the order in which
the actions should be run to produce the project's
target.

task. (1) In a multiprogramming or
multiprocessing environment, one or more
sequences of instructions treated by a control
program as an element of work to be
accomplished by a computer.ISO-JTC1. ANSI.
(2) A routine that is used to simulate the
operation of programs. Tasks are said to be
nonpreemptive because only a single task is

 Glossary 931

executing at any one time. Tasks are said to be
lightweight because less time and space are
required to create a task than a true operating
system process.

task library . A class library that provides the
facilities to write programs that are made up of
tasks.

template. (1) A family of classes or functions
with variable types. (2) An object that you can
use as a model to create other objects. When you
drag a template, you create a copy of the original
object. The new object has the same settings and
contents as the original template object.

template class. A class instance generated by a
class template.

template function. A function generated by a
function template.

text file. A file that contains characters
organized into one or more lines. The lines must
not contain NUL characters and none can exceed
{LINE_MAX}—which is defined in
limits.h—bytes in length, including the new-line
character. The term text file does not prevent the
inclusion of control or other non-printable
characters (other than NUL).X/Open.

this. A C++ keyword that identifies a special
type of pointer in a member function, that
references the class object with which the
member function was invoked.

thread. The smallest unit of operation to be
performed within a process. IBM.

tilde. The character ˜. This character is named
<tilde> in the portable character set.

Tools setup. A view of a project where you can
see and manipulate the actions, types, and
environment variables available to the project.
From this view, you can add, delete, and change
actions, types, and variables. You can also set
the options for any action in this view.

trap . An unprogrammed conditional jump to a
specified address that is automatically activated

by hardware. A recording is made of the location
from which the jump occurred. ISO-JTC1.

type. (1) The description of the data and the
operations that can be performed on or by the
data. See also data type. (2) In WorkFrame,
describes a group of project files of parts in terms
of an expression, such as file masks, regular
expressions, or a list of other types, logical-OR'd.

type class. In WorkFrame, represents the
method by which an object is determined to be a
member of a type. “File mask” is an example of
a type class. Membership to a “File mask” type
is determined by matching the file mask filter to
the object's name. Other examples of type
classes are “Regular expression,” and “PAM
Name,” where the named Project Access Method
determines membership to a type.

type definition. A definition of a name for a
data type. IBM.

type specifier. Used to indicate the data type of
an object or function being declared.

U
undefined behavior. Referring to a program or
function that may produce erroneous results
without warning because of its use of an
indeterminate value, or because of erroneous
program constructs or erroneous data.

underflow. (1) A condition that occurs when
the result of an operation is less than the smallest
possible nonzero number. (2) Synonym for
arithmetic underflow, monadic operation.IBM.

union. (1) In the C or C++ language, a variable
that can hold any one of several data types, but
only one data type at a time.IBM. (2) For bags,
there is an additional rule for duplicates: If bag P
contains an element m times and bag Q contains
the same element n times, then the union of P
and Q contains that element m+n times.

unrecoverable error. An error for which
recovery is impossible without use of recovery
techniques external to the computer program or
run.

932 IBM VisualAge�C++ for OS/2 User's Guide

V
variable. In programming languages, a language
object that may take different values, one at a
time. The values of a variable are usually
restricted to a certain data type. ISO-JTC1.

variant character. A character whose
hexadecimal value differs between different
character sets. On EBCDIC systems, such as
S/390, these 13 characters are an exception to the
portability of the portable character set.

<left-square-bracket> [
<right-square-bracket>]
<left-brace> {
<right-brace> }
<backslash> \
<circumflex> _
<tilde> ˜
<exclamation-mark> !
<number-sign> #
<vertical-line> |
<grave-accent> `
<dollar-sign> $
<commercial-at> @

virtual function . A function of a class that is
declared with the keywordvirtual. The
implementation that is executed when you make a
call to a virtual function depends on the type of
the object for which it is called, which is
determined at run time.

visible. Visibility of identifiers is based on
scoping rules and is independent of access.

W
white space. (1) Space characters, tab
characters, form-feed characters, and new-line
characters. (2) A sequence of one or more
characters that belong to the space character class
as defined via the LC_CTYPE category in the
current locale. In the POSIX locale, white space

consists of one or more blank characters (space
and tab characters), new-line characters,
carriage-return characters, form-feed characters,
and vertical-tab characters. X/Open.

wide character. A character whose range of
values can represent distinct codes for all
members of the largest extended character set
specified among the supporting locales.

wide-character string. A contiguous sequence
of wide-character codes terminated by and
including the first null wide-character code.
X/Open.

word boundary. Any storage position at which
data must be aligned for certain processing
operations. The halfword boundary must be
divisible by 2; the fullword boundary by 4; and
the doubleword boundary by 8. IBM.

working directory . (1) Synonym for current
working directory. (2) The directory where files
that are copied or dragged into the project are
stored. Actions are also executed in this
directory, so this directory is where many output
files are placed.

write . (1) To output characters to a file, such as
standard output or standard error. Unless
otherwise stated, standard output is the default
output destination for all uses of the term write.
X/Open. (2) To make a permanent or transient
recording of data in a storage device or on a data
medium. ISO-JTC1. ANSI.

 Glossary 933

934 IBM VisualAge�C++ for OS/2 User's Guide

 Bibliography

 This bibliography lists the publications that make up the IBM VisualAge C++ library and publications of related IBM products
referenced in this book. The list of related publications is not exhaustive but should be adequate for most VisualAge C++ users.

The IBM VisualAge C ++
Library

The following books are part of the IBM
VisualAge C++ library.

¹ Read Me First!, S25H-6956

¹ Welcome to VisualAge�C++, S25H-6957

 ¹ User's Guide, S25H-6961

 ¹ Programming Guide, S25H-6958

¹ Visual Builder User's Guide, S25H-6960

¹ Visual Builder Parts Reference, S25H-6967

¹ Building VisualAge�C++ Parts for Fun and
Profit, S25H-6968

¹ Open Class Library User's Guide, S25H-6962

¹ Open Class Library Reference, S25H-6965

 ¹ Language Reference, S25H-6963-00

¹ C Library Reference, S25H-6964

The IBM VisualAge C ++
BookManager Library

The following documents are available in
VisualAge C++ in BookManager format.

¹ Read Me First!, S25H-6956

¹ Welcome to VisualAge�C++, S25H-6957

 ¹ User's Guide, S25H-6961

 ¹ Programming Guide, S25H-6958

¹ Visual Builder User's Guide, S25H-6960

¹ Visual Builder Parts Reference, S25H-6967

¹ Building VisualAge�C++ Parts for Fun and
Profit, S25H-6968

¹ Open Class Library User's Guide, S25H-6962

¹ Open Class Library Reference, S25H-6965

 ¹ Language Reference, S25H-6963-00

¹ C Library Reference, S25H-6964

C and C++ Related
Publications
¹ Portability Guide for IBM C, SC09-1405

¹ American National Standard for Information
Systems / International Standards
Organization — Programming Language C
(ANSI/ISO 9899-1990[1992])

¹ Draft Proposed American National Standard
for Information Systems — Programming
Language C++ (X3J16/92-0060)

IBM OS/2 2.1 Publications

The following books describe the OS/2 2.1
operating system and the Developer's Toolkit 2.1.

¹ OS/2 2.1 Using the Operating System,
S61G-0703

¹ OS/2 2.1 Installation Guide, S61G-0704

¹ OS/2 2.1 Quick Reference, S61G-0713

¹ OS/2 2.1 Command Reference, S71G-4112

¹ OS/2 2.1 Information and Planning Guide,
S61G-0913

¹ OS/2 2.1 Keyboard and Codepages,
S71G-4113

¹ OS/2 2.1 Bidirectional Support, S71G-4114

¹ OS/2 2.1 Book Catalog, S61G-0706

¹ Developer's Toolkit for OS/2 2.1: Getting
Started, S61G-1634

IBM OS/2 3.0 Publications

¹ User's Guide to OS/2 Warp, G25H-7196-01

The following books make up the OS/2 3.0
Technical Library (G25H-7116).

¹ Control Program Programming Guide,
G25H-7101

¹ Control Program Programming Reference,
G25H-7102

 Copyright IBM Corp. 1992, 1995 935

¹ Presentation Manager Programming Guide -
The Basics, G25H-7103

¹ Presentation Manager Programming Guide -
Advanced Topics, G25H-7104

¹ Presentation Manager Programming
Reference, G25H-7105

¹ Graphics Programming Interface
Programming Guide, G25H-7106

¹ Graphics Programming Interface
Programming Reference, G25H-7107

¹ Workplace Shell Programming Guide,
G25H-7108

¹ Workplace Shell Programming Reference,
G25H-7109

¹ Information Presentation Facility
Programming Guide, G25H-7110

¹ OS/2 Tools Reference, G25H-7111

¹ Multimedia Application Programming Guide,
G25H-7112

¹ Multimedia Subsystem Programming Guide,
G25H-7113

¹ Multimedia Programming Reference,
G25H-7114

¹ REXX User's Guide, S10G-6269

 ¹ REXX Reference, S10G-6268

Other Books You Might
Need

The following list contains the titles of IBM
books that you might find helpful. These books
are not part of the VisualAge C++ or OS/2
libraries.

 BookManager READ/2
Publications
¹ IBM BookManager READ/2: General

Information, GB35-0800

¹ IBM BookManager READ/2: Getting Started
and Quick Reference, SX76-0146

¹ IBM BookManager READ/2: Displaying
Online Books, SB35-0801

¹ IBM BookManager READ/2: Installation,
GX76-0147

 Non-IBM Publications
Many books have been written about the C++
language and related programming topics. The
authors use varying approaches and emphasis.
The following is a sample of some non-IBM C++
publications that are generally available. This
sample is not an exhaustive list. IBM does not
specifically recommend any of these books, and
other C++ books may be available in your
locality.

¹ The Annotated C++ Reference Manualby
Margaret A. Ellis and Bjarne Stroustrup,
Addison-Wesley Publishing Company.

¹ C++ Primer by Stanley B. Lippman,
Addison-Wesley Publishing Company.

¹ Object-Oriented Design with Applicationsby
Grady Booch, Benjamin/Cummings.

¹ Object-Oriented Programming Using SOM
and DSOM by Christina Lau, Van Nostrand
Reinhold.

¹ OS/2 C++ Class Library: Power GUI
Programming with C Set ++ by Kevin Leong,
William Law, Robert Love, Hiroshi Tsuji,
and Bruce Olson, Van Nostrand Reinhold.

936 IBM VisualAge�C++ for OS/2 User's Guide

 Index

Special Characters
- command for NMAKE 840
! command for NMAKE 841
/? compiler option 316
/? linker option 351
/? option for EXEHDR
/Fb 615
@ command for NMAKE 841
\ (continuation character) 212

Numerics
16-bit functions, passing variables to 305
16-bit keywords, ignoring 292

A
/A option for NMAKE
/A option for PACK
abstract code units (ACUs)

example 230
accelerator keys, defining in resource files 708
ACCELTABLE statement (RC) 708
accessing logical keys not on keyboard 182
action status bar (Browser) 564, 576
actions 48

accelerator keys 63
actions, project 91, 111
adding 49, 135
adding to menus 63
changing settings 49
classes 49

default actions 71, 101
copying 136
customized help 58
default 49, 62, 71, 73, 101
double-click behavior 62, 73
error template 71, 90
file-scoped 50, 55, 63, 65, 73, 91, 93, 104
how displayed on menus 73
inheriting options 66
migrating from previous versions 143, 144,

146, 147
monitored 85
name 50

actions (continued)
on toolbar 63, 92
options 65

Build Smarts 67
changing 65, 67
copying 67
deleting 67
inheriting 66
migrating 145, 146
substitution variables 69

options dialog 65
priority 58, 62, 71, 73
program 50
project-scoped 50, 63, 65, 71, 73, 91, 104,

146
removing from menus 63
run mode 50
running in DOS sessions 89
scope 50
settings notebook 49

general page 50
menus page 63
support page 58
types page 55

source types 53, 55, 71, 73, 77, 92, 104,
107, 110, 146

support DLL 51
default 69, 90
for project-scoped actions 51
for VisualAge C++ compiler 104
migrating 144, 146
options dialog 65
role in builds 92
role in make file generation 92, 107
setting 58
table 60

target types 55, 77, 92, 93, 104, 110, 146
ACUs (abstract code units)

example 230
adding .OBJ modules to a library 665
adding menu items (Browser) 619
address breakpoint 417
aiding program understanding 604
ALIAS segment attribute 388
align data items in structures and unions 292
/ALIGNMENT linker option 351

 Copyright IBM Corp. 1992, 1995 937

Analyze Trace window 512
check boxes 513
entry field 513
push buttons 514

analyzing a trace file 497
anonymous 568
ANSI language level 215

compiler option 289
API, tracing calls into 480
application menu in Performance Analyzer 506
Application Monitor window 511

push buttons 512
status area 511

application type (/PMTYPE), setting with
EXEHDR 888

arcs, Dynamic Call Graph 526
ASCII terminal emulation 907
assembler code, calling 306
assembler listing file 219

compiler option 269
assigning frequently used commands to

keys 182
assigning menu selections to keys 182
assisting in development 601
association tables for data files, creating 711
ASSOCTABLE statement (RC) 711
attributes, text (Browser) 571, 574
auto-inlining 230

limiting memory used during 311
AUTOCHECKBOX statement (RC) 713
automatic check boxes, defining 713
automatic information searches 864
automatic radio buttons, defining 714
AUTORADIOBUTTON statement (RC) 714
autosave window positions and sizes 431

B
/B compiler option 250, 316
/B option for CPPFILT
backing up library files 671
backslash (\) 212
/BASE linker option 352
BASE module statement 373
before you begin debugging 399
binary resource files 705
binary resource files, creating 696
binding messages to your application

input file 853
multpile code pages 854

binding messages to your application(continued)
VisualAge C++ files 854

binding resources to a file 700
bitmap dimensions (Browser) 585
bitmap resources, defining 716
BITMAP statement (RC) 716
bitmaps in debugger 461
bitmaps, creating with Icon Editor 809
block of text

rectangular 172
BookManager books 936
BOOKSHELF environment variable 858
breakpoint list 420
Breakpoint List window 453
breakpoints menu 413
BROWSE link 560
/BROWSE linker option 352
browser

adding menu items 619
aiding program understanding 604
assisting in development 601
compiler option 269
database 554, 557, 561, 618
database search 598
ending 561
fast-path keys 639
generated flags 568
Graph window 576
help levels 590
history 599
linker option 352
List window 564
objects 554, 567
options for starting 557
overview 553
paths 588
popup menus 648
pulldown menus 640
settings 587
starting from the Debugger or Editor 559
starting from the OS/2 prompt 557
starting from the OS/2 Workplace Shell 558
starting from the WorkFrame 558
tour 621
trouble shooting 637
updating database 618
user interface 563

Browser objects 580, 649
browsing 554

compiler generated Browser (.PDB)
files 553

938 IBM VisualAge�C++ for OS/2 User's Guide

browsing (continued)
more than one file 603
Open Class Library classes 602
program files (.DLL,.EXE,.LIB) 553
without recompiling 602
WorkFrame projects 553

BRS files 593, 637
brsmenu.txt (Browser) 619
BSS32 segment

renaming 308
buffer flushing, disabling during analysis 494
buffer wrap during analysis 494
Build Smarts 67
build utility

Seebuilding project targets
building project targets 91

build actions 93, 94
build options 92, 93
build options notebook 93

actions page 93
display page 99
make page 95
project page 97

build source files 94
building from the command line 101
command line syntax 101
comparing make and build 91
concurrency 91, 97
dependency file 95
displaying MakeMake window 99
make file generation script 96, 108
make processing options 95
make utility 96
NMAKE make utility 96
organizing projects for 92
prompting during builds 99
starting 92

built-in functions 230

C
/C compiler option 317
C language

See also Language Reference
allowing double slashes as comments 293
restricted compiler options 260

/C option for CPPFILT
/C option for LOCALDEF
/C option for NMAKE

/C option for PACK
C++ language

See also Language Reference
compatibility with older versions 216
resolving templates 273
restricted compiler options 260
templates in old object code 302

call depth, selecting 492
Call Nesting diagram 519

menu bar 520
pop-up menus 523
status area 523

calling conventions
#pragma linkage 235
compiler options 307
default 235
linkage keywords 235
setting 235

case sensitivity
compiler options 253

-CC option for RC
__cdecl calling convention

compiler option 307
keyword 235
setting 235

change address breakpoint 418
changes to WorkFrame xxxvi
changing

fonts (Browser) 592
char, treatment when unspecified 317
character map file, specifying for

LOCALDEF 690
character width, fonts 798
characters

backslash (\) 255
continuation (\) 212

check box resources 717
automatic 713

check heap when stopping in debugger 421
CHECKBOX statement (RC) 717
choosing runtime libraries 236
class objects (Browser) 567
classes, Workplace

adding 901
creating object class instance 899
deleting classes 901
instantiating with Object Utility/2 903
predefined 899
replaced 899
subclasses 899

 Index 939

close debugger 413
closing the Browser 561
code generation options, compiler 299
CODE module statement
code pages

identifiers 701
multiple for MSGBIND 854
setting for MKMSGF 851
setting with resource file statement 718
specifying on RC command 696

code segments
CONFORMING attribute 374
defining default attributes for 374
EXECUTEONLY attribute 374
EXECUTEREAD attribute 374
IOPL attribute 375
LOADONCALL attribute 375
NOIOPL attribute 375
NONCONFORMING attribute 374
PRELOAD attribute 375

code set conversion utilities
GENXLT 687
ICONV 685

CODE32 segment
renaming 308
setting attributes of 308

CODEPAGE statement (RC) 718
/CODEVIEW linker option 353
color

Browser Graph window 582
Browser List window 571

colors
editor 184

Colors window 441
combination boxes, defining in resource file 719
combining C and C++ files 205
combining DLLs without relinking 681
COMBOBOX statement (RC) 719
command file, using to start the Performance

Analyzer 485
command files for NMAKE 817
command line

help for linker 351, 358
help from 203, 316
linking from 323
precedence over ICC options 254, 258
setting compiler options on 253
setting environment variables 210
setting linker options on 347

command-line parameters for ILIB 656
comments in C files 293
communications parameters for T terminal

emulator 909
compatibility with LINK386 325
Compatible language level 216

compiler option 289
compiler 199

environment variables 207
input 205
limit working set size 311
listing files

Seelisting files, compiler
listings 222
logo display 318
messages 223
output 219
output file options 268
passing options to linker 316
preloading of 318
response files 203
return codes 224
starting the 201
temporary files 223
work files 223

compiler errors
controlling level and number 223
intermediate code linker 228
set maximum number of 282

compiler gen 568
compiler options 264

accumulation of 257
classification by function 263
combinations for specifying libraries 261
conflicting 259
equivalent linker options 330
for code generation 299
for debugging and diagnostics 281
for include file 274
for listing files 276
for optimizing 309
for output file management 268
for PM programming 261
for preprocessing 296
for source code 289
language-dependent 260
list of 264
online listing 203
parameters 255
passing linker options 330

940 IBM VisualAge�C++ for OS/2 User's Guide

compiler options(continued)
precedence 254, 258
related 258
scope 257
setting 253

in ICC 253
in WorkFrame 254
on the command line 253

specifying 253
switches (+|-) 256
syntax for xxxv
with multiple source files 257

compiler source files
compiling multiple 205
default file extensions 206
double slashes in C files 293
file types 206
ignoring columns in 290, 293
ignoring sequence numbers in 293
include source code in listing file 280
information about in listing 276
language level 214
line numbers in map file 359
mixed C and C++ 205
naming in ICC 210
options with multiple 257
organizing for precompiled headers 245
sequence numbers in 293
setting default extension 289
setting margins of 290
source code compiler options 289
specifying C files 294
specifying C++ files 295

compiler-generated symbols, demangling 878,
884

compiling 199
a .DLL file 300
an .EXE file 300
for Performance Analyzer 301
for the debugger 399
for the Performance Analyzer 479
from a make file 204
from the command line 202
improving compile time 239
invoking the linker 329
mixed C and C++ files 205
multiple source files 205
preloading compiler components 318
set maximum number of errors 282
syntax check only 270

compiling (continued)
using response files 203
within WorkFrame 201
without linking 201, 317

compiling (Browser) 559
compiling and linking

See also compiler options
C and C++ files 205
environment variables 207
for the debugger 399
for the Performance Analyzer 479
multiple source files 257

compiling and linking programs for Performance
Analyzer 479

components box in the debugger 410
components, enabling/disabling in Performance

Analyzer 491
viewing/hiding 491

compressing files 869
compression, LZW 356
compression, run-length encoding 356
CONFIG.SYS 207, 209
configuring KwikINF from command line 862
conflicting compiler options 259
CONFORMING segment attribute 374, 388
considerations

considerations 279
Console window 201
CONST32_RO segment

default attributes 308, 365
renaming 308
setting attributes of 308

constant segment
default attributes 308, 365
renaming 308
setting attributes of 308

CONTAINER statement (RC) 720
container view 554
container view (Browser) 565

ordering 566
containers, defining in resource file 720
continuation character (\) 212
control data for custom dialog boxes 724
control files for MKMSGF 852
CONTROL statement (RC) 721
Control window 409
controlling compiler input 205
controlling compiler messages 284
controlling message severity 284

 Index 941

controlling size of enum variables 294
controls, defining in resource files

adding to dialog box 786
arranging in dialog box 790
automatic check boxes 713
automatic radio buttons 714
centered text 723
check boxes 717
combination boxes (combo boxes) 719
containers 720
default pushbutton 726
entry-field 732, 735
group boxes 739
grouping in dialog boxes 785
icons 745
left-aligned text 750
list boxes 749
moving in dialog boxes 786
multiline entry fields (MLE) 758
notebooks 759
pushbuttons 763
radio buttons 764
right-aligned text 768
sliders 769
specific classes 721
spinbuttons 770
value sets 776

converting character set definitions 685
converting code sets 685
converting old .LIB files to new format 669
/CONVFORMAT (/C) option for ILIB
copyright statement, disabling

for DLLRNAME 678
for ILIB 672

country code identifiers 701
country code, setting for resource compiler 696
country codes, complete list 847
CPPFILT utility

binary mode
example of output 880
options 881—884
output 880
syntax 879

demangling compiler-generated
symbols 878, 884

demangling public symbols 883
demangling stand-alone class names 877
displaying help 877
generating NONAME keyword for

exports 882

CPPFILT utility (continued)
generating ordinals 882
including exported symbols 884
including referenced (EXTDEF)

symbols 883
producing both demangled and mangled

names 878
producing symbol map 877
specifying binary mode 881
specifying field width 879
suppressing logo 878, 883
text mode

options 876—879
output 876
syntax 876

what it does 875
Create Trace window 504

entry fields 504
push buttons 505

creating conversion tables 687
creating locale files 689
creating message files 845
creating new libraries (.LIB files) 659
creating resources 702
creating user events 481
creating Workplace classes 899
cross-reference table in listing file 281
CSETENV.CMD 207, 209

example 210
CTEXT statement (RC) 723
CTLDATA statement (RC) 724
CUA guidelines for dialog boxes 782
cumulative compiler options 213, 257
current column indicator in Performance

Analyzer 538
custom data resources, defining 765
custom resources, defining 767
customizing

autosave 183
colors and fonts 184
editor 179
keyboard 182
menu bar 180
tool bar 180

D
/D compiler option 296
/D option for MKMSGF

942 IBM VisualAge�C++ for OS/2 User's Guide

/D option for NMAKE
/D option for PACK
-D option for RC 701
Data Access Builder

adding a mapping 195
browsing generated code 198
changing a class name 194
changing a mapping 195
changing attributes names 196
creating classes 194
deleting a mapping 194, 195
deleting a table 194
generating IDL 197
generating Visual Builder parts 197
mapping a table 195
opening a session 193
overview 191
pop-up menus 193
save as 193
saving a session 192
settings notebooks 193
SQL data types 195
starting 192
viewing generated code 198
WorkFrame,starting Data Access

Builder 191
data items, aligning structures and unions in 292
DATA module statement 376
data segments

defining default attributes 376
IOPL attribute 376
LOADONCALL attribute 377
MULTIPLE attribute 376
NOIOPL attribute 376
NONE attribute 376
NONSHARED attribute 377
PRELOAD attribute 377
READONLY attribute 377
READWRITE attribute 377
SHARED attribute 377
SINGLE attribute 376

data types, valid 473
DATA32 segment

renaming 308
setting attributes of 308

database, Browser 554, 557, 559, 561, 618
DBCS (double-byte character set) 292
DBCS support in MKMSGF 851
/DBGPACK linker option 353

ddnames, allowing use of 291
/DEBUG linker option 354
debugger 395, 559

compiler options 282, 283
generating information for 220
information, packing 353
linker option 220, 354
optimization with 220
starting the Browser from 559

debugger search path 400
debugging 401

compiler option for 282
information, packing 353
line-number only 283
linker option 353, 354
memory management 283

debugging compiler options 281
debugging options, compiler 281
default

attributes for code segments 374
attributes for data segments 376
attributes of segments 365
calling convention 235
changing, for compiler input files 289
compiler executable output 300
extension for executable 361
file extensions 206
initialization of DLL 383
language of compiler files 295
libraries, searching 354
library information, suppressing 304
linker file names 337
name for executable 361
precompiled header names 243
runtime library 236
stack size 250
termination of DLL 383

default code and text segments
renaming 308
setting attributes of 308

default data segment
renaming 308
setting attributes of 308

default standard character size 793
DEFAULTICON statement (RC) 726
/DEFAULTLIB linker option 238, 239, 354
defer breakpoint 415
define directive (RC) 726
defining preprocessor macros 296

 Index 943

DEFPUSHBUTTON statement (RC) 726
delete all breakpoints 420
deleting .OBJ modules from library 666
demangling C++ names

compiler-generated symbols 878, 884
exported symbols 884
object (.OBJ) and library (.LIB) files 879
public symbols (PUBDEF, COMDAT,

COMDEF) 883
referenced (EXTDEF) symbols 883
stand-alone classes 877
text files 876

description files for NMAKE
creating 833
description blocks 821
format 822
macros 824

DESCRIPTION module statement 378
description, Performance Analyzer 477
desktop-object windows, enabling display

of 461
device drivers

See also ?
compiler options 304, 306

DGROUP 308, 376, 381
diagnosing errors, Call Nesting 519
diagnostic compiler options 281
diagrams, using to analyze 497

Call Nesting 519
displaying 498
Dynamic Call Graph 525
Execution Density 533
Statistics 539
Time Line 545

dialog boxes
adding controls with Dialog Editor 786
arranging controls 790
changing colors and fonts 789
changing with Dialog Editor 790
creating with Dialog Editor 782
defining control data in resource file 724
defining in resource files 728
designing 782
grouping controls with Dialog Editor 785
presentation parameters 762
tab-stop markers 785
templates

example 795
in Dialog Editor 791
resource file statement

(DLGTEMPLATE) 731

dialog boxes(continued)
testing in Dialog Editor 791
value set controls 776

dialog editor
.DLG file 793
adding controls 786
arranging controls 790
colors and fonts 789
creating dialog boxes 782
designing dialog boxes 782
dialog templates 791
editing dialog boxes 790
example of adding controls 787
exiting 791
grids 784
group markers 785
moving controls 786
Options menu 791
ordering groups of controls 785
resource file (.RES) 793
sample template file 795
symbols 787
tab-stop markers 785
testing dialog boxes 791

DIALOG statement (RC) 728
dialog units 793
dialogs

Browser Files 616
Find (Browser) 597
Font (Browser) 592
History (Browser) 599
Load Database (Browser) 593
Merge Database (Browser) 595
new user help (Browser) 591
Overview (Browser) 578
Print (Browser) 575, 585
QuickBrowse (Browser) 616
Save As... (Browser) 575, 585
Search Database (Browser) 598

direct to SOM compiler options 313
get and set methods 314
implicit mode 313
SOM release order 315

directives for resouce compiler 699
directories, for linker search 336
disabling buffer flushing during analysis 494
display style window 444
display support for icons (Icon Editor) 808
displaying program type of executable 895

944 IBM VisualAge�C++ for OS/2 User's Guide

DLG file 793
DLGINCLUDE statement (RC) 730
DLGTEMPLATE statement (RC) 731
DLL files

advantages of using 345
alignment factor in 351
compiler option 300
exporting from

Seeexporting from DLLs
importing from 381
include version string in 318
initialization of 383
inserting description 378
linker option 355
linking to 345
linking to runtime 300
maintaining compatibility 386
module statement for 383
naming 270
preserving ordinal values 386
producing a 339
target operating system 378
termination of 383

/DLL linker option 355
load address of 352, 373

DLLRNAME utility
/H option (help) 678
/N option (don't rename) 678
/Q option 678
/R option 679
command-line help 678
disabling logo and copyright statement 678
example 679
generating reports 679
how it works 677
options 678—679
syntax 676

DLLs, tracing 480
documentation, showing (Browser) 603
DOS calls, analyzing 493
double slashes as comments 293
double-byte character set (DBCS) 292
double-click actions (Browser) 571, 581
DPATH environment variable 208
DTS compiler options 313

get and set methods 314
implicit mode 313
SOM release order 315

Dynamic Call Graph 525
arcs and nodes 526

Dynamic Call Graph(continued)
function information 526
menu bar 527
status area 529
zoom bar 529

dynamic link libraries, tracing 480
dynamic linking 343

See also DLL files
advantages of 345
description 237
using a DEF file 346
using an import library 346

E
/E option for NMAKE
echoing contents of linker response file 359
edit color, icon editor 807
edit menu, Trace Generation window 506

Call Nesting diagram 520
Execution Density diagram 534
Time Line diagram 546

editing (Browser) 601
editor 559

closing windows 161
colors and fonts 184
creating new files 155
customizing 179
editing text 156
entering text 156
finding marks 165
finding text 162
finding, replacing text 163
inserting files 167
introduction 155
Issue Edit Command window, using 168
issuing commands from 168
locating lines 164
manipulating blocks 170
marking text 170
marks 164
modifying behavior permanently 185
naming marks 165
opening files 161
parsing 174
profiles 185
saving files 160
special keys 156
starting the Browser from 559
tool bar, using 179

 Index 945

editor (continued)
undoing changes 159
unmarking text 171
using quick marks 166
views 174

editors
E Editor 60
enhanced editor 88, 89
EPM 60, 71, 88, 89
EPM Version 6.0 88, 89
VisualAge Editor 4, 5, 49, 60, 71, 88, 89

EDITTEXT statement (RC) 732
EH_CODE segment

renaming 309
EH_DATA segment

renaming 309
elif directive (RC) 733
else directive (RC) 734
emitting internal fixups 352
emulation, terminal (using T Terminal Emulator)

communications parameters 909
customizing 909
receiving files 911
scrolling 910
sending files 910
setting up 908

enabling documents for KwikINF 860
enabling threads in the debugger 422
endif directive (RC) 735
ending the debugging session 404
enhanced features of the debugger 395
enhanced features. xliii
entry points, PERF 481

PerfStart and PerfStop 482
entry-field controls, defining in resource

files 732, 735
ENTRYFIELD statement (RC) 735
enum variables, controlling size of 294
enumerated variable, monitoring in

debugger 472
environment variable, INCLUDE 400
environment variables

compiler 207
DPATH 208
ICC 208
ILINK 208
INCLUDE 208
LIB 208
LIBPATH 208
LOCPATH 208

environment variables(continued)
PATH 208
setting 209
TMP 208

environment variables, in projects 82
adding 83
how interpreted by PAMs 82
setting 83

EPM Version 6.0 88, 89
error codes, compiler 224
errors, compiler

controlling level and number 223
intermediate code linker 228
set maximum number of 282

errors, linker
producing executable with 357

ES and DS registers, handling 306
escape characters for NMAKE 839
exception-handling information, removing 307
exception-handling segments

renaming 309
EXE files 222

adding stub file 391
alignment factor in 351
compiler option 300
defining type of 385
include version string in 318
inserting description 378
linker option 355
linking with errors 357
module statement for 384
naming 270, 361, 384
packing 356
producing 355
producing an 339
running under DOS 391
search path 208
specify type of 363
subsystem 222
target operating system 378

/EXEC linker option 355
executable pop-up menu in Performance

Analyzer 509
executables, tracing 489

enabling/disabling in Performance
Analyzer 491

viewing/hiding 491
EXECUTEONLY segment attribute 374, 388
EXECUTEREAD segment attribute 374, 388

946 IBM VisualAge�C++ for OS/2 User's Guide

Execution Density diagram 533
current column indicator 538
menu bar 534
pop-up menus 537
status area 537
vertical ruler 538

EXEHDR utility
clearing error flag 889
display executable-header contents (verbose

mode) 890
displaying help 885, 887
example of output 892
example of verbose output 892
header listing 890
object or segment listing 891
options 886
output 890
set minimum allocation 888
setting application type 888
setting heap size 887
setting memory maximum 887
setting stack size 889
suppressing logo display 888
syntax 885

/EXEPACK linker option 356
EXETYPE module statement 378
exiting Performance Analyzer 487
exiting the Browser 561
_Export keyword 227
exported symbols, demangling 884
exporting from DLLs

_Export keyword 227
module statement 379

EXPORTS module statement 379
expression operands 471
expression operators 472
expressions, monitoring in debugger 438
EXTDEF symbols, demangling 883
/EXTDICTIONARY linker option 357
extended attributes 36, 43, 94
extended dictionary for ILIB 672
Extended language level 216

compiler option 289
external names

reserved 238
setting significant length of 317

external symbols, listing for a library 661
EXTMAKE syntax for NMAKE 842
extracting .OBJ modules from libraries 660

F
/F option for LOCALDEF
/F option for NMAKE
/Fa compiler option 269
_Far16 calling convention

keyword 235
setting 235

fast floating-point execution 301
fast integer execution 302
fast-path keys (Browser) 639
_Fastcall calling convention

keyword 235
setting 235

Fb comp 559
/Fb compiler option 221, 269
/Fc compiler option 270
/Fe compiler option 270
/Fi compiler option 224, 239, 271
file accesses, tracing 493
file association tables, creating 711
file extensions

compiler output files 268
default 206
linker default 337
setting default for compiler 289

file objects (Browser) 568
files

as compiler option parameters 256
compiler listing

See ?
compiler options 268
editing (Browser) 601
executable (.EXE) files 222
extensions 206
help and message

Seemessage and help files
linker search rules 335
make

See make files
memory 294
object 220
preprocessor 297

See also ?
set default language of 295
setting default extension for compiler 289
source

Seecompiler source files
viewing (Browser) 601

 Index 947

filtering in Performance Analyzer 515
finding function information, Dynamic Call

Graph 530
finding text (Browser) 597
/Fl compiler option 271
flags, Browser generated 568
floating-point execution, fast 301
/Fm compiler option 272
/Fo compiler option 272
Font Editor

defining fonts 798
editing character width 798
font resource files 799
FONT statement 799
starting 797

font resources, defining 736
FONT statement (Font Editor) 799
FONT statement (RC) 736
fonts

defining in Font Editor 798
editing character width 798
editing with Font Editor 797
editor 184
for different display types 808
resource (.FNT) files 799

fonts (Browser) 592
/FORCE linker option 357
forwarders in DLLs

definition 681
using 681

/Fr compiler option 315
FRAME statement (RC) 737
frame window resources, defining 737
/FREEFORMAT linker option 357
/Fs compiler option 315
/Ft compiler option 273
function breakpoint 416
Function Information window 530
function objects (Browser) 567
function pop-up menu in Performance

Analyzer 510
functions, enabling/disabling in Performance

Analyzer 491
viewing/hiding 491

/Fw compiler option 226, 273
FWAIT instruction 306
FWDSTAMP utility

example 682
syntax 682

G
/G compiler option 299
/Ga compiler option 313
/Gb compiler option 314
/Gd compiler option 237, 300
/Ge compiler option 300
generated flags, Browser 568
generating Browser databases 559, 561
GENXLT utility

return codes 687
syntax 687

/Gf compiler option 301
/Gh compiler option 221, 301
/Gi compiler option 302
/Gk compiler option 302
/Gl compiler option 220, 303
/Gm compiler option 238, 303
/Gn compiler option 304
/Gp compiler option 304
/Gr compiler option 304
graph overview (Browser) 578
Graph window (Browser) 553, 576

action status bar 576
components 576
double-click actions 581
fonts 592
hold checkbox 577
information bar 577
initial action 581
layout 579
limitation 577
overview 578
printing 585
saving 585
selecting a zone 580
settings 580

bitmap dimensions 585
color 582
settings 581
style 584

slider 577
weighting 579

grids for dialog box editing 784
group markers for dialog controls 785
group-box control resources, defining 739
GROUPBOX statement (RC) 739
/Gs compiler option 250, 305
/Gt compiler option 305

948 IBM VisualAge�C++ for OS/2 User's Guide

/Gu compiler option 227, 305
guard page
/Gv compiler option 306
/Gw compiler option 306
/Gx compiler option 307
/Gz compiler option 314

H
-H (help) option for RC
/H compiler option 317
/H option for CPPFILT
/H option for DLLRNAME
/H option for NMAKE
/H option for PACK
halt (debugger) 421
header files

controlling search paths 212
default file extensions 206
different calling conventions 307
precompiled 239

See also precompiled header files
search path 208, 213
syntax 211

heap check in debugger 421
/HEAP option for EXEHDR
heap size, setting with EXEHDR 887
heap, defining size of 381
HEAPSIZE module statement 381
help

WorkFrame 12
help and message files

search path 208
help compiler (IPFC) 867
help from the command line 203, 316
help levels (Browser) 590
/HELP linker option 358
help on the Browser

contextual 555
How Do I... 556
new user help (Browser) 591

/HELP (/H) option for ILIB
/HELP option for EXEHDR
help resources, defining

help items 740
help subitem size 773
help subitems 741
help subtables 742
help tables 743

HELPITEM statement (RC) 740
HELPNDX environment variable 858
HELPSUBITEM statement (RC) 741
HELPSUBTABLE statement (RC) 742
HELPTABLE statement (RC) 743
history (Browser) 599
hold checkbox (Browser) 565, 577
hot spots in Performance Analyzer 539
hotkey for KwikINF 861
hotspots in Icon Editor 806
hover help 16

I
/I compiler option 212, 213, 275
/I option for LOCALDEF
/I option for NMAKE
-I option for RC
icc command 201, 202

online listing of options 203
response files 203
syntax 202

ICC environment variable 208
file names in 210
include files in 213
include search path 212
precedence with command line 254, 258
setting compiler options in 253

icon editor
changing palette colors 807
changing pen shape and size 805
command-line invocation 810
creating figures 802
edit color 807
editing art 803
editing functions 803
filling areas with color 808
hotspots 806
loading multiple files 810
options 804
palette window 802
palettes 806
saving bitmaps or pointers 809
setting preferences 805
starting 801
supporting different screen displays 808
testing 804

ICON statement for controls (RC) 745
ICON statement for resources (RC) 744

 Index 949

icons, defining in resource files
as controls 745
as resources 744
creating 802
defaults 726
editing existing 803
Icon Editor 801
testing in Icon Editor 804

icons, plus/minus in Performance Analyzer 491
component 491
Trace Generation window 491
using to identify functions with triggers 494

ICONV utility
creating conversion tables with

GENXLT 687
return codes 686
syntax 686

icsbrs command
syntax 557

if directive (RC) 746
ifdef directive (RC) 747
ifndef directive (RC) 747
/IGNORECASE linker option 358
ignoring unsupported 16-bit keywords 292
ILIB

adding .OBJ modules 665
backing up libraries 671
browse information 671
case insensitivity 670
case sensitivity 670, 672
combining libraries 666
command-line parameters 656
commands 665
copying .OBJ modules 667
creating library 659
deleting .OBJ modules 666
disabling logo and copyright 672
displaying help 670
examples

command-line invocation 658
listing file contents 662

extracting .OBJ modules from libraries 660
introduction 655
invoking 656
listing library contents 661
modifying libraries 660
moving .OBJ files 668
options 669
prompts 657
replacing .OBJ modules 667

ILIB (continued)
response files 657
setting listing details 670
specifying parameters 656

ILINK environment variable 208
setting 348
setting options in 348

IMPLIB, using 346
implicit SOM mode 313
import library, using 346

linker option 357
IMPORTS module statement 381
improving compile time 239
#include directive 211

search path, controlling 212
syntax 211

include directive (RC) 748
INCLUDE environment variable 208, 213, 400
#include files

See also header files
controlling 213
I option 275
in listing file, expanding user 279
in listing file, expanding user and

system 279
search options 274
search order 213
system #include files 213, 214
user #include files 213, 214
Xc option 275
Xi option 275

#include search options 212, 213, 274
incremental smart build (Browser) 560
index (.NDX) files 858
INF files, viewing 203
inference rules for NMAKE

defining 831
example 832
predefined 833
setting file search path 833
TOOLS.INI 843

information bar (Browser) 565, 577, 590
/INFORMATION linker option 358
inheritance, project xxxvi

action options 66
alternatives to 33
environment variables 82
how it works 33
inheriting from sample projects 111
inheriting from the VisualAge C++

project 22

950 IBM VisualAge�C++ for OS/2 User's Guide

inheritance, project(continued)
precedence rules 33
setting 29, 131
structures 42
using 33

INITGLOBAL initialization of DLL 383
initial sequence, precompiled headers

customizing in source files 245
determining 240
matching 241
multiple 243
reusing 241

INITINSTANCE initialization DLL 384
inline files for NMAKE 838
_Inline keyword 229
inlining user code 229

benefits 232
compiler option 230, 310
description 229
drawbacks 233
improving performance by 232
keywords 229
limit working set size 311
restrictions 233

instantiating Workplace classes 903
instruction scheduler, invoking 312
integer execution, fast 302
integration kit, WorkFrame 62, 81, 108, 151
intermediate code linker

compiler option 311
description 225
error checking 228
Gu option 227
restrictions 227
with Gu option 305

intermediate files 226
directing 273
linking 225
naming 273
naming in ICC 210
producing 273

internal fixups, emitting 352
internationalization utilities

GENXLT 687
ICONV 685
LOCALDEF utility 689

intrinsic functions 230
introduction to the debugger 395
invoking the instruction scheduler 312

IOPL segment attribute 375, 376, 388
IPF compiler (IPFC)

syntax 867
IwfAddAction 135
IwfAddType 137
IwfAddVariable 137
IwfCloseCatalog 125
IwfCloseConsole 125
IwfCopyAction 136
IwfCopyWithSubstitution 129
IwfCreateProjectFromFiles 133
IwfCreateProjectFromProject 134
IwfDeRegisterTypeClass 138
IwfDestoryVariable 137
IwfDestroyAction 137
IwfDestroyType 138
IwfEnvPrfDropFuncs 121
IwfEnvPrfLoadFuncs 121
IwfInitEnvPrfAPIs 121
IwfOpenCatalog 124
IwfOpenConsole 121
IwfQueryLocation 126
IwfQueryVariables 127
IwfRegisterTypeClass 138
IwfRestoreVariables 128
IwfSaveVariables 128
IwfTermEnvPrfAPIs 121
IwfUpdateCatalog 124
IwfUpdateConsoleProgress 126
IwfUpdateConsoleStatus 126

J
/J compiler option 317
jump to location choice in debugger 440

K
-K option for RC
kernel debugger, creating files for 897
keyboard customization 182
keywords, ignoring 16-bit 292
KwikINF utility

automatic text retrieval 857
changing behavior 863
command-line options 862
configuring 862
default search document 863
enabling online documents 860
for OS/2 full-screen sessions 863

 Index 951

KwikINF utility (continued)
hotkey 861
index (.NDX) files 858
keys help 866
search string 865
selecting hotkey 863
starting 861
starting from command line 862
using 861
window 864

L
/L compiler option 277
/L option for MKMSGF
/L option for PACK
/La compiler option 277
label objects (Browser) 568
language level

ANSI 215
compiler option 289
description 214
extended 216
SAA 215
specifying 214

language-dependent compiler options 260
/Lb compiler option
/Le compiler option 278
/Lf compiler option 278
/Li compiler option 279
LIB environment variable 208
LIB files

linker search rules 335
linking with 344
naming in ICC 210

LIB utility (from previous releases)
converting old files to new format 669
options 673

LIBPATH 208
libraries (.LIB files)

adding .OBJ modules 665
backing up 671
combining 666
copying .OBJ modules 667
creating 659
deleting .OBJ modules 666
demangling C++ names in 879
extracting .OBJ modules 660
listing contents 661
modifying 660

libraries (.LIB files)(continued)
moving between libraries 668
replacing .OBJ modules 667
updating browse information with ILIB 671

libraries, Performance Analyzer 480
libraries, specifying

as object files 338
default 236
for subsystem EXE files 222
in ICC 210
load libraries 338
multithread 238, 303
naming conventions 237
runtime 236
search path 208
single thread 239
suppressing default library information 304
using compiler options 261
with different calling conventions 307

library DLLs, packaging with your
application 675

library files
linking with 343
naming conventions 237
searching default 354

Library Manager (ILIB) 655
LIBRARY module statement 383
LIBV2R1 utility 655
limitation (Browser) 565, 577
line breakpoint 413
Line Breakpoint window 413
/LINENUMBERS linker option 359
LINK386 syntax linker option 357
LINK386 syntax with new linker 325

refid=clink.default options 329
linkage

See also calling conventions
keywords 235

linker 319
case sensitivity 358
command-line syntax 323
default library 236
dynamic 237
errors, overriding 357
file name defaults 337
input 335
LINK386 syntax 357
logo display 359
map files

See map files

952 IBM VisualAge�C++ for OS/2 User's Guide

linker (continued)
module statements 372
naming output 361
numeric arguments 349
object files 337
optimizations 333
option for debugger and Performance

Analyzer 220
options 350
output 335
passing options from compiler 316
response files 328
return codes 342
search rules 335
searching additional directories 336
source file line numbers in 359
specifying executable type 338
starting the 321
static 237

linker errors
producing executable with 357

linker options 350, 351
default 330
in the ILINK environment variable 348
invalid 328
numeric arguments 349
on the command line 347
packing 333
passing from the compiler 330
setting 347

linking
a DLL file 339
an EXE file 339
description 335
device drivers 341
displaying status of 358
echoing contents of response file 359
for the debugger 399
for the Performance Analyzer 479
from a make file 331
from the command line 323
ignoring capitalization 358
ignoring errors 357
in WorkFrame 322
object files 337
specifying executable type 338
through the compiler 329
to DLLs 345
to runtime libraries 300
using extended dictionary 357

linking (continued)
using LINK386 syntax 325, 357
using response files 328
with LIB files 344
without default library information 304, 354

linking (Browser) 559
list breakpoints 420
list files for PACK 871
List window (Browser) 553, 564

action status bar 564
components 564
container view 565
double-click actions 571
fonts 592
hold checkbox 565
information bar 565
initial action 570
limitation 565
ordering 566
printing 575
saving 575
settings 569

color 571
settings 570
style 574

text attributes 571, 574
types of 565

list-box resources, defining 749
LISTBOX statement (RC) 749
listing file compiler compiler options 276
listing files, compiler

assembler 219
compiler options 276
cross-reference table in 281
description 222
directing compiler 271
expand macros in 278
expand user #include files in 279
expand user and system #include files

in 279
include source code 280
information about variables in 276
maximum information in 278
minimum contents 223
naming compiler 271
producing 277
producing compiler 271
referenced struct and union variables in 277
set page length of 279
set subtitle string in 280

 Index 953

listing files, compiler(continued)
set title string of 280
source program information in 276

listing from EXEHDR
object or segment listing 891

listing library (.LIB) contents 661
/LISTLEVEL (/L) option for ILIB
/Lj compiler option 279
load address 352, 373
load occurrence breakpoint 419
load segment 352, 373
load segments 352, 362, 363, 373
load-on-call DLLs, tracing 480
loading files (Browser) 593
LOADONCALL segment attribute 375, 377,

389
LOCALDEF utility

controlling messages 691
how it builds locale files 691
locale source file 690
options 690—691
return codes 691
specifying character map file 690
syntax 689

locale files
LOCALDEF utility 689
specifying source file for LOCALDEF 690

locate function window 412
locate text (Browser) 597
location, jump to in debugger 440
LOCPATH environment variable 208
/LOGO linker option 359
logo, disabling

compiler 247
CPPFILT 878, 883
EXEHDR 888
for DLLRNAME 678
for ILIB 672
linker 359
NMAKE 820

/Lp compiler option 279
/Ls compiler option 280
/Lt compiler option 280
LTEXT statement (RC) 750
/Lu compiler option 280
/Lx compiler option 281
/Ly compiler option 281
LZW compression 356

M
/M compiler option 235, 307
/M option for CPPFILT
machine-state dump 284
macros

NMAKE
command line 825
defining 824
inherited 826
predefined 827
substitutions 826
using 826

main control window for Performance
Analyzer 500

make file utility (NMAKE) 815
make file, project xxxvii, 23

build options for generating 95
compatibility with make utilities 108
creating from build options notebook 94
defining actions to include in 53, 55
dependency file 95
file-scoped actions 53
generating as part of build 95, 99
generating as part of each build 68
generating with MakeMake 91, 104
maintaining by hand 91
maintaining using build utility xxxvii, 92
migrating 146, 147
setting environment variables in 41
special format for monitor errors 89
supported by actions support DLLs 60
targets and dependencies 60
where stored 25

make files
compiling from 204
linker 331

MakeMake utility xxxvii, 104
action 60
command line syntax 108
compatibility with make utilities 108
invoking from build options notebook 94
limitations 107
return codes 108
type classes recognized 56
using 104
window 104

managing libraries (.LIB files) 655
map files

compiler option 272

954 IBM VisualAge�C++ for OS/2 User's Guide

map files(continued)
linker option 360
producing 341
source file line numbers in 359

/MAP linker option 360
MAPSYM

displaying help 897
options 897

MARKEXE utility
displaying help 893
keywords 894
program types 894
setting program type 895
syntax 893
viewing program type 895

/MAX option for EXEHDR
MAXVAL attribute 381
memory files, allowing use of 294
memory-protection attributes of segments 364
memory, tiled 305
menu bar, customizing menus 180
menu descriptions (Browser) 639

popup menus 648
for objects 649
for windows 648

pulldown menus 640
Actions 644
Edit 642
File 641
Help 647
Options 645
Order 646
Project 647
View 643
Windows 646

menu resources, defining
menu subitems 753
menus 751
submenus 774

MENU statement (RC) 751
MENUITEM statement (RC) 753
merging files (Browser) 595
message and help files

search path 208
message files, creating

binding to your appication
input file 853
using multiple code pages 854
VisualAge C++ files 854

example of input 852

message files, creating(continued)
setting code page 851
source input 848
specifying language 851

message retrieval, description 855
message table resources, defining 756
messages

compiler options 223
controlling 284
setting severity level of compiler 284

messages, which to monitor, in debugger 463
MESSAGETABLE statement (RC) 756
migration

language standards for C++ 216
migration utility, projects xxxvii, 143
/MIN option for EXEHDR
miscellaneous compiler options 316
MIXED1632 segment attribute 389
MKMSGF utility

component identifier 848
control files 852
country codes 847
DBCS support 851
displaying control variables (verbose

option) 851
displaying help 846
example of input file 852
input message file 848
message header 848
message types 848
options 850
output file 849
specifying code page 851
specifying language 851
syntax 845

MLE statement (RC) 758
modifying editor behavior 185
modifying executable-file headers 885
modifying libraries (.LIB files) 660
module definition files

creating 369
example 370
linker search rules 335
linking to a DLL using 346
module statements 372
naming in ICC 210
numeric arguments 349
reserved words 370
rules 369
setting stack size with 250

 Index 955

module definition files(continued)
when to use 369

module statements 372
monitor expression window 438
monitor messages in debugger 463
monitor properties window 425
monitor windows 464
monitor, project 85

beeps 85
DDE sessions with editors 89
DOS actions 89
editor interaction 87, 88
editor options 88, 89
erasing contents 86
errors 86
hiding 86
history 86, 87
important facts 89
information area 86
interaction with EPM editor 88, 89
interaction with VisualAge Editor 88, 89
limitations 89
menu bar 86
repeating actions 87
restarting actions 87
running actions in 85
saving contents of 86
selecting errors in 88
showing 86
toolbar 86
troubleshooting 89
using 85

moving .OBj files between libraries 668
MSGBIND utility

displaying help 855
executable file 853
how message retrieval works 855
input file 853
message numbers 854
sample input file 856
syntax 853
using multiple code pages 854
VisualAge C++ message files 854

multiline entry field (MLE) controls,
defining 758

MULTIPLE segment attribute 376
multithread

library 238

N
/N compiler option 282
n instances 569
/N option for CPPFILT
/N option for DLLRNAME
/N option for NMAKE
NAME module statement 384
naming compiler output 270
naming conventions for libraries 237
/Nd compiler option 308
.NDX files

format 858
HELPNDX environment variable 858

new features xliii
new features of the debugger 395
/NEW option for EXEHDR
new user help (Browser) 591
NMAKE utility

building all targets (/A option) 819
description files

creating 833
description blocks 821
format 822

directives 833—835
displaying help 817, 820
displaying modification dates (/D

option) 819
escape characters 839
example of directives 836
example of inference rules 832
example of inline files 839
EXTMAKE syntax 842
ignoring errors (/I option) 820
ignoring inference rules (/R option) 821
inference rules 831
inline files 838
invoking 815
macros

command line 825
defining 824
example of predefined 828
inherited 826
modifiers 829
precedence rules 830
predefined 827
substitutions 826
using 826

modifying commands 840
options 818—821

956 IBM VisualAge�C++ for OS/2 User's Guide

NMAKE utility (continued)
overriding environment variables (/E

option) 819
predefined inference rules 833
printing definitions (/P option) 820
producing error file 818
pseudotargets 836
removing error checking (- command) 840
response files 817
running commands for dependents (!

command) 841
running from batch file 820
showing commands without running (/N

option) 820
specifying description files (/F option) 819
specifying file names 829
specifying search directories 822
suppressing command echo 841
suppressing command echo (/S option) 821
suppressing logo display 820
suppressing messages (/C option) 819
syntax for command line 816
target in multiple description blocks 823
TOOLS.INI 843

/NOBACKUP (/NOBA) option for ILIB
/NOBASE linker option 352
/NOBROWSE linker option 352
/NOBROWSE (/NOBR) option for ILIB
/NOCODEVIEW linker option 353
/NODBGPACK linker option 353
/NODEBUG linker option 354
/NODEFAULTLIB linker option 354
nodes, Dynamic Call Graph 526
/NOEXEPACK linker option 356
/NOEXTDICTIONARY linker option 357
/NOEXTDICTIONARY (/NOE) option for ILIB
/NOFREEFORMAT linker option 325, 357
/NOIGNORECASE linker option 358
/NOIGNORECASE (/NOI) option for ILIB
/NOINFORMATION linker option 358
NOIOPL segment attribute 375, 376, 388
/NOLINENUMBERS linker option 359
/NOLOGO linker option 359
/NOLOGO option for EXEHDR
/NOLOGO (/NOL) option for ILIB
/NOLOGO option for NMAKE
/NOMAP linker option 360
NONAME attribute 380
NONAME keyword, CPPFILT-generated 882

NONCONFORMING segment attribute 374,
388

NONE segment attribute 376
NONSHARED segment attribute 377, 389
/NOOLDCPP linker option 360
/NOOPTFUNC linker option 361
/NOPACKCODE linker option 362
/NOPACKDATA linker option 363
notebook controls, defining 759
NOTEBOOK statement (RC) 759
notebooks

Browser Settings 587
Graph window Settings (Browser) 581
List window Settings (Browser) 569

NOTWINDOWCOMPAT attribute 385
NOVIO attribute 364
/Nt compiler option 308
numeric arguments for the linker 349
numsign line directive 298
/Nx compiler option 309

O
/O compiler option 220, 309
/O option for CPPFILT
object (.OBJ) files

creating 220
directing 272
entering library files as 338
formats acceptable for linker 337
include version string in 318
linker search rules 335
naming 272
naming in ICC 210
producing 272
specifying for linker 337
templates in old 302

object (.OBJ) files
adding to .LIB library 665
copying inside .LIB library 667
deleting from .LIB library 666
demangling C++ names in 879
extracting from .LIB files 660
replacing in .LIB library 667

object (Browser) 649
object classes, Workplace

adding 901
creating instance 899
deleting classes 901
instantiating with Object Utility/2 903

 Index 957

object classes, Workplace(continued)
predefined 899
replaced 899
replacing 900
restoring 901
subclasses 899

object file pop-up menu in Performance
Analyzer 509

object files, enabling/disabling in Performance
Analyzer 491

viewing/hiding 491
object listing from EXEHDR 891
Object Utility/2

class name 904
description 903
DLL Name 904
location field 904
object id 904
options 905
title field 904

object-action pair 555
objects (Browser) 580
objects, Browser 554, 567
/Oc compiler option 220, 310
/Oi compiler option 220, 230, 310
/Ol compiler option 220, 225, 311
OLD module statement 386
old object files, templates in 302
/OLDCPP linker option 360
/Om compiler option 311
online information, creating with IPF 867
only components with debug data 422
/Op compiler option 220, 311
open new source debugger choice 411
open new source window 411
operands, valid expression 471
operators, valid expression 472
/OPTFUNC linker option 333, 361
optimizing

compiler options 309, 310
description 220
DLL files 340
emitting internal fixups for 352
EXE files 339
for processor type 299
for size and speed 310
for speed 309
inlining user code 229
instruction scheduler 312
intermediate code linker 225

optimizing (continued)
linking 333
packing executables 333
removing unreachable functions 333
removing unreferenced functions 303, 361
use of stack pointers 311
with debugger 220
with intermediate linking 305

options menu, Window Manager window 501
Call Nesting diagram 521
Dynamic Call Graph 528
Execution Density 535
Statistics diagram 540
Time Line diagram 547
Trace Generation window 508

_Optlink calling convention
compiler option 307
keyword 235
setting 235

ordering a container view (Browser) 566
ordinal position of data construct 379
ordinal position of function 379
ordinal values 386
ordinals, generating with CPPFILT 882
organizing a graph (Browser) 579
organizing source files for precompiled

headers 245
/Os compiler option 220, 312
OS/2

publications 935
OS/2 exceptions

guard page 248
machine-state dump 284

other compiler options 316
/OUT linker option 361
output from compiler 219
output options, compiler 268
overhead time 483
overview, graph (Browser) 578

P
/P compiler option 297
/P option for CPPFILT
/P option for MKMSGF
/P option for NMAKE
-P option for RC
PACK and PACK2 utilities

creating a list file 871
example of a list file 872

958 IBM VisualAge�C++ for OS/2 User's Guide

PACK and PACK2 utilities(continued)
list file syntax 871
options 870—871
restoring files with UNPACK 872
specifying list of files 871
specifying name for restored file 870
starting 869

/PACKCODE linker option 362
/PACKDATA linker option 363
packing code segments 362
packing data segments 363
palette for Icon Editor

changing colors 807
PAM

Seeproject access methods (PAMs)
parameters for ILIB 656
parameters of compiler options 255

files 256
numbers 256
strings 255
switches 256

parmdwords with _System linkage 304
parts

See project parts
_Pascal calling conventions

16-bit
32-bit
keyword 235
setting 235

PATH environment variable 208
paths (Browser) 588
/Pc compiler option 297
/Pd compiler option 297
PDB, PDD 557, 560, 561, 593, 596
/PDD linker option 363
/Pe compiler option 298
pen shape and size in Icon Editor 805
PERF entry point 481
Performance Analyzer 477

compiler option 282, 301
Performance Analyzer - Specify Profile Location

window 499
Performance Analyzer - Window Manager

window 500
menu bar 500
pop-up menus 502
push buttons 503

Performance Analyzer windows 499
Analyze Trace 512
Application Monitor 511

Performance Analyzer windows(continued)
Create Trace 504
Performance Analyzer - Specify Profile

Location 499
Performance Analyzer - Window

Manager 500
Trace Generation 505

Performance Analyzer, description 477
exiting 487
features 477
PERF entry point 481
PerfStart and PerfStop entry points 482
starting from OS/2 485
starting from WorkFrame 487

performance, improving executable 232
PerfStart and PerfStop entry points 482
physical device drivers

compiler option 304
linker option 363
module statement 386
naming 386
producing a 341

PHYSICAL DEVICE module statement 386
PM attribute 364
PM debugging mode 427
PM programming, compiler options for 261
PMDOVERRIDE environment variable 400
PMDPATH environment variable 400
/PMTYPE linker option 363
/PMTYPE option for EXEHDR
pointer resources, defining 761
POINTER statement (RC) 761
popup menus (Browser) 648

for objects 649
for windows 648

portability
language standards 215

#pragma directives
alloc_text 308
dataseg 308
export 227
hdrfile 240
hdrstop 240
langlvl 215
linkage 235
stack16 251

precedence of compiler options 254
precompiled header files

default names 243
description 224

 Index 959

precompiled header files(continued)
determining initial sequence 240
examples 244
Fi option 271
improving compile time with 245
matching the initial sequence 241
multiple initial sequences 243
organizing source files for 245
restrictions 225
reusing 241
Si option 291
strategies 245
using 239

PRELOAD segment attribute 375, 377, 389
preloading compiler components 318
preparation tasks 559
preprocessor

compiler option 297
directing output 297
directives 211

#include directive
files, creating 297
generation of #line directives 298
macros, defining 296
macros, undefining 298
options 296
run only the 297
using the 296

preprocessor compiler options 296
preprocessor files

#line directives in 298
creating 297
including comments in 297
writing to stdout 297

presentation fields, customizing for
resources 762

presentation parameters for dialog boxes 789
PRESPARAMS stattement 762
 print'/IGNORECASE (/I) option for

ILIB'.IGNORECASE option for ILIB
 print='.FNT file'.FNT file 799
printing

graphs (Browser) 585
lists (Browser) 575

processor type, specify. 299
producing linker map files 341

compiler option 272
linker option 360
with source file line numbers 359

profile, specifying for Performance
Analyzer 499

profiles, using to modify editor behavior 185
profiling hooks 221
program file, Browser 557, 561
program restart (debugger) 421
Program Startup window 402
program type, setting with MARKEXE 893
programs, preparing for Performance

Analyzer 479
tracing 489

project access methods (PAMs) 149
about 149
accessing parts 150
basic PAM 149
compatibility with previous versions 151
copying project parts 149, 150
deleting project parts 149
launching actions 149
moving project parts 149, 150
multiple 150
registering 150
role 149
sorting project parts 151

project parts 13
accessed by PAMs 13, 149, 150
double-click behavior on 73
filtering 18, 75
grouping parts by name 75
how interpreted 13
how stored 13
sharing across a LAN 43
sorting 31

Project Smarts 111, 201
adding your own applications 114
catalog entry window 115
catalog utilities 122

IwfCloseCatalog 125
IwfOpenCatalog 124
IwfUpdateCatalog 124
SysCreateObject 122

console utilities 125
IwfCloseCatalog 125
IwfCloseConsole 125
IwfUpdateConsoleProgress 126
IwfUpdateConsoleStatus 126

creating projects from 112
creating your own catalog 114
default installation script 118, 139
file substitution utilities 129

IwfCopyWithSubsitution 129

960 IBM VisualAge�C++ for OS/2 User's Guide

Project Smarts(continued)
initialization utilities 121

IwfEnvPrfDropFuncs 121
IwfEnvPrfLoadFuncs 121
IwfInitEnvPrfAPIs 121
IwfOpenConsole 121
IwfTermEnvPrfAPIs 121

installation console 114, 119, 121
installation script 112, 115, 139
location dialog 112, 119
location dialog utilities 126

IwfQueryLocation 126
progress console 114, 119, 121
project creation utilities 129

IwfCreateProjectFromFiles 133
IwfCreateProjectFromProject 134
SysCreateObject 129

project setup utilities 121, 135
IwfAddAction 135
IwfAddType 137
IwfAddVariable 137
IwfCopyAction 136
IwfDeRegisterTypeClass 138
IwfDestoryVariable 137
IwfDestroyAction 137
IwfDestroyType 138
IwfRegisterTypeClass 138

REXX utilities 119
REXX utility functions 121
sample installation script 120, 139
settings 114
substitution variables 118, 120
using 112
utilities 118, 119
variable settings 112, 118, 119
variable settings utilities 127

IwfQueryVariables 127
IwfRestoreVariables 128
IwfSaveVariables 128

writing an installation script 118
projects 13

access methods 149
actions

See actions
backing up 36
basic PAM 107, 149
build actions 93
creating 22

by copying 22
using Project Smarts 22, 111, 112
using templates 22

projects (continued)
creating templates 44
customizing views 31
default edit action 71, 88
default project 36, 118, 145, 147
dependencies between 38, 91, 97, 104
environment variables

Seeenvironment variables, in projects
extended attributes 36, 43, 94
files 36
filtering parts 18, 75
generating make files for 104
geometry 42
hover help 16
inheritance 29

See also inheritance, project
introducing 13
make file

Seemake file, project
menus 15
migrated information 146, 147
migrating from previous versions 143, 144
monitor 15, 85
monitor behavior 27
moving 43
nesting 38, 94, 97
organizing for builds 38, 92
parts 13
parts container 15
parts filter 15
project access methods 107
Project Smarts 111
setting up 23
settings 23

inheritance page 29
location page 25, 149
monitor page 27
OS/2 files page 25, 150
sort page 31
target page 23
view page 31

sharing a tools setup 33
sharing across a LAN 43
source directories 21, 118

accessed through the PAM 150
displaying in tree view 21
migrating 146, 147
on LAN drives 43
organizing projects 42
specifying in project settings 25
storing nested projects 36, 39, 43

 Index 961

projects (continued)
source directories(continued)

storing source files in 41
storing 43
structures 42
subprojects 38, 94, 97
target 23, 146, 147
toolbar 15, 63, 92, 96
tools setup 14, 45
types 107

See also types, in projects
views 14

details view 20
icon view 15
tree view 21

VisualAge C++ project 36
working directory 25

accessed through the PAM 150
copying projects into 39, 43
migrating 146, 147
moving projects into 39, 43
specifying in project settings 25
storing source files in 41, 71, 89
substitution variable 69

prompts for ILIB 657
prototypes, for the PERF entry point 481

for the PerfStart and PerfStop entry
points 482

pseudotargets 836
.IGNORE 837
.PRECIOUS 837
.SILENT 837
.SUFFIXES 837
predefined 837

public symbols, demangling (PUBDEF,
COMDAT, COMDEF) 883

public symbols, listing for a library 661
publications

related 935
pulldown menus (Browser) 640

Actions 644
Edit 642
File 641
Help 647
Options 645
Order 646
Project 647
View 643
Windows 646

push button, trace 511
push buttons, defining in resource files

defaults 726
generic 763

PUSHBUTTON statement (RC) 763

Q
/Q compiler option 247, 318
/Q option for CPPFILT
/Q option for DLLRNAME
/Q option for NMAKE
quick information with KwikINF 857
QuickBrowse 553, 615
/QUIET option for ILIB

R
/R compiler option 222, 239, 312
/R option for CPPFILT
/R option for DLLRNAME
/R option for NMAKE
/R option for PACK
-R option for RC
radio buttons, defining in resource files

automatic 714
generic 764

RADIOBUTTON statement (RC) 764
RC (resource compiler) 695
RCDATA statement (RC) 765
RCINCLUDE statement (RC) 766
READONLY segment attribute 377, 389
READWRITE segment attribute 377, 389
receiving files in T 911
recognizing patterns in Performance

Analyzer 517
rectangular block of text, marking 172
redo actions (Browser) 599
reducing trace data 490, 515
registered Workplace classes

deleting classes 901
replacing 900
restoring 901

related compiler options 258
related publications

BookManager 936
OS/2 935
portability 935
VisualAge C++ 935

962 IBM VisualAge�C++ for OS/2 User's Guide

relocation records, retaining 352
removing exception-handling information 307
removing stack probes 250
removing unreferenced functions 303, 361
renaming DLLs (DLLRNAME) 676
RES file (Dialog 793
reserved identifiers 238
/RESETERROR option for EXEHDR
RESIDENTNAME attribute 380
resolving templates 273
resource (.RES) file 793

fonts 799
resource compiler (RC)

aligning resources on 64K boundary 696
binary resource files 705
binding resources 700
code pages and country codes 701
compressing resources 697
creating binary resource files 696
defining constants (-D option) 696, 701
directives 699
displaying online help 697
options 695—697
resource script files 698
resource statements 702
setting code page 696
setting country code 696
setting include file search path (-I

option) 696
statements and directives 707—780

ACCELTABLE 708
ASSOCTABLE 711
AUTOCHECKBOX 713
AUTORADIOBUTTON 714
BITMAP 716
CHECKBOX 717
CODEPAGE 718
COMBOBOX 719
CONTAINER 720
CONTROL 721
CTEXT 723
CTLDATA 724
DEFAULTICON 726
define directive 726
DEFPUSHBUTTON 726
DIALOG 728
DLGINCLUDE 730
DLGTEMPLATE 731
EDITTEXT 732
elif directive 733
else directive 734

resource compiler (RC)(continued)
statements and directives(continued)

endif directive 735
ENTRYFIELD 735
FONT 736
FRAME 737
GROUPBOX 739
HELPITEM 740
HELPSUBITEM 741
HELPSUBTABLE 742
HELPTABLE 743
ICON (for controls) 745
ICON (for resources) 744
if directive 746
ifdef directive 747
ifndef directive 747
include directive 748
LISTBOX 749
LTEXT 750
MENU 751
MENUITEM 753
MESSAGETABLE 756
MLE 758
NOTEBOOK 759
POINTER 761
PRESPARAMS stattement 762
PUSHBUTTON 763
RADIOBUTTON 764
RCDATA 765
RCINCLUDE 766
RESOURCE 767
RTEXT 768
SLIDER 769
SPINBUTTON 770
STRINGTABLE 771
SUBITEMSIZE 773
SUBMENU 774
undef directive 775
VALUESET 776
WINDOW 777
WINDOWTEMPLATE 779

syntax 699
resource script files 698
RESOURCE statement (RC) 767
resource statements 702
response files

compiler 203
linker, echoing contents of 359
using linker 328

 Index 963

response files for ILIB 657
response files for NMAKE 817
restart (debugger) 421
restart the debugger 440
restoring compressed (packed) files 872
retaining relocation records 352

linker option 353
return codes, compiler 224
return codes, linker 342
ring 0 304
rotate to center debugger choice 461
rotate to default in debugger 461
rotating debugger windows, to default 461
rotating windows in debugger 461
RTEXT statement (RC) 768
run (from debugger) 421
run-length encoding compression 356
runtime libraries, choosing 236
runtime libraries, linking to 300
runtime library DLLs for VisualAge C++

packaging with your application 675

S
/S compiler option 215, 216, 289
/S option for CPPFILT
/S option for NMAKE
SAA Level 2 language level 215

compiler option 289
saving

graphs (Browser) 585
lists (Browser) 575

scaling in Performance Analyzer 516
screen display support for icons (Icon

Editor) 808
scrolling in Performance Analyzer 516
/Sd compiler option 289
search order for header files 213
search order of header files 213
search path

controlling #include 212
EXE files 208
help and message files 208
INCLUDE environment variable 208
include, controlling 212
libraries 208

search rules for linker 335
search window, KwikINF 864
searching (Browser) 598

searching extended dictionary 357
searching online information 857, 861
/SECTION linker option 364
segment listing from EXEHDR 891
segments 362

ALIAS attribute 388
attributes of 387
code

See code segments
compressing 356
CONFORMING attribute 388
constant

See constant segment
data

See data segments
default attributes 365
default code and text

Seedefault code and text segments
default data

Seedefault data segment
DGROUP 308, 376, 381
exception-handling

See exception-handling segments
EXECUTEONLY attribute 388
EXECUTEREAD attribute 388
IOPL attribute 388
load 352, 362, 363, 373

See also load segments
LOADONCALL attribute 389
maximum number of 365
MIXED1632 attribute 389
NOIOPL attribute 388
NONCONFORMING attribute 388
NONSHARED attribute 389
packing data 363
PRELOAD attribute 389
READONLY attribute 389
READWRITE attribute 389
renaming 308, 309
setting attributes of 364
SHARED attribute 389
uninitialized data

Seeuninitialized data segment
/SEGMENTS linker option 365
SEGMENTS module statement 387
selecting

bitmap dimensions (Browser) 585
graph zone (Browser) 580

sending files in T 910

964 IBM VisualAge�C++ for OS/2 User's Guide

sequence numbers in compiler source files 293
set address breakpoint 417
set change address breakpoint 418
SET command 209

appending values 209
example 210
in CONFIG.SYS 209
in CSETENV.CMD 209

set function breakpoint 416
set line breakpoint 413
set load occurrence breakpoint 419
set maximum number of compiler errors 282
setlocale() function 208
setting compiler options

in ICC 253
in WorkFrame 254
on the command line 253

setting environment variables 209
setting line breakpoint for debugger 413
setting stack size 250
settings

action 49
general page 50, 55
menus page 63
support page 58

Browser 587
build 93

actions page 93
display page 99
make page 95
project page 97

Graph window (Browser) 580
bitmap dimensions 585
color 582
settings 581
style 584

List window (Browser) 569
color 571
settings 570
style 574

project 23
inheritance page 29
location page 25, 149
monitor page 27
OS/2 files page 25, 150
sort page 31
target page 23
view page 31

settings, saving trace file 495
profile 499

severity of messages 284
severity, compiler return codes 224
/Sg compiler option 290
/Sh compiler option 291
SHARED segment attribute 377, 389
shipping VisualAge C++ DLLs with your

product 676
showing

documentation (Browser) 603
/Si compiler option 224, 239, 291
SINGLE segment attribute 376
single thread

library 239
size of enum variables, controlling 294
slider control resources, defining 769
SLIDER statement (RC) 769
/Sm compiler option 292
/Sn compiler option 292
SOM compiler options 313

get and set methods 314
implicit mode 313
SOM release order 315

sort components choice in the debugger 422
sort threads choice in the debugger 422
source code compiler compiler options 289
source files, compiler

compiling multiple 205
default file extensions 206
double slashes in C files 293
file types 206
ignoring columns in 290, 293
ignoring sequence numbers in 293
include source code in listing file 280
information about in listing 276
language level 214
line numbers in map file 359
mixed C and C++ 205
naming in ICC 210
options with multiple 257
organizing for precompiled headers 245
sequence numbers in 293
setting default extension 289
setting margins of 290
source code compiler options 289
specifying C files 294
specifying C++ files 295

source window properties window 423
source windows 432
source, open new - debugger choice 411

 Index 965

/Sp compiler option 292
specify processor type 299
specifying libraries

as object files 338
default 236
for subsystem EXE files 222
in ICC 210
load libraries 338
multithread 238, 303
naming conventions 237
runtime 236
search path 208
single thread 239
suppressing default library information 304
using compiler options 261
with different calling conventions 307

spinbutton resources, defining 770
SPINBUTTON statement (RC) 770
spotting patterns, anomalies, and features 516
/Sq compiler option 293
/Sr compiler option 293
/Ss compiler option 293
stack

allocation 247
allocation of 247
default size 250
linker option 366
module statement 390
pointers, optimizations involving 311
restrictions on size 366, 390
setting size of 250

/STACK linker option 250, 366
/STACK option for EXEHDR
stack probes

compiler option 305
description 249
removing 250, 305

stack size, setting with EXEHDR 889
STACKSIZE module statement 250, 390
start tracing 512
starting the Browser

from OS/2 command prompt 557
from OS/2 Workplace Shell 558
from the Debugger or Editor 559
from WorkFrame environment 558

starting the compiler 201
using the system function 201

starting the debugger from OS/2 401
starting the debugger from WorkFrame 402

startup commands for Performance
Analyzer 485

static linking 343
See also ?
description 237
restrictions 238

Statistics Details Pane 542
Statistics diagram 539

details area 542
menu bar 539
summary pane 542

Statistics Summary Pane 542
status area, Call Nesting 523

Dynamic Call Graph 529
Execution Density 537
Time Line 548

__stdcall calling convention
compiler option 307

step over debugging 439
stop tracing 512
string resources, defining 771
strings

as compiler option parameters 255
STRINGTABLE statement (RC) 771
structure and union table 276
structures, aligning data items in 292
stub file 391

linker search path 391
STUB module statement 391
/Su compiler option 294
SUBITEMSIZE statement (RC) 773
SUBMENU statement (RC) 774
substitution variables 51, 59, 69, 96, 101
subsystems

compiler option 312
thread support 239

summary of compiler options 264
/Sv compiler option 294
switches (+|-) for compiler options 256
SYM files 897
symbol map, producing with CPPFILT 877
symbolic debugging (.SYM) files, creating
SysCreateObject 122, 129
_System calling convention

compiler option 307
keyword 235
setting 235
with _parmdwords 304

system calls, tracing 480

966 IBM VisualAge�C++ for OS/2 User's Guide

system include files 213, 214
system object model compiler options 313

get and set methods 314
implicit mode 313
SOM release order 315

T
/T option for CPPFILT
/T option for NMAKE
/T option for PACK
T terminal emulator

changing bells and whistles 909
command-line options 908
communications parameters 909
displaying help 907
receiving files 911
scrolling 910
sending files 910
setup 908
syntax 907

tab-stop markers in dialog boxes 785
target, project

building
Seebuilding project targets

locking 91, 97
making 91
migrating 146, 147
prerequisites for building 92
special project part 13
specifying 23
substitution variable 69
WorkFrame build utility 91, 92

/Tc compiler option 205, 294
/Td compiler option 205, 295
templates in old object files 302
templates, dialog box 791
templates, resolving 273
temporary files

description 223
storing on disk or in memory 223

TERMGLOBAL termination of DLL 383
TERMINSTANCE termination of DLL 384
testing dialog boxes 791
thread enabled (debugger option) 422
threads box in the debugger 409
threads, call depth 492
/Ti compiler option 220, 282
tiled memory 305

Time Line diagram 545
menu bar 546
pop-up menus 548
status area 548
vertical ruler 550

time stamps, using in Performance Analyzer 492
time, overhead 483
title bar buttons in the debugger 405
titles displaying in the Control window 422
/Tl compiler option 318
/Tm compiler option 283
TMP environment variable 208

compile time 223
/Tn compiler option 283
Toolkit Application Interface (API) 480
tools setup, project 45

action options 66, 91, 111, 145, 146
actions

See actions
environment variables

Seeenvironment variables, in projects
menu bar 46
moving actions, types, variables 45
toolbar 46
types

Seetypes, in projects
views 46
window 46

TOOLS.INI 843
touching modification dates with NMAKE 821
tour (Browser) 621
/Tp compiler option 205, 295
trace data, reducing 490
trace files, steps before creating 479

analyzing, description 497
controlling the size of 490
creating 489
customizing 490
displaying in diagrams 512
managing 515
naming 495
opening in diagrams 498
settings, saving 495

Trace Generation window, enabling/disabling
components on 491

menu bar 506
pop-up menus 509
Trace push button 511

trace off push button 512

 Index 967

trace on push button 512
tracing, file accesses 493

functions 494
programs 504

treatment of unspecifed char 317
triggers, for Performance Analyzer 494
trouble shooting (Browser)

added menu items don't work 638
error loading .BRS files 637
error loading .PDB files 637
error loading program files 637
graph zone won't maximize 638
won't start 637

/Tx compiler option 284
type conversion 293
type objects (Browser) 567
typecasting, data types in monitors 473
types, in projects 50, 75, 77

adding 81
class DLLs 80
classes 50, 77

file mask 77, 79
logical AND 79
logical OR 79
NOT in file mask 79
NOT in logical AND 79
NOT in logical OR 79
NOT in regular expression 79
registering 80
regular expression 77
specifying 50
supporting DLLs 80

defining 81
registering classes 80

U
/U compiler option 298
undef directive (RC) 775
undefining preprocessor macros 298
understanding correlation in Performance

Analyzer 517
uninitialized data segment

renaming 308
unions, aligning data items in 292
UNPACK utility

options 872
syntax 872

unreachable functions, removing 333

unreferenced functions, removing 303, 361
unspecified char, treatment of 317
updating Browser database
user events, creating 481
user include files 213, 214
user interface

Browser 563
using an import library 346

linker option 357
using the Browser

listing
all classes 604
all files 604
all friends 606
all friendships 607
all objects defined 605
callers and callees 608
implementing files 606
instantiations 611
members of a class 609
overriding derived classes 610
possible exceptions 611

viewing
call chaings 613
class relationships 612
include file relationships 614

using the Mouse (Browser) 555

V
/V compiler option 318
/V option for MKMSGF
VALUESET statement (RC) 776
variable objects (Browser) 567
variables, passing to 16-bit functions 305
/VDD linker option 367
/VERBOSE option for EXEHDR
version string in compiler output 318
vertical ruler, Execution Density 538

Time Line 550
view command 203
view menu, Window Manager window 501

Call Nesting diagram 521
Dynamic Call Graph 527
Execution Density diagram 535
Statistics diagram 540
Time Line diagram 547
Trace Generation window 507

viewing (Browser) 601

968 IBM VisualAge�C++ for OS/2 User's Guide

viewing INF files 203
views, multiple, in Performance Analyzer 516
views, project 14

customizing 31
details view 20
icon view 15
sorting 31
tree view 21

VIO attribute 364
virtual device drivers

compiler option 306
module statement 391
naming 391
producing a 341

VIRTUAL DEVICE module statement 391
virtual disk (VDISK) 223
VisualAge C++

publications 935
volumes to search in KwikINF 864

W
/W compiler option 284
/W option for CPPFILT
/W option for LOCALDEF
/Wgrp compiler option 284

groups 286
what's new with WorkFrame Version 3.0 xxxvi
where is execution point debugger choice 413
Who Calls Whom window 531
wildcards

in names of compiler source files 207
window resources, defining 777
WINDOW statement (RC) 777
window template resources, defining 779
WINDOWAPI attribute 385
WINDOWCOMPAT attribute 385
windows

Graph (Browser) 553, 576
History (Browser) 599
List (Browser) 553, 564
Overview (Browser) 578

windows in Performance Analyzer 499
Analyze Trace 512
Application Monitor 511
Create Trace 504
Performance Analyzer - Specify Profile

Location 499
Performance Analyzer - Window

Manager 500

windows in Performance Analyzer(continued)
Trace Generation 505

windows, which to monitor 464
WINDOWTEMPLATE statement (RC) 779
work files 208
work files, compiler 223
WorkFrame 3

a feel for 4
an open framework 11
build utility 91, 92
Console window 201
getting help on 12

contextual 12
How Do I? 12

hover help 16
linking in 322
make file generation utility 91, 104
MakeMake utility 91, 104
migration utility 143, 144, 146, 147
overview 3
Project Smarts 201
projects

See projects
sample edit-compile-debug cycle 4
setting compiler options in 254
starting the Browser from 558
substitution variables 69
understanding 11
Version 1.1 143, 144, 147
Version 2.1 143, 144, 146

WorkFrame, with the Performance Analyzer 487
working set size of compiler 311
Workplace Class List

adding classes 901
creating an object class instance 899
deleting classes 901
restoring original classes 901
starting 899

WorkPlace Shell objects, analyzing 486

X
/X option for CPPFILT
/X option for NMAKE
-X options for RC
/Xc compiler option 212, 213, 275
/Xi compiler option 212, 213, 275
/Xs compiler option 314

 Index 969

Z
zone, graph (Browser) 580
zoom bar in Performance Analyzer 529

970 IBM VisualAge�C++ for OS/2 User's Guide

Communicating Your Comments to IBM

IBM VisualAge C++ for OS/2
IBM VisualAge�C++ for OS/2 User's Guide

Version 3.0

Publication No. S25H-6961-00

If there is something you like—or dislike—about this book, please let us know. You can use one of the
methods listed below to send your comments to IBM. If you want a reply, include your name, address,
and telephone number. If you are communicating electronically, include the book title, publication number,
page number, or topic you are commenting on.

The comments you send should only pertain to the information in this book and its presentation. To
request additional publications or to ask questions or make comments about the functions of IBM products
or systems, you should talk to your IBM representative or to your IBM authorized remarketer.

When you send comments to IBM, you grant IBM a nonexclusive right to use or distribute your comments
in any way it believes appropriate without incurring any obligation to you.

If you are mailing a readers’ comment form (RCF) from a country other than the United States, you can
give it to the local IBM branch office or IBM representative for postage-paid mailing.

¹ If you prefer to send comments by mail, use the RCF at the back of this book.

¹ If you prefer to send comments by FAX, use this number:

– United States and Canada: 416-448-6161

– Other countries: (+1)-416-448-6161

¹ If you prefer to send comments electronically, use the network ID listed below. Be sure to include
your entire network address if you wish a reply.

 – Internet: torrcf@vnet.ibm.com
 – IBMLink: toribm(torrcf)
 – IBM/PROFS: torolab4(torrcf)
 – IBMMAIL: ibmmail(caibmwt9)

Readers' Comments — We'd Like to Hear from You

IBM VisualAge C++ for OS/2
IBM VisualAge�C++ for OS/2 User's Guide

Version 3.0

Publication No. S25H-6961-00

Overall, how satisfied are you with the information in this book?

How satisfied are you that the information in this book is:

Please tell us how we can improve this book:

Thank you for your responses. May we contact you?Ø Yes Ø No

When you send comments to IBM, you grant IBM a nonexclusive right to use or distribute your
comments in any way it believes appropriate without incurring any obligation to you.

Name Address

Company or Organization

Phone No.

Very

Satisfied Satisfied Neutral Dissatisfied
Very

Dissatisfied

Overall satisfaction Ø Ø Ø Ø Ø

Very

Satisfied Satisfied Neutral Dissatisfied
Very

Dissatisfied

Accurate Ø Ø Ø Ø Ø
Complete Ø Ø Ø Ø Ø
Easy to find Ø Ø Ø Ø Ø
Easy to understand Ø Ø Ø Ø Ø
Well organized Ø Ø Ø Ø Ø
Applicable to your tasks Ø Ø Ø Ø Ø

Cut or Fold
Along Line

Cut or Fold
Along Line

Readers' Comments — We'd Like to Hear from You
S25H-6961-00 ÉÂÔÙ

Fold and Tape Please do not staple Fold and Tape

PLACE
POSTAGE
STAMP
HERE

IBM Canada Ltd. Laboratory
Information Development
2G/345/1150/TOR
1150 EGLINTON AVENUE EAST
NORTH YORK ONTARIO CANADA M3C 1H7

Fold and Tape Please do not staple Fold and Tape

S25H-6961-00

ÉÂÔÙ

Part Number: 25H6961
Program Number: 5622-679
 30H1664
 30H1665
 30H1666
 30H1679

Printed in U.S.A.

25
H6
96
1

S25H-6961-00

